Prognostic implications of N6-methyladenosine RNA regulators in breast cancer

The significance of N 6 -methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 12; číslo 1; s. 1222 - 19
Hlavní autoři: Tai, Jiaojiao, Wang, Linbang, Guo, Hao, Yan, Ziqiang, Liu, Jingkun
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 24.01.2022
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The significance of N 6 -methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
AbstractList The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
Abstract The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
The significance of N 6 -methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and mechanism of action in the tumour microenvironment (TME) and immune response has not been demonstrated. Thus, the role of m6A regulators and their downstream target gene components in BC remain to be explored. In this study, we used a series of bioinformatics methods and experiments to conduct exploratory research on the possible role of m6A regulators in BC. First, two regulatory modes of immune activation and inactivation were determined by tumour classification. The TME, immune cell infiltration, and gene set variation analysis results confirmed the reliability of this pattern. The prognostic model of the m6A regulator was established by the least absolute shrinkage and selection operator and univariate and multivariate Cox analyses, with the two regulators most closely related to survival verified by real-time quantitative reverse transcription polymerase chain reaction. Next, the prognostic m6A regulator identified in the model was crossed with the differential copy number of variant genes in invasive BC (IBC), and it was determined that YTHDF1 was a hub regulator. Subsequently, single-cell analysis revealed the expression patterns of m6A regulators in different IBC cell populations and found that YTHDF1 had significantly higher expression in immune-related IBC cells. Therefore, we selected the intersection of the BC differential expression gene set and the differential expression gene set of a cell line with knocked-down YTHDF1 in literature to identify downstream target genes of YTHDF1, in which we found IFI6, EIR, and SPTBN1. A polymerase chain reaction was conducted to verify the results. Finally, we confirmed the role of YTHDF1 as a potential prognostic biomarker through pan-cancer analysis. Furthermore, our findings revealed that YTHDF1 can serve as a new molecular marker for BC immunotherapy.
ArticleNumber 1222
Author Wang, Linbang
Yan, Ziqiang
Guo, Hao
Tai, Jiaojiao
Liu, Jingkun
Author_xml – sequence: 1
  givenname: Jiaojiao
  surname: Tai
  fullname: Tai, Jiaojiao
  organization: Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University
– sequence: 2
  givenname: Linbang
  surname: Wang
  fullname: Wang, Linbang
  organization: Department of Orthopedic Surgery, The First Affiliated Hospital, Chongqing Medical University
– sequence: 3
  givenname: Hao
  surname: Guo
  fullname: Guo, Hao
  organization: Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University
– sequence: 4
  givenname: Ziqiang
  surname: Yan
  fullname: Yan, Ziqiang
  email: heluxue68@hotmail.com
  organization: Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University
– sequence: 5
  givenname: Jingkun
  surname: Liu
  fullname: Liu, Jingkun
  email: 1768697234@qq.com
  organization: Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University
BookMark eNp9UU1vFSEUnZgaW2v_gKtJ3LgZ5XtgY9I0WpvUaoyuCQOXKS_z4Akzpv330jeN2i7KBu7lnMO5nJfNQUwRmuY1Ru8wovJ9YZgr2SFCOsQx4d3Ns-aIIMY7Qgk5-O982JyUskF1caIYVi-aQ8pRz7Hoj5ov33IaYypzsG3Y7qZgzRxSLG3y7ZXotjBf307GQYWECO33q9M2w7hMZk65tCG2QwZT5taaaCG_ap57MxU4ud-Pm5-fPv44-9xdfj2_ODu97Cxj_dxJDwSDIh6w4MYRIlQt1eCoFIo4JLzyFAxwIgxHjkvPxdAPzDEy9Haw9Li5WHVdMhu9y2Fr8q1OJuh9I-VRm1xHmkBT6QUyngnhGRNUDZTb2qJMEucMwlXrw6q1W4YtOAtxzmZ6IPrwJoZrPabfWvZSSE6rwNt7gZx-LVBmvQ3FwjSZCGkpmog6IFc1jgp98wi6SUuO9av2KCo5oqyiyIqyOZWSwf81g5G-C1-v4esavt6Hr28qST4i2TDvs6ymw_Q0la7UUt-JI-R_rp5g_QE7usTc
CitedBy_id crossref_primary_10_1002_mc_23661
crossref_primary_10_1016_j_jri_2023_104160
crossref_primary_10_1002_ijc_34900
crossref_primary_10_3390_molecules29010140
Cites_doi 10.1093/jnci/85.15.1206
10.1186/s12943-020-01170-0
10.1038/s41467-019-12801-6
10.18632/oncotarget.15170
10.1038/ncomms3612
10.1158/1078-0432.ccr-11-0072
10.1186/s12943-019-1084-1
10.1002/hep.27558
10.18632/aging.202163
10.1038/s41418-019-0461-z
10.18632/aging.101856
10.1016/j.ccell.2020.10.019
10.1038/s41568-018-0010-y
10.7150/ijbs.39046
10.1172/jci67428
10.18632/oncotarget.15736
10.1684/abc.2016.1192
10.1159/000430499
10.1186/1471-2105-11-602
10.1517/14728222.2011.636739
10.7150/ijbs.18834
10.1002/cam4.1722
10.3389/fonc.2019.00332
10.1093/nar/gkaa048
10.3389/fendo.2018.00396
10.1111/febs.13614
10.1038/s41416-018-0137-3
10.1016/j.ejphar.2021.174401
10.3389/fbioe.2018.00089
10.1038/s41586-019-0916-x
10.1038/s41523-019-0133-7
10.1186/s13045-019-0805-7
10.1111/jcmm.15104
10.1016/j.taap.2017.02.012
10.1371/journal.pntd.0006683
10.1186/s12943-020-1146-4
10.1186/s12943-019-1038-7
10.3389/fimmu.2019.02693
10.14670/hh-11-916
10.1155/2018/2584243
10.3322/caac.21412
10.1186/s13058-018-1079-7
10.1146/annurev-cellbio-100616-060758
10.1126/science.aar3593
10.1016/j.bbagrm.2016.02.010
10.1038/onc.2011.393
10.1016/j.cell.2018.05.060
10.7150/jca.35053
10.1038/s41416-019-0539-x
10.1016/j.intimp.2019.105932
10.1631/jzus.B1400221
10.1016/j.jval.2017.04.021
10.2147/cmar.s202342
10.1016/j.semcancer.2017.11.003
10.1038/srep04002
10.2147/bctt.s109847
10.1186/s12885-019-5538-z
10.1001/jamaoncol.2018.4942
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-05125-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_38f60af466f44639b35c8f63482dda01
PMC8786853
10_1038_s41598_022_05125_x
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c447t-8fe21e92fe165ad22691e99bd38692d06f9f3eae526a50d58f56b7b4d42b7cbc3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746700700066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:50:38 EDT 2025
Tue Nov 04 01:57:43 EST 2025
Thu Oct 02 09:49:17 EDT 2025
Tue Oct 07 07:45:36 EDT 2025
Sat Nov 29 02:51:17 EST 2025
Tue Nov 18 21:00:39 EST 2025
Fri Feb 21 02:39:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-8fe21e92fe165ad22691e99bd38692d06f9f3eae526a50d58f56b7b4d42b7cbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/38f60af466f44639b35c8f63482dda01
PMID 35075167
PQID 2622385034
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_38f60af466f44639b35c8f63482dda01
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8786853
proquest_miscellaneous_2622659045
proquest_journals_2622385034
crossref_primary_10_1038_s41598_022_05125_x
crossref_citationtrail_10_1038_s41598_022_05125_x
springer_journals_10_1038_s41598_022_05125_x
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LiuTThe m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translationNucleic Acids Res.202048381638311:CAS:528:DC%2BB3cXisVKlur%2FO10.1093/nar/gkaa048319969157144925
JiangLExploring diagnostic m6A regulators in endometriosisAging20201225916259381:CAS:528:DC%2BB3MXmsF2qtbo%3D10.18632/aging.202163332322737803542
PassaroAStenzingerAPetersSTumor mutational burden as a pan-cancer biomarker for immunotherapy: The limits and potential for convergenceCancer Cell2020386246251:CAS:528:DC%2BB3cXitlemtbjJ10.1016/j.ccell.2020.10.01933171127
HammerlDBreast cancer genomics and immuno-oncological markers to guide immune therapiesSemin. Cancer Biol.2018521781881:CAS:528:DC%2BC2sXhslymt7zI10.1016/j.semcancer.2017.11.00329104025
UenoTGenome-wide copy number analysis in primary breast cancerExpert Opin. Ther. Targets201216Suppl 1S31351:CAS:528:DC%2BC38XivFOnu74%3D10.1517/14728222.2011.63673922313367
ZhiXβII-Spectrin (SPTBN1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatinHepatology (Baltimore, MD)2015615986121:CAS:528:DC%2BC2MXhsV2nu78%3D10.1002/hep.27558
LiuZXLiLMSunHLLiuSMLink between m6A modification and cancersFront. Bioeng. Biotechnol.201868910.3389/fbioe.2018.00089300620936055048
ZhuangZDiagnostic, progressive and prognostic performance of m(6)A methylation RNA regulators in lung adenocarcinomaInt. J. Biol. Sci.202016178517971:CAS:528:DC%2BB3cXhvVCgsL%2FI10.7150/ijbs.39046323989497211177
CohenRAssociation of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency statusJAMA Oncol.2019555155510.1001/jamaoncol.2018.494230452494
McVeighTPKerinMJClinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancerBreast Cancer (Dove Medical Press)201793934001:CAS:528:DC%2BC1cXit1Sks7rJ10.2147/bctt.s109847
WuHSPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21Eur. J. Pharmacol.202110.1016/j.ejphar.2021.17440134973190
ModiSHSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumabClin. Cancer Res.201117513251391:CAS:528:DC%2BC3MXpsFSksbw%3D10.1158/1078-0432.ccr-11-007221558407
CheriyathVG1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancerOncogene201231222222361:CAS:528:DC%2BC38Xmt1WnsLk%3D10.1038/onc.2011.39321996729
YuSTargeting HSP90-HDAC6 regulating network implicates precision treatment of breast cancerInt. J. Biol. Sci.20171350551710.7150/ijbs.18834285294585436570
ChengNCs1, a Clonorchis sinensis-derived serodiagnostic antigen containing tandem repeats and a signal peptidePLoS Negl. Trop. Dis.2018121:CAS:528:DC%2BC1MXhslejsbvF10.1371/journal.pntd.0006683300709876091968
JeffriesCDPerkinsDOGuanXGene processing control loops suggested by sequencing, splicing, and RNA foldingBMC Bioinform.2010116021:CAS:528:DC%2BC3MXmtFM%3D10.1186/1471-2105-11-602
WuLWuDNingJLiuWZhangDChanges of N6-methyladenosine modulators promote breast cancer progressionBMC Cancer20191932610.1186/s12885-019-5538-z309534736451293
LiTMETTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinomaMol. Cancer2019181121:CAS:528:DC%2BC1MXht1Kks7bF10.1186/s12943-019-1038-7312305926589893
LeeHNeurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3pBiochem. Biophys. Acta.1859599–61120161:CAS:528:DC%2BC28Xjt1ykt7s%3D10.1016/j.bbagrm.2016.02.010
GuCMettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1Mol. Cancer2019181681:CAS:528:DC%2BC1MXisVSlsbvJ10.1186/s12943-019-1084-1317609406876123
ShiYYTHDF1 links hypoxia adaptation and non-small cell lung cancer progressionNat. Commun.20191048922019NatCo..10.4892S1:CAS:528:DC%2BC1MXitVKrsbvM10.1038/s41467-019-12801-6316538496814821
HuXIGF2BP2 regulates DANCR by serving as an N6-methyladenosine readerCell Death Differ.201910.1038/s41418-019-0461-z318191577244716
LiHHigh expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltrationJ. Cell Mol. Med.202024445244651:CAS:528:DC%2BB3cXnslKqtbo%3D10.1111/jcmm.15104321764257176877
Aponte-LópezAFuentes-PananáEMCortes-MuñozDMuñoz-CruzSMast cell, the neglected member of the tumor microenvironment: Role in breast cancerJ. Immunol. Res.2018201825842431:CAS:528:DC%2BC1cXit1Glu7rL10.1155/2018/2584243296514405832101
ZhangBm(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancerMol. Cancer202019531:CAS:528:DC%2BB3cXlslGitrs%3D10.1186/s12943-020-01170-0321647507066851
GhaffariAIntravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancerBreast Cancer Res. (BCR)2019211210.1186/s13058-018-1079-7
ChoiJGyamfiJJangHKooJSThe role of tumor-associated macrophage in breast cancer biologyHistol. Histopathol.2018331331451:CAS:528:DC%2BC1MXhtlGmsLs%3D10.14670/hh-11-91628681373
PrabhuSEnhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicityToxicol. Appl. Pharmacol.201732060721:CAS:528:DC%2BC2sXjsVGqs70%3D10.1016/j.taap.2017.02.01228213093
AziziESingle-cell map of diverse immune phenotypes in the breast tumor microenvironmentCell201817412931308.e12361:CAS:528:DC%2BC1cXht1Cis7vN10.1016/j.cell.2018.05.060299615796348010
QuanCEzrin promotes pancreatic cancer cell proliferation and invasion through activating the Akt/mTOR pathway and inducing YAP translocationCancer Manag. Res.201911655365661:CAS:528:DC%2BB3cXkvVOitbo%3D10.2147/cmar.s202342313720566634270
DuanJWangYJiaoSCheckpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challengesCancer Med.201874517452910.1002/cam4.1722300883476144152
BhattaraiSMachine learning-based prediction of breast cancer growth rate in vivoBr. J. Cancer201912149750410.1038/s41416-019-0539-x313959506738119
YoshiharaKInferring tumour purity and stromal and immune cell admixture from expression dataNat. Commun.2013426122013NatCo...4.2612Y1:CAS:528:DC%2BC3sXhs1Oqu7zP10.1038/ncomms361224113773
ZhaoXPrognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literatureOncotarget20178305763058610.18632/oncotarget.15736284271655444766
LiuZJSemenzaGLZhangHFHypoxia-inducible factor 1 and breast cancer metastasisJ. Zhejiang Univ. Sci. B20151632431:CAS:528:DC%2BC2MXhtlWjsLY%3D10.1631/jzus.B1400221255599534288942
XuFZhangHChenJLinLChenYImmune signature of T follicular helper cells predicts clinical prognostic and therapeutic impact in lung squamous cell carcinomaInt. Immunopharmacol.2020811:CAS:528:DC%2BC1MXitlOgtLnE10.1016/j.intimp.2019.10593231836430
DengXSuRStanfordSChenJCritical enzymatic functions of FTO in obesity and cancerFront. Endocrinol.2018939610.3389/fendo.2018.00396
CheriyathVG1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROSBr. J. Cancer201811952641:CAS:528:DC%2BC1cXhtF2htb3J10.1038/s41416-018-0137-3298993946035266
GaspariniGPozzaFHarrisALEvaluating the potential usefulness of new prognostic and predictive indicators in node-negative breast cancer patientsJ. Natl Cancer Inst.199385120612191:STN:280:DyaK3szitlWnsA%3D%3D10.1093/jnci/85.15.12068331681
LiuLN6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survivalJ. Cancer201910544754591:CAS:528:DC%2BB3cXovVyltrY%3D10.7150/jca.35053316324896775703
BylerSGenetic and epigenetic aspects of breast cancer progression and therapyAnticancer Res.201434107110771:CAS:528:DC%2BC2cXotVSnur8%3D24596345
HallPSValue of information analysis of multiparameter tests for chemotherapy in early breast cancer: The OPTIMA prelim trialValue Health2017201311131810.1016/j.jval.2017.04.02129241890
MaityADasBN6-methyladenosine modification in mRNA: Machinery, function and implications for health and diseasesFEBS J.2016283160716301:CAS:528:DC%2BC28XhvFWrug%3D%3D10.1111/febs.1361426645578
AndradeSSInterface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - Influence of platelets and fibrin bundles on the behavior of breast tumor cellsOncotarget20178168511687410.18632/oncotarget.15170281874345370006
HanDAnti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cellsNature20195662702742019Natur.566..270H1:CAS:528:DC%2BC1MXmt1ynsr0%3D10.1038/s41586-019-0916-x307285046522227
YangXMETTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XISTMol. Cancer202019461:CAS:528:DC%2BB3cXkvValtb4%3D10.1186/s12943-020-1146-4321112137047419
DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A. & Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin.67, 439–448. https://doi.org/10.3322/caac.21412 (2017).
AlexiaCPolyoxidonium(®) activates cytotoxic lymphocyte responses through dendritic cell maturation: Clinical effects in breast cancerFront. Immunol.20191026931:CAS:528:DC%2BB3cXhsVCgsbnP10.3389/fimmu.2019.02693318499346892947
Gu-TrantienCCD4+ follicular helper T cell infiltration predicts breast cancer survivalJ. Clin. Investig.2013123287328921:CAS:528:DC%2BC3sXhtFWjtr3J10.1172/jci67428237781403696556
LimBWoodwardWAWangXReubenJMUenoNTInflammatory breast cancer biology: The tumour microenvironment is keyNat. Rev. Cancer2018184854991:CAS:528:DC%2BC1cXosFylsLo%3D10.1038/s41568-018-0010-y29703913
SoysalSDTzankovAMuenstSERole of the tumor microenvironment in breast cancerPathobiolo
L Jiang (5125_CR41) 2020; 12
R Cohen (5125_CR58) 2019; 5
D Hammerl (5125_CR4) 2018; 52
KD Meyer (5125_CR8) 2017; 33
PS Hall (5125_CR40) 2017; 20
D Han (5125_CR17) 2019; 566
A Aponte-López (5125_CR33) 2018; 2018
SD Soysal (5125_CR11) 2015; 82
S Yu (5125_CR29) 2017; 13
N Cheng (5125_CR53) 2018; 12
S Prabhu (5125_CR28) 2017; 320
Y Shi (5125_CR46) 2019; 10
S Ma (5125_CR23) 2019; 12
C Quan (5125_CR49) 2019; 11
J Zhou (5125_CR45) 2019; 11
A Roulot (5125_CR37) 2016; 74
C Alexia (5125_CR34) 2019; 10
X Zhi (5125_CR54) 2015; 61
Z Liu (5125_CR2) 2014; 4
X Yang (5125_CR26) 2020; 19
Z Zhuang (5125_CR56) 2020; 16
S Byler (5125_CR5) 2014; 34
R Cristescu (5125_CR9) 2018
V Cheriyath (5125_CR51) 2012; 31
J Duan (5125_CR10) 2018; 7
H Li (5125_CR42) 2020; 24
K Yoshihara (5125_CR57) 2013; 4
E Azizi (5125_CR12) 2018; 174
L Wu (5125_CR20) 2019; 19
B Zhang (5125_CR16) 2020; 19
V Cheriyath (5125_CR52) 2018; 119
H Wu (5125_CR55) 2021
B Lim (5125_CR31) 2018; 18
J Choi (5125_CR35) 2018; 33
C Gu (5125_CR22) 2019; 18
TP McVeigh (5125_CR39) 2017; 9
T Ueno (5125_CR44) 2012; 16
X Hu (5125_CR25) 2019
G Gasparini (5125_CR3) 1993; 85
ZJ Liu (5125_CR13) 2015; 16
5125_CR1
X Deng (5125_CR27) 2018; 9
T Liu (5125_CR18) 2020; 48
H Lee (5125_CR50) 1859; 599–611
S Modi (5125_CR30) 2011; 17
A Maity (5125_CR6) 2016; 283
A Ghaffari (5125_CR48) 2019; 21
C Gu-Trantien (5125_CR32) 2013; 123
SS Andrade (5125_CR14) 2017; 8
T Li (5125_CR24) 2019; 18
S Bhattarai (5125_CR38) 2019; 121
F Xu (5125_CR43) 2020; 81
X Zhao (5125_CR36) 2017; 8
ZX Liu (5125_CR7) 2018; 6
L Liu (5125_CR21) 2019; 10
ME Gatti-Mays (5125_CR15) 2019; 5
A Passaro (5125_CR59) 2020; 38
CD Jeffries (5125_CR19) 2010; 11
Y Bai (5125_CR47) 2019; 9
References_xml – reference: LimBWoodwardWAWangXReubenJMUenoNTInflammatory breast cancer biology: The tumour microenvironment is keyNat. Rev. Cancer2018184854991:CAS:528:DC%2BC1cXosFylsLo%3D10.1038/s41568-018-0010-y29703913
– reference: HallPSValue of information analysis of multiparameter tests for chemotherapy in early breast cancer: The OPTIMA prelim trialValue Health2017201311131810.1016/j.jval.2017.04.02129241890
– reference: YoshiharaKInferring tumour purity and stromal and immune cell admixture from expression dataNat. Commun.2013426122013NatCo...4.2612Y1:CAS:528:DC%2BC3sXhs1Oqu7zP10.1038/ncomms361224113773
– reference: CohenRAssociation of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency statusJAMA Oncol.2019555155510.1001/jamaoncol.2018.494230452494
– reference: HuXIGF2BP2 regulates DANCR by serving as an N6-methyladenosine readerCell Death Differ.201910.1038/s41418-019-0461-z318191577244716
– reference: BhattaraiSMachine learning-based prediction of breast cancer growth rate in vivoBr. J. Cancer201912149750410.1038/s41416-019-0539-x313959506738119
– reference: PassaroAStenzingerAPetersSTumor mutational burden as a pan-cancer biomarker for immunotherapy: The limits and potential for convergenceCancer Cell2020386246251:CAS:528:DC%2BB3cXitlemtbjJ10.1016/j.ccell.2020.10.01933171127
– reference: MaityADasBN6-methyladenosine modification in mRNA: Machinery, function and implications for health and diseasesFEBS J.2016283160716301:CAS:528:DC%2BC28XhvFWrug%3D%3D10.1111/febs.1361426645578
– reference: Aponte-LópezAFuentes-PananáEMCortes-MuñozDMuñoz-CruzSMast cell, the neglected member of the tumor microenvironment: Role in breast cancerJ. Immunol. Res.2018201825842431:CAS:528:DC%2BC1cXit1Glu7rL10.1155/2018/2584243296514405832101
– reference: BaiYYTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinomaFront. Oncol.2019933210.3389/fonc.2019.00332311312576509179
– reference: AndradeSSInterface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - Influence of platelets and fibrin bundles on the behavior of breast tumor cellsOncotarget20178168511687410.18632/oncotarget.15170281874345370006
– reference: CheriyathVG1P3 (IFI6), a mitochondrial localised antiapoptotic protein, promotes metastatic potential of breast cancer cells through mtROSBr. J. Cancer201811952641:CAS:528:DC%2BC1cXhtF2htb3J10.1038/s41416-018-0137-3298993946035266
– reference: ModiSHSP90 inhibition is effective in breast cancer: A phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumabClin. Cancer Res.201117513251391:CAS:528:DC%2BC3MXpsFSksbw%3D10.1158/1078-0432.ccr-11-007221558407
– reference: DengXSuRStanfordSChenJCritical enzymatic functions of FTO in obesity and cancerFront. Endocrinol.2018939610.3389/fendo.2018.00396
– reference: BylerSGenetic and epigenetic aspects of breast cancer progression and therapyAnticancer Res.201434107110771:CAS:528:DC%2BC2cXotVSnur8%3D24596345
– reference: GhaffariAIntravital imaging reveals systemic ezrin inhibition impedes cancer cell migration and lymph node metastasis in breast cancerBreast Cancer Res. (BCR)2019211210.1186/s13058-018-1079-7
– reference: JeffriesCDPerkinsDOGuanXGene processing control loops suggested by sequencing, splicing, and RNA foldingBMC Bioinform.2010116021:CAS:528:DC%2BC3MXmtFM%3D10.1186/1471-2105-11-602
– reference: ShiYYTHDF1 links hypoxia adaptation and non-small cell lung cancer progressionNat. Commun.20191048922019NatCo..10.4892S1:CAS:528:DC%2BC1MXitVKrsbvM10.1038/s41467-019-12801-6316538496814821
– reference: WuLWuDNingJLiuWZhangDChanges of N6-methyladenosine modulators promote breast cancer progressionBMC Cancer20191932610.1186/s12885-019-5538-z309534736451293
– reference: LiuZZhangXSZhangSBreast tumor subgroups reveal diverse clinical prognostic powerSci. Rep.2014440021:CAS:528:DC%2BC2cXjtFajur4%3D10.1038/srep04002244998685379255
– reference: LiTMETTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinomaMol. Cancer2019181121:CAS:528:DC%2BC1MXht1Kks7bF10.1186/s12943-019-1038-7312305926589893
– reference: MaSThe interplay between m6A RNA methylation and noncoding RNA in cancerJ. Hematol. Oncol.2019121211:CAS:528:DC%2BC1MXit1arsb%2FJ10.1186/s13045-019-0805-7317572216874823
– reference: PrabhuSEnhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicityToxicol. Appl. Pharmacol.201732060721:CAS:528:DC%2BC2sXjsVGqs70%3D10.1016/j.taap.2017.02.01228213093
– reference: McVeighTPKerinMJClinical use of the Oncotype DX genomic test to guide treatment decisions for patients with invasive breast cancerBreast Cancer (Dove Medical Press)201793934001:CAS:528:DC%2BC1cXit1Sks7rJ10.2147/bctt.s109847
– reference: UenoTGenome-wide copy number analysis in primary breast cancerExpert Opin. Ther. Targets201216Suppl 1S31351:CAS:528:DC%2BC38XivFOnu74%3D10.1517/14728222.2011.63673922313367
– reference: MeyerKDJaffreySRRethinking m(6)A readers, writers, and erasersAnnu. Rev. Cell Dev. Biol.2017333193421:CAS:528:DC%2BC2sXht1GitbvL10.1146/annurev-cellbio-100616-060758287592565963928
– reference: AlexiaCPolyoxidonium(®) activates cytotoxic lymphocyte responses through dendritic cell maturation: Clinical effects in breast cancerFront. Immunol.20191026931:CAS:528:DC%2BB3cXhsVCgsbnP10.3389/fimmu.2019.02693318499346892947
– reference: LeeHNeurofibromatosis 2 (NF2) controls the invasiveness of glioblastoma through YAP-dependent expression of CYR61/CCN1 and miR-296-3pBiochem. Biophys. Acta.1859599–61120161:CAS:528:DC%2BC28Xjt1ykt7s%3D10.1016/j.bbagrm.2016.02.010
– reference: GaspariniGPozzaFHarrisALEvaluating the potential usefulness of new prognostic and predictive indicators in node-negative breast cancer patientsJ. Natl Cancer Inst.199385120612191:STN:280:DyaK3szitlWnsA%3D%3D10.1093/jnci/85.15.12068331681
– reference: YuSTargeting HSP90-HDAC6 regulating network implicates precision treatment of breast cancerInt. J. Biol. Sci.20171350551710.7150/ijbs.18834285294585436570
– reference: ZhaoXPrognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literatureOncotarget20178305763058610.18632/oncotarget.15736284271655444766
– reference: QuanCEzrin promotes pancreatic cancer cell proliferation and invasion through activating the Akt/mTOR pathway and inducing YAP translocationCancer Manag. Res.201911655365661:CAS:528:DC%2BB3cXkvVOitbo%3D10.2147/cmar.s202342313720566634270
– reference: WuHSPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21Eur. J. Pharmacol.202110.1016/j.ejphar.2021.17440134973190
– reference: SoysalSDTzankovAMuenstSERole of the tumor microenvironment in breast cancerPathobiology J. Immunopathol. Mol. Cell. Biol.2015821421521:CAS:528:DC%2BC2MXhsFWnsb%2FN10.1159/000430499
– reference: LiuLN6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survivalJ. Cancer201910544754591:CAS:528:DC%2BB3cXovVyltrY%3D10.7150/jca.35053316324896775703
– reference: LiuZJSemenzaGLZhangHFHypoxia-inducible factor 1 and breast cancer metastasisJ. Zhejiang Univ. Sci. B20151632431:CAS:528:DC%2BC2MXhtlWjsLY%3D10.1631/jzus.B1400221255599534288942
– reference: YangXMETTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XISTMol. Cancer202019461:CAS:528:DC%2BB3cXkvValtb4%3D10.1186/s12943-020-1146-4321112137047419
– reference: LiHHigh expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltrationJ. Cell Mol. Med.202024445244651:CAS:528:DC%2BB3cXnslKqtbo%3D10.1111/jcmm.15104321764257176877
– reference: ZhangBm(6)A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in gastric cancerMol. Cancer202019531:CAS:528:DC%2BB3cXlslGitrs%3D10.1186/s12943-020-01170-0321647507066851
– reference: DeSantis, C. E., Ma, J., Goding Sauer, A., Newman, L. A. & Jemal, A. Breast cancer statistics, 2017, racial disparity in mortality by state. CA Cancer J. Clin.67, 439–448. https://doi.org/10.3322/caac.21412 (2017).
– reference: JiangLExploring diagnostic m6A regulators in endometriosisAging20201225916259381:CAS:528:DC%2BB3MXmsF2qtbo%3D10.18632/aging.202163332322737803542
– reference: HammerlDBreast cancer genomics and immuno-oncological markers to guide immune therapiesSemin. Cancer Biol.2018521781881:CAS:528:DC%2BC2sXhslymt7zI10.1016/j.semcancer.2017.11.00329104025
– reference: ChoiJGyamfiJJangHKooJSThe role of tumor-associated macrophage in breast cancer biologyHistol. Histopathol.2018331331451:CAS:528:DC%2BC1MXhtlGmsLs%3D10.14670/hh-11-91628681373
– reference: XuFZhangHChenJLinLChenYImmune signature of T follicular helper cells predicts clinical prognostic and therapeutic impact in lung squamous cell carcinomaInt. Immunopharmacol.2020811:CAS:528:DC%2BC1MXitlOgtLnE10.1016/j.intimp.2019.10593231836430
– reference: HanDAnti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cellsNature20195662702742019Natur.566..270H1:CAS:528:DC%2BC1MXmt1ynsr0%3D10.1038/s41586-019-0916-x307285046522227
– reference: CheriyathVG1P3, an interferon- and estrogen-induced survival protein contributes to hyperplasia, tamoxifen resistance and poor outcomes in breast cancerOncogene201231222222361:CAS:528:DC%2BC38Xmt1WnsLk%3D10.1038/onc.2011.39321996729
– reference: RoulotATumoral heterogeneity of breast cancerAnn. Biol. Clin.20167465366010.1684/abc.2016.1192
– reference: GuCMettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1Mol. Cancer2019181681:CAS:528:DC%2BC1MXisVSlsbvJ10.1186/s12943-019-1084-1317609406876123
– reference: LiuZXLiLMSunHLLiuSMLink between m6A modification and cancersFront. Bioeng. Biotechnol.201868910.3389/fbioe.2018.00089300620936055048
– reference: DuanJWangYJiaoSCheckpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challengesCancer Med.201874517452910.1002/cam4.1722300883476144152
– reference: ZhuangZDiagnostic, progressive and prognostic performance of m(6)A methylation RNA regulators in lung adenocarcinomaInt. J. Biol. Sci.202016178517971:CAS:528:DC%2BB3cXhvVCgsL%2FI10.7150/ijbs.39046323989497211177
– reference: ZhiXβII-Spectrin (SPTBN1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatinHepatology (Baltimore, MD)2015615986121:CAS:528:DC%2BC2MXhsV2nu78%3D10.1002/hep.27558
– reference: LiuTThe m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translationNucleic Acids Res.202048381638311:CAS:528:DC%2BB3cXisVKlur%2FO10.1093/nar/gkaa048319969157144925
– reference: AziziESingle-cell map of diverse immune phenotypes in the breast tumor microenvironmentCell201817412931308.e12361:CAS:528:DC%2BC1cXht1Cis7vN10.1016/j.cell.2018.05.060299615796348010
– reference: ZhouJGene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma - A retrospective study using TCGA databaseAging201911163316471:CAS:528:DC%2BC1MXitl2qur7F10.18632/aging.101856308772656461179
– reference: Gu-TrantienCCD4+ follicular helper T cell infiltration predicts breast cancer survivalJ. Clin. Investig.2013123287328921:CAS:528:DC%2BC3sXhtFWjtr3J10.1172/jci67428237781403696556
– reference: CristescuRPan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapyScience (New York, NY)201810.1126/science.aar3593
– reference: ChengNCs1, a Clonorchis sinensis-derived serodiagnostic antigen containing tandem repeats and a signal peptidePLoS Negl. Trop. Dis.2018121:CAS:528:DC%2BC1MXhslejsbvF10.1371/journal.pntd.0006683300709876091968
– reference: Gatti-MaysMEIf we build it they will come: Targeting the immune response to breast cancerNPJ. Breast Cancer20195371:CAS:528:DC%2BC1MXitVKrur3I10.1038/s41523-019-0133-7317009936820540
– volume: 85
  start-page: 1206
  year: 1993
  ident: 5125_CR3
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/85.15.1206
– volume: 19
  start-page: 53
  year: 2020
  ident: 5125_CR16
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01170-0
– volume: 10
  start-page: 4892
  year: 2019
  ident: 5125_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12801-6
– volume: 8
  start-page: 16851
  year: 2017
  ident: 5125_CR14
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15170
– volume: 4
  start-page: 2612
  year: 2013
  ident: 5125_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3612
– volume: 17
  start-page: 5132
  year: 2011
  ident: 5125_CR30
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.ccr-11-0072
– volume: 18
  start-page: 168
  year: 2019
  ident: 5125_CR22
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1084-1
– volume: 61
  start-page: 598
  year: 2015
  ident: 5125_CR54
  publication-title: Hepatology (Baltimore, MD)
  doi: 10.1002/hep.27558
– volume: 12
  start-page: 25916
  year: 2020
  ident: 5125_CR41
  publication-title: Aging
  doi: 10.18632/aging.202163
– year: 2019
  ident: 5125_CR25
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0461-z
– volume: 11
  start-page: 1633
  year: 2019
  ident: 5125_CR45
  publication-title: Aging
  doi: 10.18632/aging.101856
– volume: 38
  start-page: 624
  year: 2020
  ident: 5125_CR59
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.10.019
– volume: 18
  start-page: 485
  year: 2018
  ident: 5125_CR31
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0010-y
– volume: 16
  start-page: 1785
  year: 2020
  ident: 5125_CR56
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.39046
– volume: 123
  start-page: 2873
  year: 2013
  ident: 5125_CR32
  publication-title: J. Clin. Investig.
  doi: 10.1172/jci67428
– volume: 8
  start-page: 30576
  year: 2017
  ident: 5125_CR36
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15736
– volume: 74
  start-page: 653
  year: 2016
  ident: 5125_CR37
  publication-title: Ann. Biol. Clin.
  doi: 10.1684/abc.2016.1192
– volume: 82
  start-page: 142
  year: 2015
  ident: 5125_CR11
  publication-title: Pathobiology J. Immunopathol. Mol. Cell. Biol.
  doi: 10.1159/000430499
– volume: 11
  start-page: 602
  year: 2010
  ident: 5125_CR19
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-602
– volume: 16
  start-page: S31
  issue: Suppl 1
  year: 2012
  ident: 5125_CR44
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2011.636739
– volume: 13
  start-page: 505
  year: 2017
  ident: 5125_CR29
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.18834
– volume: 7
  start-page: 4517
  year: 2018
  ident: 5125_CR10
  publication-title: Cancer Med.
  doi: 10.1002/cam4.1722
– volume: 9
  start-page: 332
  year: 2019
  ident: 5125_CR47
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00332
– volume: 48
  start-page: 3816
  year: 2020
  ident: 5125_CR18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa048
– volume: 9
  start-page: 396
  year: 2018
  ident: 5125_CR27
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2018.00396
– volume: 34
  start-page: 1071
  year: 2014
  ident: 5125_CR5
  publication-title: Anticancer Res.
– volume: 283
  start-page: 1607
  year: 2016
  ident: 5125_CR6
  publication-title: FEBS J.
  doi: 10.1111/febs.13614
– volume: 119
  start-page: 52
  year: 2018
  ident: 5125_CR52
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-018-0137-3
– year: 2021
  ident: 5125_CR55
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2021.174401
– volume: 6
  start-page: 89
  year: 2018
  ident: 5125_CR7
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2018.00089
– volume: 566
  start-page: 270
  year: 2019
  ident: 5125_CR17
  publication-title: Nature
  doi: 10.1038/s41586-019-0916-x
– volume: 5
  start-page: 37
  year: 2019
  ident: 5125_CR15
  publication-title: NPJ. Breast Cancer
  doi: 10.1038/s41523-019-0133-7
– volume: 12
  start-page: 121
  year: 2019
  ident: 5125_CR23
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0805-7
– volume: 24
  start-page: 4452
  year: 2020
  ident: 5125_CR42
  publication-title: J. Cell Mol. Med.
  doi: 10.1111/jcmm.15104
– volume: 320
  start-page: 60
  year: 2017
  ident: 5125_CR28
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.02.012
– volume: 12
  year: 2018
  ident: 5125_CR53
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006683
– volume: 19
  start-page: 46
  year: 2020
  ident: 5125_CR26
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-1146-4
– volume: 18
  start-page: 112
  year: 2019
  ident: 5125_CR24
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-1038-7
– volume: 10
  start-page: 2693
  year: 2019
  ident: 5125_CR34
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02693
– volume: 33
  start-page: 133
  year: 2018
  ident: 5125_CR35
  publication-title: Histol. Histopathol.
  doi: 10.14670/hh-11-916
– volume: 2018
  start-page: 2584243
  year: 2018
  ident: 5125_CR33
  publication-title: J. Immunol. Res.
  doi: 10.1155/2018/2584243
– ident: 5125_CR1
  doi: 10.3322/caac.21412
– volume: 21
  start-page: 12
  year: 2019
  ident: 5125_CR48
  publication-title: Breast Cancer Res. (BCR)
  doi: 10.1186/s13058-018-1079-7
– volume: 33
  start-page: 319
  year: 2017
  ident: 5125_CR8
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060758
– year: 2018
  ident: 5125_CR9
  publication-title: Science (New York, NY)
  doi: 10.1126/science.aar3593
– volume: 599–611
  start-page: 2016
  year: 1859
  ident: 5125_CR50
  publication-title: Biochem. Biophys. Acta.
  doi: 10.1016/j.bbagrm.2016.02.010
– volume: 31
  start-page: 2222
  year: 2012
  ident: 5125_CR51
  publication-title: Oncogene
  doi: 10.1038/onc.2011.393
– volume: 174
  start-page: 1293
  year: 2018
  ident: 5125_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 10
  start-page: 5447
  year: 2019
  ident: 5125_CR21
  publication-title: J. Cancer
  doi: 10.7150/jca.35053
– volume: 121
  start-page: 497
  year: 2019
  ident: 5125_CR38
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0539-x
– volume: 81
  year: 2020
  ident: 5125_CR43
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2019.105932
– volume: 16
  start-page: 32
  year: 2015
  ident: 5125_CR13
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1400221
– volume: 20
  start-page: 1311
  year: 2017
  ident: 5125_CR40
  publication-title: Value Health
  doi: 10.1016/j.jval.2017.04.021
– volume: 11
  start-page: 6553
  year: 2019
  ident: 5125_CR49
  publication-title: Cancer Manag. Res.
  doi: 10.2147/cmar.s202342
– volume: 52
  start-page: 178
  year: 2018
  ident: 5125_CR4
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2017.11.003
– volume: 4
  start-page: 4002
  year: 2014
  ident: 5125_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/srep04002
– volume: 9
  start-page: 393
  year: 2017
  ident: 5125_CR39
  publication-title: Breast Cancer (Dove Medical Press)
  doi: 10.2147/bctt.s109847
– volume: 19
  start-page: 326
  year: 2019
  ident: 5125_CR20
  publication-title: BMC Cancer
  doi: 10.1186/s12885-019-5538-z
– volume: 5
  start-page: 551
  year: 2019
  ident: 5125_CR58
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2018.4942
SSID ssj0000529419
Score 2.3774996
Snippet The significance of N 6 -methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role...
The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential role and...
Abstract The significance of N6-methyladenosine (m6A) RNA modifications in the progression of breast cancer (BC) has been recognised. However, their potential...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1222
SubjectTerms 631/67/1347
631/67/580
Bioinformatics
Breast cancer
Copy number
Genes
Humanities and Social Sciences
Immune response
Immunotherapy
Inactivation
Invasiveness
Metastases
Microenvironments
multidisciplinary
N6-methyladenosine
Polymerase chain reaction
Reverse transcription
Science
Science (multidisciplinary)
Tumor microenvironment
Tumors
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSFNyJQkJG4gdXEr9gnVBAVF1YrBFJvlp-wUpWUZIvaf8_YyW7ZSvTCMbGTTDwznrFnPB9Cb9om2ZhaDprmEuHKCqJ8oMSGOsBUGJOoUwGbaBcLdXysl_OG2zinVW7mxDJRh97nPfIDKsGQKVEz_v70F8moUTm6OkNo3ES3cpUEVlL3lts9lhzF4o2ez8rUTB2MYK_ymTJYgYE0UkHOd-xRKdu_42tezZS8Ei4tVujo_v_S_wDdm_1PfDgJzEN0I3aP0J0JkfLiMfqyHPqcegetePVXsjnuE15IkvGmL05syBXGwT3FXxeHeJjQ7PthxKsOu5zkvsY-C9PwBH0_-vTt42cyIy4Qz3m7JipF2kRNU2yksAFcMw2X2gWmpKahlkknFm0UVFpRB6GSkK51PHDqWu88e4r2ur6LzxAGV1GHukkOXsF9bR2MoXCxpUz4JqhYoWYz7sbP5cgzKsaJKWFxpszEKwO8MoVX5rxCb7fPnE7FOK7t_SGzc9szF9IuN_rhh5n10jCVZG0TlzLBwphpB-TBrVzyJwRbNxXa37DTzNo9mkteVuj1thn0MgdbbBf7s6mPFBqGoULtjhDtELTb0q1-lgrfqlUS_KgKvduI2-XH__3Dz6-n9QW6S4vgN4TyfbS3Hs7iS3Tb_16vxuFV0Zw_eW4iQA
  priority: 102
  providerName: ProQuest
Title Prognostic implications of N6-methyladenosine RNA regulators in breast cancer
URI https://link.springer.com/article/10.1038/s41598-022-05125-x
https://www.proquest.com/docview/2622385034
https://www.proquest.com/docview/2622659045
https://pubmed.ncbi.nlm.nih.gov/PMC8786853
https://doaj.org/article/38f60af466f44639b35c8f63482dda01
Volume 12
WOSCitedRecordID wos000746700700066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest-Biological Science
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6q-BF_MTqOkTwpmXbNJ_HXdlFD1PKojCeStIkOLC0S2dWdv97X5LOOLOgXrw8aJO2yct7zS_k5fcQei9Kr50XFDzN-JxKzXLZWZJrW1j4FTrPCh-TTYi6louFanZSfYWYsEQPnBR3XEnPC-0p5x5WLpUyFevgVuBksVank1uAenYWU4nVmyhaqumUTFHJ4xXMVOE0Gay9wA4Jy2_2ZqJI2L-HMu_GSN7ZKI3zz_kT9HgCjvgkNfgpuuf6Z-hhSiV5-xzNm3EIMXNQipc7UeJ48LjmeUgUfXupbaAGB1yJL-oTPKY09MO4wssemxCdvsZdsILxBfp2fvb10-d8SpWQd5SKdS69I6VTxLuSM20BUym4VMZWkitiC-6Vr5x2jHDNCsukZ9wIQy0lRnSmq16ig37o3SuEAeMpW5TewCtoV2gDKmDGCQKKL610GSo3amu7iUc8pLO4bON-diXbpOoWVN1GVbc3GfqwfeYqsWj8tfZpGI1tzcCAHW-AXbSTXbT_sosMHW3Gsp3cctUSDmhIsqKiGXq3LQaHCrskunfDdarDmQI1ZEjs2cBeg_ZL-uWPSM0theQAgDL0cWMtvz_-5w6__h8dfoMekWjdZU7oETpYj9fuLXrQ_VwvV-MM3RcLEaWcocPTs7q5mEWXATknTZAC5GHzZd58_wXjGBqk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0SggJHgBFETx3acA0LlUbVqu1qhIvXmxrFdVqqSkt1C90_xGxk7yZatRG89cIztJI79zXicGc8H8DpPXWldzlDStIuZLHksK0Pj0iQGVaF1PHGBbCIfjeTBQTFegd_DWRgfVjnoxKCoTVP5f-TrVOBCJnmSsQ8nP2LPGuW9qwOFRgeLHTv_hVu26fvtzzi_byjd_LL_aSvuWQXiirF8FktnaWoL6mwqeGnQ_CjwstAmk6KgJhGucJktLaei5Inh0nGhc80MozqvdJXhc6_BdTQjqAyhguPFPx3vNWNp0Z_NSTK5PsX10Z9hwx0fop_y-Gxp_Qs0AUu27cXIzAvu2bDqbd7938brHtzp7Wuy0QnEfVix9QO42TFuzh_C3rhtfGgh1pLJX8H0pHFkJGLPpz0_Lo3PoI7mN_k62iCtPfIUZ007JZOaaB_EPyOVF5b2EXy7km95DKt1U9snQNAULkySOo2PYFVSapwzrm1OM16lRtoI0mGeVdWnW_esH8cquP0zqTpsKMSGCthQZxG8Xdxz0iUbubT1Rw-fRUufKDwUNO2R6vWOyqQTSemYEA43_lmhsXtY5FMaGVMmaQRrA3xUr72m6hw7EbxaVKPe8c6ksrbNaddG8AKHIYJ8CbRLHVquqSffQwZzmUuBdmIE7wZ4n7_83x_89PK-voRbW_t7u2p3e7TzDG7TIHRpTNkarM7aU_scblQ_Z5Np-yJILYHDq4b9H4dLgEs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3ohAgSDBCaJNHNtxDggVyoqqsFohkHozdmyXlaqkZLfQ_Wv8OsZOsmUr0VsPHGM7iR_fjMf2eD6A50XmlHUFRUnTLqFCsURUhiTKpAZVoXUsdYFsophMxP5-Od2A38NdGO9WOejEoKhNU_k98hHhOJEJluZ05Hq3iOnO-M3Rj8QzSPmT1oFOo4PInl3-wuXb_PXuDo71C0LG77-8-5D0DANJRWmxSISzJLMlcTbjTBk0RUp8LLXJBS-JSbkrXW6VZYQrlhomHOO60NRQootKVzl-9xJcLnzQ8uA2OF3t7_gTNJqV_T2dNBejOc6V_j4brv5QEghLTtbmwkAZsGbnnvXSPHNUG2bA8c3_ue9uwY3e7o63O0G5DRu2vgNXOybO5V34NG0b73KIufHsLyf7uHHxhCeeZ3t5qIyPrI5mefx5sh239sBTnzXtPJ7VsfbO_Yu48kLU3oOvF9KW-7BZN7V9ADGayKVJM6fxE7RKlcbxY9oWJGdVZoSNIBvGXFZ9GHbPBnIogztALmSHE4k4kQEn8iSCl6t3jrogJOeWfuuhtCrpA4iHhKY9kL0-krlwPFWOcu4oRStVY_UwyYc6MkalWQRbA5Rkr9Xm8hRHETxbZaM-8odMqrbNcVeGsxK7IYJiDcBrFVrPqWffQ2RzUQiO9mMErwaon_783w1-eH5dn8I1RLv8uDvZewTXSZC_LCF0CzYX7bF9DFeqn4vZvH0SBDiGbxeN-j8RlYkI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+implications+of+N6-methyladenosine+RNA+regulators+in+breast+cancer&rft.jtitle=Scientific+reports&rft.au=Tai%2C+Jiaojiao&rft.au=Wang%2C+Linbang&rft.au=Guo%2C+Hao&rft.au=Yan%2C+Ziqiang&rft.date=2022-01-24&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-05125-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_05125_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon