Learning a Probabilistic Model for Diffeomorphic Registration
We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate norma...
Uložené v:
| Vydané v: | IEEE transactions on medical imaging Ročník 38; číslo 9; s. 2165 - 2176 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection. |
|---|---|
| AbstractList | We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection. We propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, generate normal or pathological deformations for any new image or to transport deformations from one image pair to any other image. Our unsupervised method is based on variational inference. In particular, we use a conditional variational autoencoder (CVAE) network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as diffusion-based filters. Additionally, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32s. Besides, we visualized the learned latent space and show that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection. We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection. |
| Author | Krebs, Julian Delingette, Herve Mansi, Tommaso Ayache, Nicholas Mailhe, Boris |
| Author_xml | – sequence: 1 givenname: Julian orcidid: 0000-0002-3902-0223 surname: Krebs fullname: Krebs, Julian email: julian.krebs@inria.fr organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France – sequence: 2 givenname: Herve surname: Delingette fullname: Delingette, Herve organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France – sequence: 3 givenname: Boris surname: Mailhe fullname: Mailhe, Boris organization: Siemens Healthineers, Digital Services, Digital Technology and Innovation, Princeton, NJ, USA – sequence: 4 givenname: Nicholas surname: Ayache fullname: Ayache, Nicholas organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France – sequence: 5 givenname: Tommaso surname: Mansi fullname: Mansi, Tommaso organization: Siemens Healthineers, Digital Services, Digital Technology and Innovation, Princeton, NJ, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30716033$$D View this record in MEDLINE/PubMed https://hal.science/hal-01978339$$DView record in HAL |
| BookMark | eNp9kc9LHDEUx0NR6mp7LxTKgJf2MNuXl0x-HHoQq1VYqYiF3kJmJtHI7GSbzAr975vtrh48eHrw-Hy_j_f9HpK9MY6OkA8U5pSC_np7dTlHoHqOSktK8Q2Z0aZRNTb89x6ZAUpVAwg8IIc5PwBQ3oB-Sw4YSCqAsRn5tnA2jWG8q2x1nWJr2zCEPIWuuoq9GyofU_U9eO_iMqbVfdnfuLsCJDuFOL4j-94O2b3fzSPy6_zs9vSiXvz8cXl6sqg7zuVUKykQhQTNRY9OSS-k76EDC7JFhx1tm4ayVraOM-6x7akGjZ1oqAcpmGRH5MvW994OZpXC0qa_JtpgLk4WZrMrGUjFmH6khf28ZVcp_lm7PJllyJ0bBju6uM4GqdQNE1JhQY9foA9xncbyiUFUHEEyuaE-7ah1u3T98_2nEAsgtkCXYs7JedOF6X8-JaYwGApm05YpbZlNW2bXVhHCC-GT9yuSj1tJcM4940owprhi_wCowps6 |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_3389_fneur_2023_1139048 crossref_primary_10_1016_j_media_2021_102139 crossref_primary_10_1016_j_neuroimage_2024_120631 crossref_primary_10_1109_TETCI_2024_3355819 crossref_primary_10_3390_s22103735 crossref_primary_10_1016_j_compbiomed_2024_108785 crossref_primary_10_1109_JSEN_2024_3383453 crossref_primary_10_1109_TMI_2023_3325766 crossref_primary_10_1109_ACCESS_2019_2957233 crossref_primary_10_1007_s11517_020_02265_y crossref_primary_10_1016_j_media_2019_07_006 crossref_primary_10_1109_TMI_2021_3069634 crossref_primary_10_1016_j_media_2022_102379 crossref_primary_10_1007_s11760_025_04452_6 crossref_primary_10_1109_TMI_2021_3059282 crossref_primary_10_1016_j_media_2019_03_006 crossref_primary_10_1109_TNNLS_2022_3141119 crossref_primary_10_1002_hbm_25782 crossref_primary_10_1177_1748302620973528 crossref_primary_10_1016_j_bspc_2021_103444 crossref_primary_10_1016_j_jpdc_2020_11_006 crossref_primary_10_1002_hbm_70229 crossref_primary_10_1371_journal_pcbi_1009667 crossref_primary_10_1109_TMI_2022_3194517 crossref_primary_10_1016_j_media_2024_103292 crossref_primary_10_1016_j_neucom_2020_04_122 crossref_primary_10_1007_s10957_020_01789_5 crossref_primary_10_1016_j_bspc_2022_104290 crossref_primary_10_1016_j_jcp_2023_112463 crossref_primary_10_1007_s10489_021_03062_2 crossref_primary_10_1016_j_media_2022_102678 crossref_primary_10_1109_TMI_2022_3154599 crossref_primary_10_1002_mp_15008 crossref_primary_10_1016_j_heliyon_2024_e40148 crossref_primary_10_1016_j_apradiso_2025_112031 crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_1109_TMI_2020_2972616 crossref_primary_10_1080_10255842_2024_2372637 crossref_primary_10_1007_s12204_022_2525_3 crossref_primary_10_1016_j_neuroimage_2020_117161 crossref_primary_10_3389_fcvm_2020_00105 crossref_primary_10_1016_j_media_2020_101817 crossref_primary_10_1109_JPROC_2019_2943836 crossref_primary_10_1002_mp_14545 crossref_primary_10_1016_j_media_2020_101939 crossref_primary_10_1007_s10851_024_01211_z crossref_primary_10_1109_TPAMI_2025_3572584 crossref_primary_10_1016_j_media_2023_102962 crossref_primary_10_1109_TMI_2021_3069645 crossref_primary_10_1016_j_media_2022_102383 crossref_primary_10_1162_imag_a_00197 crossref_primary_10_1016_j_media_2022_102615 crossref_primary_10_1002_hbm_26165 crossref_primary_10_3389_fmed_2023_1114571 crossref_primary_10_1016_j_compmedimag_2024_102397 crossref_primary_10_1007_s12021_020_09499_z crossref_primary_10_1109_TNNLS_2023_3332003 crossref_primary_10_1109_TMI_2021_3116879 crossref_primary_10_1109_ACCESS_2023_3238058 crossref_primary_10_1109_TNB_2023_3276867 crossref_primary_10_1088_1361_6560_ad9e69 crossref_primary_10_1016_j_compbiomed_2023_107001 crossref_primary_10_1109_TMI_2021_3064661 crossref_primary_10_1016_j_media_2022_102455 crossref_primary_10_1088_1361_6560_acc71d crossref_primary_10_1016_j_media_2025_103540 crossref_primary_10_1109_TMI_2022_3158065 crossref_primary_10_1109_TMM_2025_3543091 crossref_primary_10_1109_TPAMI_2023_3243040 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_1109_TMI_2025_3526364 crossref_primary_10_1016_j_media_2022_102604 crossref_primary_10_1088_1361_6560_ad120e crossref_primary_10_1109_ACCESS_2023_3234241 crossref_primary_10_1109_ACCESS_2025_3539890 crossref_primary_10_1016_j_media_2020_101638 crossref_primary_10_1016_j_media_2020_101919 crossref_primary_10_1007_s11517_024_03039_6 crossref_primary_10_1007_s10489_022_03668_0 crossref_primary_10_1016_j_cmpb_2021_106261 crossref_primary_10_1016_j_jocs_2021_101470 crossref_primary_10_1109_TMI_2025_3562056 crossref_primary_10_1109_TMI_2020_2964499 crossref_primary_10_3389_fcvm_2019_00190 crossref_primary_10_1016_j_media_2023_103035 crossref_primary_10_1016_j_media_2022_102682 crossref_primary_10_1109_TMI_2024_3371948 crossref_primary_10_1016_j_compbiomed_2024_108761 crossref_primary_10_1016_j_media_2023_102917 crossref_primary_10_1109_JBHI_2019_2951024 crossref_primary_10_1109_TMI_2020_2988410 crossref_primary_10_3389_fcvm_2021_765693 crossref_primary_10_1002_acm2_14177 crossref_primary_10_1016_j_cmpb_2025_108904 crossref_primary_10_3390_app142310890 crossref_primary_10_1038_s41598_023_33781_0 crossref_primary_10_1109_TMI_2024_3419780 crossref_primary_10_1002_mp_14341 crossref_primary_10_1109_TMI_2021_3056531 crossref_primary_10_1109_TMI_2021_3108881 crossref_primary_10_1137_24M1644730 crossref_primary_10_1088_1361_6560_adba39 crossref_primary_10_1016_j_media_2019_06_001 crossref_primary_10_1016_j_bspc_2023_104958 crossref_primary_10_1088_1361_6560_ac2c9b |
| Cites_doi | 10.1137/110835955 10.1016/j.media.2010.12.006 10.1016/j.media.2017.12.008 10.1016/j.neuroimage.2017.07.008 10.1007/978-3-030-00931-1_59 10.1007/978-3-319-66182-7_40 10.1006/cviu.1997.0605 10.1109/TMI.2011.2168567 10.1023/A:1008282127190 10.1007/978-3-540-75759-7_39 10.1007/978-3-319-68445-1_4 10.1007/11866565_113 10.1016/j.media.2007.06.004 10.1090/S0033-569X-07-01027-5 10.1007/978-3-030-00889-5_12 10.1007/978-3-540-85988-8_90 10.1109/TMI.2013.2265603 10.1016/j.neuroimage.2013.04.114 10.1007/978-3-319-10443-0_16 10.1109/ICCV.2017.194 10.1007/978-3-319-66182-7_31 10.1016/j.neuroimage.2004.07.023 10.1007/978-3-319-08554-8_8 10.1109/CVPR.2018.00964 10.1007/978-3-319-19992-4_19 10.1109/TMI.2018.2837502 10.1023/B:VISI.0000043755.93987.aa 10.1007/978-3-319-66182-7_27 10.1007/978-3-030-04747-4_11 10.1007/978-3-030-00928-1_99 10.1162/neco.2008.12-06-421 10.1016/j.media.2018.07.002 10.1007/978-3-319-49409-8_1 10.1007/978-3-030-00928-1_83 10.1016/S1361-8415(98)80022-4 10.1109/ISBI.2018.8363845 10.1109/TMI.2005.853923 10.1007/978-3-319-66182-7_26 10.1007/s10851-013-0470-3 10.1016/j.neuroimage.2010.09.025 10.1007/978-3-030-00934-2_52 10.1016/j.media.2015.08.009 10.1007/978-3-030-00928-1_82 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| DOI | 10.1109/TMI.2019.2897112 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1558-254X |
| EndPage | 2176 |
| ExternalDocumentID | oai:HAL:hal-01978339v1 30716033 10_1109_TMI_2019_2897112 8633848 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: AAP Santé grantid: 06 2017-260 DGA-DSH – fundername: INRIA Sophia Antipolis–Méditerranée, “NEF” computation cluster |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c447t-87622670946d2e87f67fd0c0a07b2e2c1b5513b7be434f2bd19092c651f076373 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484290400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Tue Oct 14 20:43:44 EDT 2025 Sat Sep 27 20:31:22 EDT 2025 Sun Nov 09 05:58:44 EST 2025 Mon Jul 21 05:49:32 EDT 2025 Sat Nov 29 05:14:06 EST 2025 Tue Nov 18 22:41:41 EST 2025 Wed Aug 27 02:46:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Keywords | conditional variational autoencoder deep learning probabilistic encoding deformation transport latent variable model deformable registration |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-87622670946d2e87f67fd0c0a07b2e2c1b5513b7be434f2bd19092c651f076373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3902-0223 0000-0002-4531-392X 0000-0001-6050-5949 |
| OpenAccessLink | https://hal.science/hal-01978339 |
| PMID | 30716033 |
| PQID | 2284207372 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_30716033 ieee_primary_8633848 proquest_miscellaneous_2179536782 crossref_citationtrail_10_1109_TMI_2019_2897112 hal_primary_oai_HAL_hal_01978339v1 proquest_journals_2284207372 crossref_primary_10_1109_TMI_2019_2897112 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 eppenhof (ref19) 2018; 10574 lorenzi (ref38) 2011 ref54 ref10 de vos (ref24) 0 ref17 ref16 ref18 kingma (ref45) 2014 ref51 ref46 ref48 ref47 ref41 ref49 ref8 ref7 ref9 ref4 ref3 makhzani (ref44) 2015; abs 1511 5644 ref6 ref5 fan (ref26) 2018 ref40 ref35 ref37 ref36 ref31 goodfellow (ref42) 2014 ref33 ref32 ref2 ref1 ref39 ref23 kingma (ref43) 2013 ref25 ref20 ref22 ref21 tanner (ref28) 2018 ronneberger (ref55) 2015 ref27 ref29 lee (ref50) 2015; 38 jaderberg (ref30) 2015 qiu (ref34) 2012; 31 |
| References_xml | – ident: ref5 doi: 10.1137/110835955 – year: 2013 ident: ref43 publication-title: Auto-encoding variational bayes – start-page: 3581 year: 2014 ident: ref45 article-title: Semi-supervised learning with deep generative models publication-title: Proc Adv Neural Inf Process Syst – year: 2018 ident: ref28 publication-title: Generative adversarial networks for MR-CT deformable image registration – start-page: 234 year: 2015 ident: ref55 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref31 doi: 10.1016/j.media.2010.12.006 – ident: ref3 doi: 10.1016/j.media.2017.12.008 – ident: ref15 doi: 10.1016/j.neuroimage.2017.07.008 – ident: ref47 doi: 10.1007/978-3-030-00931-1_59 – volume: 10574 year: 2018 ident: ref19 article-title: Deformable image registration using convolutional neural networks publication-title: Proc SPIE Med Imag Image Process – ident: ref20 doi: 10.1007/978-3-319-66182-7_40 – ident: ref4 doi: 10.1006/cviu.1997.0605 – volume: abs 1511 5644 year: 2015 ident: ref44 article-title: Adversarial autoencoders publication-title: CoRR – volume: 31 start-page: 302 year: 2012 ident: ref34 article-title: Principal component based diffeomorphic surface mapping publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2011.2168567 – ident: ref52 doi: 10.1023/A:1008282127190 – ident: ref7 doi: 10.1007/978-3-540-75759-7_39 – ident: ref41 doi: 10.1007/978-3-319-68445-1_4 – ident: ref13 doi: 10.1007/11866565_113 – ident: ref12 doi: 10.1016/j.media.2007.06.004 – ident: ref40 doi: 10.1090/S0033-569X-07-01027-5 – ident: ref49 doi: 10.1007/978-3-030-00889-5_12 – ident: ref14 doi: 10.1007/978-3-540-85988-8_90 – start-page: 2017 year: 2015 ident: ref30 article-title: Spatial transformer networks publication-title: Proc Adv Neural Inf Process Syst – volume: 38 start-page: 562 year: 2015 ident: ref50 article-title: Deeply-supervised nets publication-title: Artificial Intelligence and Statistics – ident: ref1 doi: 10.1109/TMI.2013.2265603 – ident: ref8 doi: 10.1016/j.neuroimage.2013.04.114 – ident: ref35 doi: 10.1007/978-3-319-10443-0_16 – ident: ref23 doi: 10.1109/ICCV.2017.194 – ident: ref16 doi: 10.1007/978-3-319-66182-7_31 – start-page: 463 year: 2011 ident: ref38 article-title: Schild's ladder for the parallel transport of deformations in time series of images publication-title: Proc Biennial Int Conf Inf Process Med Imag – start-page: 204 year: 0 ident: ref24 article-title: End-to-end unsupervised deformable image registration with a convolutional neural network publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – ident: ref33 doi: 10.1016/j.neuroimage.2004.07.023 – ident: ref36 doi: 10.1007/978-3-319-08554-8_8 – ident: ref25 doi: 10.1109/CVPR.2018.00964 – ident: ref11 doi: 10.1007/978-3-319-19992-4_19 – ident: ref54 doi: 10.1109/TMI.2018.2837502 – ident: ref9 doi: 10.1023/B:VISI.0000043755.93987.aa – ident: ref17 doi: 10.1007/978-3-319-66182-7_27 – ident: ref39 doi: 10.1007/978-3-030-04747-4_11 – ident: ref37 doi: 10.1007/978-3-030-00928-1_99 – ident: ref53 doi: 10.1162/neco.2008.12-06-421 – ident: ref29 doi: 10.1016/j.media.2018.07.002 – ident: ref22 doi: 10.1007/978-3-319-49409-8_1 – ident: ref48 doi: 10.1007/978-3-030-00928-1_83 – ident: ref6 doi: 10.1016/S1361-8415(98)80022-4 – ident: ref21 doi: 10.1109/ISBI.2018.8363845 – ident: ref10 doi: 10.1109/TMI.2005.853923 – year: 2018 ident: ref26 publication-title: Birnet Brain image registration using dual-supervised fully convolutional networks – ident: ref18 doi: 10.1007/978-3-319-66182-7_26 – ident: ref2 doi: 10.1007/s10851-013-0470-3 – ident: ref51 doi: 10.1016/j.neuroimage.2010.09.025 – ident: ref46 doi: 10.1007/978-3-030-00934-2_52 – ident: ref32 doi: 10.1016/j.media.2015.08.009 – start-page: 2672 year: 2014 ident: ref42 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – ident: ref27 doi: 10.1007/978-3-030-00928-1_82 |
| SSID | ssj0014509 |
| Score | 2.669108 |
| Snippet | We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The... We propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2165 |
| SubjectTerms | Algorithms Artificial Intelligence Computational modeling Computer Science Computer Vision and Pattern Recognition conditional variational autoencoder Deep Learning Deformable models Deformable registration Deformation deformation transport Estimation Forecasting Heart - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Image registration latent variable model Machine Learning Magnetic Resonance Imaging, Cine Medical Imaging Metric space Models, Statistical Multiscale analysis probabilistic encoding Probabilistic logic Probabilistic models Registration Regularization Strain Training Transport Velocity distribution |
| Title | Learning a Probabilistic Model for Diffeomorphic Registration |
| URI | https://ieeexplore.ieee.org/document/8633848 https://www.ncbi.nlm.nih.gov/pubmed/30716033 https://www.proquest.com/docview/2284207372 https://www.proquest.com/docview/2179536782 https://hal.science/hal-01978339 |
| Volume | 38 |
| WOSCitedRecordID | wos000484290400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9ckUUf7vw4vfpFFV8Orm6aZpvk4R7ED1bYFREP9q00aaKCbo9117__ZtpuUbg7uLeSTtrQmWQmncnvB3CSuzy20qSRzbWgNKOPtFH9SKXOoQNkhfUViOtQ3tyo8VjfLsH39iyMc64qPnOndFnl8ovSzulXWU-luKESqgMdKWV9VqvNGIh-Xc7BCTGWpXyRkmS6dz-6phoufYqbC4nxxSp00bKJXzn54I06j1QLWZGs_D3erPzO1ef_G_E6fGriy_CsNogNWHKTTVh7hzq4Cd1Rk0_fgh8NvOpDmIe3U5zaVCpLyM0hcaQ9hxjRhhdEoVK-lKgQbL9zDy3U7hf4eXV5fz6IGkKFyAohZ9XKxwmwTaQFd0r6VPqCWZYzabjjNjZE92KkcSIRnpsCowXNbdqPPcN1SCbbsDwpJ-4rhEJzjt2FsR79W2JVGls6o-u9SYyWeQC9xYfNbIM2TqQXz1m162A6Q61kpJWs0UoA39oev2qkjX_IHqOuWjGCyB6cDTNqQympkkS_xQFskUJaqUYXAewvVJs18_U14-ilOSPKngCO2ts40yh9kk9cOUcZXLv6CTp3lNmpTaJ99sKedv_8zj1YpeHXtWn7sDybzt0BrNi32dPr9BDNeawOK3P-DU0L6wY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqCgcaAulDVCaVr1UaljHceL4wAHx0CJ2V6jaStys2LEBCTbVssvv70ySjVqprcQtcsZ5fWPPODP-BuBL4YrYSpNFtlCCwow-UiZPozxzDg0gK62vSVwHcjTKr6_V1RJ86_bCOOfq5DN3SId1LL-s7Jx-lfXyDBdUIl-G1VQIHje7tbqYgUibhA5OnLEs44ugJFO98fCCsrjUIS4vJHoY67CGuk0VlpM_7NHyLWVD1mVW_u1x1pbn_NXznvk1bLYeZnjcqMQbWHKTLdj4jXdwC9aGbUR9G45agtWbsAivpji4KVmWuJtDqpJ2H6JPG55SEZXqoUJIsP27u-nIdt_Cj_Oz8Uk_aksqRFYIOavnPk6UbSIruculz6QvmWUFk4Y7bmNDBV-MNE4kwnNTor-guM3S2DOciWSyAyuTauLeQygU59hdGOvRwiU2z2JLu3S9N4lRsgigt_iw2rZ841T24l7X6w6mNKKiCRXdohLA167Hz4Zr4z-ynxGrToxIsvvHA01tKCXzJFFPcQDbBEgn1WIRwP4CWt2O2EfN0U5zRkV7AvjUncaxRgGUYuKqOcrg7JUmaN5R5l2jEt21F_q0-_d7foSX_fFwoAcXo8s9WKdXaTLV9mFlNp27D_DCPs3uHqcHtVL_AiYu7WU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Probabilistic+Model+for+Diffeomorphic+Registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Krebs%2C+Julian&rft.au=Delingette%2C+Herve&rft.au=Mailhe%2C+Boris&rft.au=Ayache%2C+Nicholas&rft.date=2019-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=9&rft.spage=2165&rft.epage=2176&rft_id=info:doi/10.1109%2FTMI.2019.2897112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2897112 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |