Learning a Probabilistic Model for Diffeomorphic Registration

We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate norma...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 38; číslo 9; s. 2165 - 2176
Hlavní autori: Krebs, Julian, Delingette, Herve, Mailhe, Boris, Ayache, Nicholas, Mansi, Tommaso
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.
AbstractList We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.
We propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, generate normal or pathological deformations for any new image or to transport deformations from one image pair to any other image. Our unsupervised method is based on variational inference. In particular, we use a conditional variational autoencoder (CVAE) network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as diffusion-based filters. Additionally, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32s. Besides, we visualized the learned latent space and show that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.
We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The latent variable model maps similar deformations close to each other in an encoding space. It enables to compare deformations, to generate normal or pathological deformations for any new image, or to transport deformations from one image pair to any other image. Our unsupervised method is based on the variational inference. In particular, we use a conditional variational autoencoder network and constrain transformations to be symmetric and diffeomorphic by applying a differentiable exponentiation layer with a symmetric loss function. We also present a formulation that includes spatial regularization such as the diffusion-based filters. In addition, our framework provides multi-scale velocity field estimations. We evaluated our method on 3-D intra-subject registration using 334 cardiac cine-MRIs. On this dataset, our method showed the state-of-the-art performance with a mean DICE score of 81.2% and a mean Hausdorff distance of 7.3 mm using 32 latent dimensions compared to three state-of-the-art methods while also demonstrating more regular deformation fields. The average time per registration was 0.32 s. Besides, we visualized the learned latent space and showed that the encoded deformations can be used to transport deformations and to cluster diseases with a classification accuracy of 83% after applying a linear projection.
Author Krebs, Julian
Delingette, Herve
Mansi, Tommaso
Ayache, Nicholas
Mailhe, Boris
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0002-3902-0223
  surname: Krebs
  fullname: Krebs, Julian
  email: julian.krebs@inria.fr
  organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France
– sequence: 2
  givenname: Herve
  surname: Delingette
  fullname: Delingette, Herve
  organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France
– sequence: 3
  givenname: Boris
  surname: Mailhe
  fullname: Mailhe, Boris
  organization: Siemens Healthineers, Digital Services, Digital Technology and Innovation, Princeton, NJ, USA
– sequence: 4
  givenname: Nicholas
  surname: Ayache
  fullname: Ayache, Nicholas
  organization: Université Côte d'Azur, Inria, Epione Team, Sophia Antipolis, France
– sequence: 5
  givenname: Tommaso
  surname: Mansi
  fullname: Mansi, Tommaso
  organization: Siemens Healthineers, Digital Services, Digital Technology and Innovation, Princeton, NJ, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30716033$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01978339$$DView record in HAL
BookMark eNp9kc9LHDEUx0NR6mp7LxTKgJf2MNuXl0x-HHoQq1VYqYiF3kJmJtHI7GSbzAr975vtrh48eHrw-Hy_j_f9HpK9MY6OkA8U5pSC_np7dTlHoHqOSktK8Q2Z0aZRNTb89x6ZAUpVAwg8IIc5PwBQ3oB-Sw4YSCqAsRn5tnA2jWG8q2x1nWJr2zCEPIWuuoq9GyofU_U9eO_iMqbVfdnfuLsCJDuFOL4j-94O2b3fzSPy6_zs9vSiXvz8cXl6sqg7zuVUKykQhQTNRY9OSS-k76EDC7JFhx1tm4ayVraOM-6x7akGjZ1oqAcpmGRH5MvW994OZpXC0qa_JtpgLk4WZrMrGUjFmH6khf28ZVcp_lm7PJllyJ0bBju6uM4GqdQNE1JhQY9foA9xncbyiUFUHEEyuaE-7ah1u3T98_2nEAsgtkCXYs7JedOF6X8-JaYwGApm05YpbZlNW2bXVhHCC-GT9yuSj1tJcM4940owprhi_wCowps6
CODEN ITMID4
CitedBy_id crossref_primary_10_3389_fneur_2023_1139048
crossref_primary_10_1016_j_media_2021_102139
crossref_primary_10_1016_j_neuroimage_2024_120631
crossref_primary_10_1109_TETCI_2024_3355819
crossref_primary_10_3390_s22103735
crossref_primary_10_1016_j_compbiomed_2024_108785
crossref_primary_10_1109_JSEN_2024_3383453
crossref_primary_10_1109_TMI_2023_3325766
crossref_primary_10_1109_ACCESS_2019_2957233
crossref_primary_10_1007_s11517_020_02265_y
crossref_primary_10_1016_j_media_2019_07_006
crossref_primary_10_1109_TMI_2021_3069634
crossref_primary_10_1016_j_media_2022_102379
crossref_primary_10_1007_s11760_025_04452_6
crossref_primary_10_1109_TMI_2021_3059282
crossref_primary_10_1016_j_media_2019_03_006
crossref_primary_10_1109_TNNLS_2022_3141119
crossref_primary_10_1002_hbm_25782
crossref_primary_10_1177_1748302620973528
crossref_primary_10_1016_j_bspc_2021_103444
crossref_primary_10_1016_j_jpdc_2020_11_006
crossref_primary_10_1002_hbm_70229
crossref_primary_10_1371_journal_pcbi_1009667
crossref_primary_10_1109_TMI_2022_3194517
crossref_primary_10_1016_j_media_2024_103292
crossref_primary_10_1016_j_neucom_2020_04_122
crossref_primary_10_1007_s10957_020_01789_5
crossref_primary_10_1016_j_bspc_2022_104290
crossref_primary_10_1016_j_jcp_2023_112463
crossref_primary_10_1007_s10489_021_03062_2
crossref_primary_10_1016_j_media_2022_102678
crossref_primary_10_1109_TMI_2022_3154599
crossref_primary_10_1002_mp_15008
crossref_primary_10_1016_j_heliyon_2024_e40148
crossref_primary_10_1016_j_apradiso_2025_112031
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1109_TMI_2020_2972616
crossref_primary_10_1080_10255842_2024_2372637
crossref_primary_10_1007_s12204_022_2525_3
crossref_primary_10_1016_j_neuroimage_2020_117161
crossref_primary_10_3389_fcvm_2020_00105
crossref_primary_10_1016_j_media_2020_101817
crossref_primary_10_1109_JPROC_2019_2943836
crossref_primary_10_1002_mp_14545
crossref_primary_10_1016_j_media_2020_101939
crossref_primary_10_1007_s10851_024_01211_z
crossref_primary_10_1109_TPAMI_2025_3572584
crossref_primary_10_1016_j_media_2023_102962
crossref_primary_10_1109_TMI_2021_3069645
crossref_primary_10_1016_j_media_2022_102383
crossref_primary_10_1162_imag_a_00197
crossref_primary_10_1016_j_media_2022_102615
crossref_primary_10_1002_hbm_26165
crossref_primary_10_3389_fmed_2023_1114571
crossref_primary_10_1016_j_compmedimag_2024_102397
crossref_primary_10_1007_s12021_020_09499_z
crossref_primary_10_1109_TNNLS_2023_3332003
crossref_primary_10_1109_TMI_2021_3116879
crossref_primary_10_1109_ACCESS_2023_3238058
crossref_primary_10_1109_TNB_2023_3276867
crossref_primary_10_1088_1361_6560_ad9e69
crossref_primary_10_1016_j_compbiomed_2023_107001
crossref_primary_10_1109_TMI_2021_3064661
crossref_primary_10_1016_j_media_2022_102455
crossref_primary_10_1088_1361_6560_acc71d
crossref_primary_10_1016_j_media_2025_103540
crossref_primary_10_1109_TMI_2022_3158065
crossref_primary_10_1109_TMM_2025_3543091
crossref_primary_10_1109_TPAMI_2023_3243040
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1109_TMI_2025_3526364
crossref_primary_10_1016_j_media_2022_102604
crossref_primary_10_1088_1361_6560_ad120e
crossref_primary_10_1109_ACCESS_2023_3234241
crossref_primary_10_1109_ACCESS_2025_3539890
crossref_primary_10_1016_j_media_2020_101638
crossref_primary_10_1016_j_media_2020_101919
crossref_primary_10_1007_s11517_024_03039_6
crossref_primary_10_1007_s10489_022_03668_0
crossref_primary_10_1016_j_cmpb_2021_106261
crossref_primary_10_1016_j_jocs_2021_101470
crossref_primary_10_1109_TMI_2025_3562056
crossref_primary_10_1109_TMI_2020_2964499
crossref_primary_10_3389_fcvm_2019_00190
crossref_primary_10_1016_j_media_2023_103035
crossref_primary_10_1016_j_media_2022_102682
crossref_primary_10_1109_TMI_2024_3371948
crossref_primary_10_1016_j_compbiomed_2024_108761
crossref_primary_10_1016_j_media_2023_102917
crossref_primary_10_1109_JBHI_2019_2951024
crossref_primary_10_1109_TMI_2020_2988410
crossref_primary_10_3389_fcvm_2021_765693
crossref_primary_10_1002_acm2_14177
crossref_primary_10_1016_j_cmpb_2025_108904
crossref_primary_10_3390_app142310890
crossref_primary_10_1038_s41598_023_33781_0
crossref_primary_10_1109_TMI_2024_3419780
crossref_primary_10_1002_mp_14341
crossref_primary_10_1109_TMI_2021_3056531
crossref_primary_10_1109_TMI_2021_3108881
crossref_primary_10_1137_24M1644730
crossref_primary_10_1088_1361_6560_adba39
crossref_primary_10_1016_j_media_2019_06_001
crossref_primary_10_1016_j_bspc_2023_104958
crossref_primary_10_1088_1361_6560_ac2c9b
Cites_doi 10.1137/110835955
10.1016/j.media.2010.12.006
10.1016/j.media.2017.12.008
10.1016/j.neuroimage.2017.07.008
10.1007/978-3-030-00931-1_59
10.1007/978-3-319-66182-7_40
10.1006/cviu.1997.0605
10.1109/TMI.2011.2168567
10.1023/A:1008282127190
10.1007/978-3-540-75759-7_39
10.1007/978-3-319-68445-1_4
10.1007/11866565_113
10.1016/j.media.2007.06.004
10.1090/S0033-569X-07-01027-5
10.1007/978-3-030-00889-5_12
10.1007/978-3-540-85988-8_90
10.1109/TMI.2013.2265603
10.1016/j.neuroimage.2013.04.114
10.1007/978-3-319-10443-0_16
10.1109/ICCV.2017.194
10.1007/978-3-319-66182-7_31
10.1016/j.neuroimage.2004.07.023
10.1007/978-3-319-08554-8_8
10.1109/CVPR.2018.00964
10.1007/978-3-319-19992-4_19
10.1109/TMI.2018.2837502
10.1023/B:VISI.0000043755.93987.aa
10.1007/978-3-319-66182-7_27
10.1007/978-3-030-04747-4_11
10.1007/978-3-030-00928-1_99
10.1162/neco.2008.12-06-421
10.1016/j.media.2018.07.002
10.1007/978-3-319-49409-8_1
10.1007/978-3-030-00928-1_83
10.1016/S1361-8415(98)80022-4
10.1109/ISBI.2018.8363845
10.1109/TMI.2005.853923
10.1007/978-3-319-66182-7_26
10.1007/s10851-013-0470-3
10.1016/j.neuroimage.2010.09.025
10.1007/978-3-030-00934-2_52
10.1016/j.media.2015.08.009
10.1007/978-3-030-00928-1_82
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
DOI 10.1109/TMI.2019.2897112
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-254X
EndPage 2176
ExternalDocumentID oai:HAL:hal-01978339v1
30716033
10_1109_TMI_2019_2897112
8633848
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: AAP Santé
  grantid: 06 2017-260 DGA-DSH
– fundername: INRIA Sophia Antipolis–Méditerranée, “NEF” computation cluster
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
VOOES
ID FETCH-LOGICAL-c447t-87622670946d2e87f67fd0c0a07b2e2c1b5513b7be434f2bd19092c651f076373
IEDL.DBID RIE
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484290400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Tue Oct 14 20:43:44 EDT 2025
Sat Sep 27 20:31:22 EDT 2025
Sun Nov 09 05:58:44 EST 2025
Mon Jul 21 05:49:32 EDT 2025
Sat Nov 29 05:14:06 EST 2025
Tue Nov 18 22:41:41 EST 2025
Wed Aug 27 02:46:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords conditional variational autoencoder
deep learning
probabilistic encoding
deformation transport
latent variable model
deformable registration
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-87622670946d2e87f67fd0c0a07b2e2c1b5513b7be434f2bd19092c651f076373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3902-0223
0000-0002-4531-392X
0000-0001-6050-5949
OpenAccessLink https://hal.science/hal-01978339
PMID 30716033
PQID 2284207372
PQPubID 85460
PageCount 12
ParticipantIDs pubmed_primary_30716033
ieee_primary_8633848
proquest_miscellaneous_2179536782
crossref_citationtrail_10_1109_TMI_2019_2897112
hal_primary_oai_HAL_hal_01978339v1
proquest_journals_2284207372
crossref_primary_10_1109_TMI_2019_2897112
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
eppenhof (ref19) 2018; 10574
lorenzi (ref38) 2011
ref54
ref10
de vos (ref24) 0
ref17
ref16
ref18
kingma (ref45) 2014
ref51
ref46
ref48
ref47
ref41
ref49
ref8
ref7
ref9
ref4
ref3
makhzani (ref44) 2015; abs 1511 5644
ref6
ref5
fan (ref26) 2018
ref40
ref35
ref37
ref36
ref31
goodfellow (ref42) 2014
ref33
ref32
ref2
ref1
ref39
ref23
kingma (ref43) 2013
ref25
ref20
ref22
ref21
tanner (ref28) 2018
ronneberger (ref55) 2015
ref27
ref29
lee (ref50) 2015; 38
jaderberg (ref30) 2015
qiu (ref34) 2012; 31
References_xml – ident: ref5
  doi: 10.1137/110835955
– year: 2013
  ident: ref43
  publication-title: Auto-encoding variational bayes
– start-page: 3581
  year: 2014
  ident: ref45
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2018
  ident: ref28
  publication-title: Generative adversarial networks for MR-CT deformable image registration
– start-page: 234
  year: 2015
  ident: ref55
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref31
  doi: 10.1016/j.media.2010.12.006
– ident: ref3
  doi: 10.1016/j.media.2017.12.008
– ident: ref15
  doi: 10.1016/j.neuroimage.2017.07.008
– ident: ref47
  doi: 10.1007/978-3-030-00931-1_59
– volume: 10574
  year: 2018
  ident: ref19
  article-title: Deformable image registration using convolutional neural networks
  publication-title: Proc SPIE Med Imag Image Process
– ident: ref20
  doi: 10.1007/978-3-319-66182-7_40
– ident: ref4
  doi: 10.1006/cviu.1997.0605
– volume: abs 1511 5644
  year: 2015
  ident: ref44
  article-title: Adversarial autoencoders
  publication-title: CoRR
– volume: 31
  start-page: 302
  year: 2012
  ident: ref34
  article-title: Principal component based diffeomorphic surface mapping
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2011.2168567
– ident: ref52
  doi: 10.1023/A:1008282127190
– ident: ref7
  doi: 10.1007/978-3-540-75759-7_39
– ident: ref41
  doi: 10.1007/978-3-319-68445-1_4
– ident: ref13
  doi: 10.1007/11866565_113
– ident: ref12
  doi: 10.1016/j.media.2007.06.004
– ident: ref40
  doi: 10.1090/S0033-569X-07-01027-5
– ident: ref49
  doi: 10.1007/978-3-030-00889-5_12
– ident: ref14
  doi: 10.1007/978-3-540-85988-8_90
– start-page: 2017
  year: 2015
  ident: ref30
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 38
  start-page: 562
  year: 2015
  ident: ref50
  article-title: Deeply-supervised nets
  publication-title: Artificial Intelligence and Statistics
– ident: ref1
  doi: 10.1109/TMI.2013.2265603
– ident: ref8
  doi: 10.1016/j.neuroimage.2013.04.114
– ident: ref35
  doi: 10.1007/978-3-319-10443-0_16
– ident: ref23
  doi: 10.1109/ICCV.2017.194
– ident: ref16
  doi: 10.1007/978-3-319-66182-7_31
– start-page: 463
  year: 2011
  ident: ref38
  article-title: Schild's ladder for the parallel transport of deformations in time series of images
  publication-title: Proc Biennial Int Conf Inf Process Med Imag
– start-page: 204
  year: 0
  ident: ref24
  article-title: End-to-end unsupervised deformable image registration with a convolutional neural network
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– ident: ref33
  doi: 10.1016/j.neuroimage.2004.07.023
– ident: ref36
  doi: 10.1007/978-3-319-08554-8_8
– ident: ref25
  doi: 10.1109/CVPR.2018.00964
– ident: ref11
  doi: 10.1007/978-3-319-19992-4_19
– ident: ref54
  doi: 10.1109/TMI.2018.2837502
– ident: ref9
  doi: 10.1023/B:VISI.0000043755.93987.aa
– ident: ref17
  doi: 10.1007/978-3-319-66182-7_27
– ident: ref39
  doi: 10.1007/978-3-030-04747-4_11
– ident: ref37
  doi: 10.1007/978-3-030-00928-1_99
– ident: ref53
  doi: 10.1162/neco.2008.12-06-421
– ident: ref29
  doi: 10.1016/j.media.2018.07.002
– ident: ref22
  doi: 10.1007/978-3-319-49409-8_1
– ident: ref48
  doi: 10.1007/978-3-030-00928-1_83
– ident: ref6
  doi: 10.1016/S1361-8415(98)80022-4
– ident: ref21
  doi: 10.1109/ISBI.2018.8363845
– ident: ref10
  doi: 10.1109/TMI.2005.853923
– year: 2018
  ident: ref26
  publication-title: Birnet Brain image registration using dual-supervised fully convolutional networks
– ident: ref18
  doi: 10.1007/978-3-319-66182-7_26
– ident: ref2
  doi: 10.1007/s10851-013-0470-3
– ident: ref51
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: ref46
  doi: 10.1007/978-3-030-00934-2_52
– ident: ref32
  doi: 10.1016/j.media.2015.08.009
– start-page: 2672
  year: 2014
  ident: ref42
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref27
  doi: 10.1007/978-3-030-00928-1_82
SSID ssj0014509
Score 2.669108
Snippet We propose to learn a low-dimensional probabilistic deformation model from data which can be used for the registration and the analysis of deformations. The...
We propose to learn a low-dimensional probabilistic deformation model from data which can be used for registration and the analysis of deformations. The latent...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2165
SubjectTerms Algorithms
Artificial Intelligence
Computational modeling
Computer Science
Computer Vision and Pattern Recognition
conditional variational autoencoder
Deep Learning
Deformable models
Deformable registration
Deformation
deformation transport
Estimation
Forecasting
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image registration
latent variable model
Machine Learning
Magnetic Resonance Imaging, Cine
Medical Imaging
Metric space
Models, Statistical
Multiscale analysis
probabilistic encoding
Probabilistic logic
Probabilistic models
Registration
Regularization
Strain
Training
Transport
Velocity distribution
Title Learning a Probabilistic Model for Diffeomorphic Registration
URI https://ieeexplore.ieee.org/document/8633848
https://www.ncbi.nlm.nih.gov/pubmed/30716033
https://www.proquest.com/docview/2284207372
https://www.proquest.com/docview/2179536782
https://hal.science/hal-01978339
Volume 38
WOSCitedRecordID wos000484290400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9ckUUf7vw4vfpFFV8Orm6aZpvk4R7ED1bYFREP9q00aaKCbo9117__ZtpuUbg7uLeSTtrQmWQmncnvB3CSuzy20qSRzbWgNKOPtFH9SKXOoQNkhfUViOtQ3tyo8VjfLsH39iyMc64qPnOndFnl8ovSzulXWU-luKESqgMdKWV9VqvNGIh-Xc7BCTGWpXyRkmS6dz-6phoufYqbC4nxxSp00bKJXzn54I06j1QLWZGs_D3erPzO1ef_G_E6fGriy_CsNogNWHKTTVh7hzq4Cd1Rk0_fgh8NvOpDmIe3U5zaVCpLyM0hcaQ9hxjRhhdEoVK-lKgQbL9zDy3U7hf4eXV5fz6IGkKFyAohZ9XKxwmwTaQFd0r6VPqCWZYzabjjNjZE92KkcSIRnpsCowXNbdqPPcN1SCbbsDwpJ-4rhEJzjt2FsR79W2JVGls6o-u9SYyWeQC9xYfNbIM2TqQXz1m162A6Q61kpJWs0UoA39oev2qkjX_IHqOuWjGCyB6cDTNqQympkkS_xQFskUJaqUYXAewvVJs18_U14-ilOSPKngCO2ts40yh9kk9cOUcZXLv6CTp3lNmpTaJ99sKedv_8zj1YpeHXtWn7sDybzt0BrNi32dPr9BDNeawOK3P-DU0L6wY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xqCgcaAulDVCaVr1UaljHceL4wAHx0CJ2V6jaStys2LEBCTbVssvv70ySjVqprcQtcsZ5fWPPODP-BuBL4YrYSpNFtlCCwow-UiZPozxzDg0gK62vSVwHcjTKr6_V1RJ86_bCOOfq5DN3SId1LL-s7Jx-lfXyDBdUIl-G1VQIHje7tbqYgUibhA5OnLEs44ugJFO98fCCsrjUIS4vJHoY67CGuk0VlpM_7NHyLWVD1mVW_u1x1pbn_NXznvk1bLYeZnjcqMQbWHKTLdj4jXdwC9aGbUR9G45agtWbsAivpji4KVmWuJtDqpJ2H6JPG55SEZXqoUJIsP27u-nIdt_Cj_Oz8Uk_aksqRFYIOavnPk6UbSIruculz6QvmWUFk4Y7bmNDBV-MNE4kwnNTor-guM3S2DOciWSyAyuTauLeQygU59hdGOvRwiU2z2JLu3S9N4lRsgigt_iw2rZ841T24l7X6w6mNKKiCRXdohLA167Hz4Zr4z-ynxGrToxIsvvHA01tKCXzJFFPcQDbBEgn1WIRwP4CWt2O2EfN0U5zRkV7AvjUncaxRgGUYuKqOcrg7JUmaN5R5l2jEt21F_q0-_d7foSX_fFwoAcXo8s9WKdXaTLV9mFlNp27D_DCPs3uHqcHtVL_AiYu7WU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+Probabilistic+Model+for+Diffeomorphic+Registration&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Krebs%2C+Julian&rft.au=Delingette%2C+Herve&rft.au=Mailhe%2C+Boris&rft.au=Ayache%2C+Nicholas&rft.date=2019-09-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=38&rft.issue=9&rft.spage=2165&rft.epage=2176&rft_id=info:doi/10.1109%2FTMI.2019.2897112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMI_2019_2897112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon