Topoisomerases as anticancer targets

Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respon...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biochemical journal Ročník 475; číslo 2; s. 373
Hlavní autori: Delgado, Justine L, Hsieh, Chao-Ming, Chan, Nei-Li, Hiasa, Hiroshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 23.01.2018
Predmet:
ISSN:1470-8728, 1470-8728
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
AbstractList Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase-drug-DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.
Author Delgado, Justine L
Chan, Nei-Li
Hsieh, Chao-Ming
Hiasa, Hiroshi
Author_xml – sequence: 1
  givenname: Justine L
  surname: Delgado
  fullname: Delgado, Justine L
  organization: Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, 115 S Grand Ave., S321 Pharmacy Building, Iowa City, IA 52242, U.S.A
– sequence: 2
  givenname: Chao-Ming
  surname: Hsieh
  fullname: Hsieh, Chao-Ming
  organization: Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
– sequence: 3
  givenname: Nei-Li
  surname: Chan
  fullname: Chan, Nei-Li
  organization: Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City 100, Taiwan
– sequence: 4
  givenname: Hiroshi
  surname: Hiasa
  fullname: Hiasa, Hiroshi
  email: hiasa001@umn.edu
  organization: Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, U.S.A. hiasa001@umn.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29363591$$D View this record in MEDLINE/PubMed
BookMark eNpNjztLxEAUhQdZcR9a2csWFjbRe2cmmZlSg08WbNY63J3cSCQvZ5LCf78LriAc-E7xceAsxazrOxbiEuEWQcu7h_xNAmaQWnUiFqgNJNZIO_vX52IZ4xcAatBwJubSqUylDhfietsPfR37lgNFjms6pBtrT53nsB4pfPIYz8VpRU3kiyNX4uPpcZu_JJv359f8fpN4rc2YGOXTCtkYwyUjIAIBpazIeUqdRu1Iw84q8qV32pJ2XHlbcqmrin2ZyZW4-d0dQv89cRyLto6em4Y67qdYoHNgU4MWDurVUZ12LZfFEOqWwk_x90zuAfMwUKY
CitedBy_id crossref_primary_10_1038_s41419_021_03798_2
crossref_primary_10_1098_rsob_190228
crossref_primary_10_3390_ijms222413514
crossref_primary_10_1002_qua_27314
crossref_primary_10_1007_s00044_024_03308_x
crossref_primary_10_1080_10495398_2020_1773490
crossref_primary_10_1038_s41419_020_02780_8
crossref_primary_10_1186_s12906_024_04394_5
crossref_primary_10_1002_iub_2619
crossref_primary_10_1007_s00239_022_10048_2
crossref_primary_10_1002_ardp_202300270
crossref_primary_10_1093_femsyr_foab023
crossref_primary_10_1002_cmdc_202200345
crossref_primary_10_1038_s41598_024_63055_2
crossref_primary_10_1016_j_cell_2020_05_040
crossref_primary_10_1016_j_ejmech_2022_114999
crossref_primary_10_31083_j_fbl2703093
crossref_primary_10_71267_mencom_7540
crossref_primary_10_1080_07391102_2023_2187234
crossref_primary_10_3724_abbs_2024240
crossref_primary_10_1371_journal_pone_0265794
crossref_primary_10_1039_D5MD00234F
crossref_primary_10_1016_j_ejphar_2022_174914
crossref_primary_10_1080_14756366_2023_2198163
crossref_primary_10_1016_j_molstruc_2021_131833
crossref_primary_10_1039_D5RA01077B
crossref_primary_10_1111_jcmm_70756
crossref_primary_10_1016_j_ejmech_2021_113817
crossref_primary_10_1096_fj_202401910R
crossref_primary_10_1016_j_bioorg_2024_107158
crossref_primary_10_1002_bmc_4979
crossref_primary_10_1016_j_chembiol_2020_11_011
crossref_primary_10_1155_2023_2848198
crossref_primary_10_1016_j_ejmech_2020_112109
crossref_primary_10_3390_ijms25137498
crossref_primary_10_1039_D4OB02087A
crossref_primary_10_3390_cancers12102863
crossref_primary_10_3390_cells9071665
crossref_primary_10_1002_1878_0261_12541
crossref_primary_10_1016_j_bioorg_2024_107860
crossref_primary_10_3390_ncrna9050059
crossref_primary_10_1002_adfm_202107599
crossref_primary_10_1002_cmdc_202100640
crossref_primary_10_1016_j_molstruc_2024_141271
crossref_primary_10_3390_ijms221910687
crossref_primary_10_3389_fgene_2020_575762
crossref_primary_10_1016_j_mrgentox_2022_503450
crossref_primary_10_1016_j_phrs_2021_105927
crossref_primary_10_1007_s43440_020_00154_7
crossref_primary_10_3390_ijms21207781
crossref_primary_10_3390_ijms22052622
crossref_primary_10_1016_j_apsb_2018_07_008
crossref_primary_10_1016_j_bmc_2025_118375
crossref_primary_10_3390_cancers12102731
crossref_primary_10_1007_s12039_020_1750_2
crossref_primary_10_1016_j_ajhg_2019_06_005
crossref_primary_10_1126_science_adh0614
crossref_primary_10_1007_s43450_022_00267_5
crossref_primary_10_1002_anie_202317187
crossref_primary_10_1073_pnas_2100240118
crossref_primary_10_1186_s12915_023_01614_1
crossref_primary_10_1080_14756366_2022_2078320
crossref_primary_10_1016_j_bioorg_2024_107850
crossref_primary_10_2147_JIR_S371830
crossref_primary_10_1016_j_ejmech_2019_03_040
crossref_primary_10_1002_adma_202311437
crossref_primary_10_1055_a_1097_8722
crossref_primary_10_1016_j_bmc_2018_02_045
crossref_primary_10_1016_j_ejmech_2022_114304
crossref_primary_10_1039_D4MD00817K
crossref_primary_10_1098_rsos_181321
crossref_primary_10_1002_cpt_2278
crossref_primary_10_1097_MD_0000000000035604
crossref_primary_10_1016_j_taap_2023_116749
crossref_primary_10_1016_j_cellsig_2025_111917
crossref_primary_10_1002_cmdc_202300161
crossref_primary_10_1002_wnan_1984
crossref_primary_10_3390_molecules26061499
crossref_primary_10_1091_mbc_E19_08_0456
crossref_primary_10_1186_s12943_019_1100_5
crossref_primary_10_1016_j_bioorg_2021_105349
crossref_primary_10_1016_j_ejmech_2023_115661
crossref_primary_10_1080_17460441_2024_2436908
crossref_primary_10_1039_D5MD00179J
crossref_primary_10_3390_biology10100957
crossref_primary_10_3390_cancers13112730
crossref_primary_10_3390_ijms232415986
crossref_primary_10_3390_cells9020266
crossref_primary_10_1016_j_bioorg_2018_11_054
crossref_primary_10_1007_s00441_020_03228_3
crossref_primary_10_1016_j_bioorg_2024_108043
crossref_primary_10_1016_j_biopha_2022_113421
crossref_primary_10_1038_s41598_019_38528_4
crossref_primary_10_1016_j_bioorg_2022_105693
crossref_primary_10_1016_j_phrs_2022_106529
crossref_primary_10_1016_j_ica_2023_121894
crossref_primary_10_1016_j_bioorg_2021_105114
crossref_primary_10_1002_jhet_70044
crossref_primary_10_1016_j_phytochem_2022_113397
crossref_primary_10_5306_wjco_v12_i6_404
crossref_primary_10_1016_j_molstruc_2023_136244
crossref_primary_10_1016_j_ejmech_2023_115673
crossref_primary_10_1155_2024_9389729
crossref_primary_10_3390_cancers11071024
crossref_primary_10_1126_science_adl5899
crossref_primary_10_1007_s10142_024_01445_5
crossref_primary_10_1016_j_bmcl_2022_128606
crossref_primary_10_3390_md16060204
crossref_primary_10_3389_fonc_2019_01301
crossref_primary_10_2174_1381612828666220728095619
crossref_primary_10_1016_j_antiviral_2022_105451
crossref_primary_10_3390_ijms19092765
crossref_primary_10_3390_ijms24065964
crossref_primary_10_1007_s42764_020_00026_7
crossref_primary_10_1089_cbr_2019_3423
crossref_primary_10_1002_mco2_248
crossref_primary_10_1111_cas_70199
crossref_primary_10_3390_vetsci12080747
crossref_primary_10_3390_molecules26144213
crossref_primary_10_1038_s41467_022_28292_x
crossref_primary_10_1080_14756366_2020_1821676
crossref_primary_10_1016_j_compbiomed_2025_110991
crossref_primary_10_1016_j_jbc_2025_110547
crossref_primary_10_1016_j_phrs_2024_107431
crossref_primary_10_3390_cancers15061658
crossref_primary_10_3390_molecules27207008
crossref_primary_10_1002_iid3_1207
crossref_primary_10_1016_j_bcp_2020_114224
crossref_primary_10_1038_s41419_024_06474_3
crossref_primary_10_60084_hjas_v3i1_264
crossref_primary_10_1016_j_ejmech_2025_118082
crossref_primary_10_1016_j_ccr_2021_214169
crossref_primary_10_3390_cancers12020496
crossref_primary_10_1111_cbdd_14236
crossref_primary_10_1002_vjch_70053
crossref_primary_10_1002_ardp_70009
crossref_primary_10_1177_0976500X241235721
crossref_primary_10_1093_nar_gkz362
crossref_primary_10_1016_j_bioorg_2020_104422
crossref_primary_10_1016_j_molpha_2025_100056
crossref_primary_10_3390_cancers14205041
crossref_primary_10_3390_molecules27227768
crossref_primary_10_1007_s10637_018_0666_x
crossref_primary_10_1002_smtd_202401113
crossref_primary_10_1007_s13659_025_00511_0
crossref_primary_10_1016_j_omtm_2024_101364
crossref_primary_10_3390_microorganisms9010086
crossref_primary_10_1016_j_molliq_2023_122823
crossref_primary_10_3390_molecules28227458
crossref_primary_10_1155_2022_5500416
crossref_primary_10_1007_s13258_023_01437_y
crossref_primary_10_3390_ph16101456
crossref_primary_10_1016_j_bioorg_2024_108098
crossref_primary_10_3390_ijms222413474
crossref_primary_10_3892_mmr_2019_10684
crossref_primary_10_3390_molecules28010323
crossref_primary_10_1002_1878_0261_13807
crossref_primary_10_1177_0300060520944706
crossref_primary_10_3390_molecules29153547
crossref_primary_10_1002_ange_202317187
crossref_primary_10_1007_s12033_019_00184_4
crossref_primary_10_2174_0115734064334604241014024205
crossref_primary_10_3390_nu16213741
crossref_primary_10_1016_j_intimp_2021_108264
crossref_primary_10_3390_cancers11030338
crossref_primary_10_3390_genes10080612
crossref_primary_10_1016_j_ejmech_2019_04_055
crossref_primary_10_1002_kjm2_12536
crossref_primary_10_1021_acsabm_5c00498
crossref_primary_10_3389_fmolb_2021_609865
crossref_primary_10_1111_jcmm_70482
crossref_primary_10_3390_genes11090990
crossref_primary_10_1111_vco_12521
crossref_primary_10_1038_s41598_023_28185_z
crossref_primary_10_3390_molecules29184282
crossref_primary_10_1016_j_ijpharm_2020_119283
crossref_primary_10_3389_fchem_2021_630357
crossref_primary_10_3390_molecules29225382
crossref_primary_10_1002_aoc_7885
crossref_primary_10_1016_j_rvsc_2023_104992
crossref_primary_10_1186_s12935_018_0600_5
crossref_primary_10_1186_s12951_021_01155_1
crossref_primary_10_1016_j_ijbiomac_2022_12_013
crossref_primary_10_1093_nar_gkab796
crossref_primary_10_1093_nar_gkae703
crossref_primary_10_3390_ijms241612724
crossref_primary_10_1038_s41420_023_01508_9
crossref_primary_10_1016_j_arabjc_2024_106045
crossref_primary_10_1002_cmdc_201900721
crossref_primary_10_1016_j_cclet_2022_07_014
crossref_primary_10_3389_fonc_2021_733700
crossref_primary_10_1080_14756366_2024_2302920
crossref_primary_10_1080_14786419_2018_1538223
crossref_primary_10_1007_s12088_021_00942_6
crossref_primary_10_3390_cancers14133148
crossref_primary_10_1007_s00044_019_02472_9
crossref_primary_10_1016_j_ejmech_2023_116056
crossref_primary_10_1080_07853890_2023_2203946
crossref_primary_10_4103_JVBD_JVBD_174_23
crossref_primary_10_3892_etm_2019_8300
crossref_primary_10_1007_s12088_021_00980_0
crossref_primary_10_1016_j_jep_2023_116813
crossref_primary_10_1186_s12935_021_02439_0
crossref_primary_10_3390_ijms21249431
crossref_primary_10_1002_jbt_23206
crossref_primary_10_3390_cells12152001
crossref_primary_10_1016_j_bmc_2023_117403
crossref_primary_10_3390_molecules27165148
crossref_primary_10_1016_j_cancergen_2020_12_002
crossref_primary_10_1016_j_dnarep_2020_102900
crossref_primary_10_1038_s41467_024_49816_7
crossref_primary_10_1016_j_dnarep_2019_102676
crossref_primary_10_3390_biomedicines8120543
crossref_primary_10_1016_j_molstruc_2024_140218
crossref_primary_10_1016_j_ejmech_2021_113555
crossref_primary_10_1016_j_bcp_2023_115809
crossref_primary_10_1038_s41467_019_12914_y
crossref_primary_10_3389_fphar_2021_749189
crossref_primary_10_3390_molecules25235561
crossref_primary_10_1002_slct_202304911
crossref_primary_10_3389_fmolb_2025_1566293
crossref_primary_10_1016_j_cancergen_2024_10_005
crossref_primary_10_3390_molecules29030581
crossref_primary_10_1371_journal_ppat_1009954
crossref_primary_10_3390_ph15091156
crossref_primary_10_1080_10286020_2022_2120863
crossref_primary_10_3390_molecules28052202
crossref_primary_10_3390_molecules25143180
crossref_primary_10_1016_j_apsb_2022_09_010
crossref_primary_10_1002_cmdc_202000131
crossref_primary_10_1016_j_jep_2023_116919
crossref_primary_10_1016_j_bcp_2022_115098
crossref_primary_10_1016_j_bioorg_2021_105186
crossref_primary_10_3389_fcell_2023_1285372
crossref_primary_10_2174_0929867331666230825104254
crossref_primary_10_3390_ijms26052018
crossref_primary_10_1016_j_bioorg_2022_105747
crossref_primary_10_3390_genes14071346
crossref_primary_10_3390_ph18060895
crossref_primary_10_1002_jat_4238
crossref_primary_10_1080_27694127_2022_2155904
crossref_primary_10_1039_D5RA00889A
crossref_primary_10_3390_nu15102259
crossref_primary_10_1002_cyto_a_23652
crossref_primary_10_1016_j_bbrc_2019_04_002
crossref_primary_10_1007_s11033_021_06665_7
crossref_primary_10_3390_ijms26136193
crossref_primary_10_3390_ph16010094
crossref_primary_10_1007_s41664_022_00225_z
crossref_primary_10_1016_j_apsb_2023_08_031
crossref_primary_10_3390_molecules25122860
crossref_primary_10_1099_jmm_0_002024
crossref_primary_10_3390_pharmaceutics15041283
crossref_primary_10_1016_j_pharmthera_2019_06_001
crossref_primary_10_1111_cbdd_13776
crossref_primary_10_1080_14756366_2022_2136172
crossref_primary_10_1038_s41389_020_0196_1
crossref_primary_10_1002_slct_202101459
crossref_primary_10_1016_j_ejmech_2019_112033
crossref_primary_10_1016_j_bioorg_2020_104396
crossref_primary_10_1080_14737140_2019_1631162
crossref_primary_10_1016_j_bioorg_2020_104399
crossref_primary_10_1111_1759_7714_14527
crossref_primary_10_2174_1381612829666230502164605
crossref_primary_10_3390_cells13121033
crossref_primary_10_3390_ijms22147455
crossref_primary_10_1016_j_molstruc_2024_137488
crossref_primary_10_1016_j_molstruc_2022_133081
crossref_primary_10_1016_j_yexcr_2019_111595
crossref_primary_10_4274_ejbh_galenos_2024_2024_4_3
crossref_primary_10_3390_ph15040399
crossref_primary_10_1111_cbdd_14196
crossref_primary_10_3390_ijms25052599
crossref_primary_10_3390_ijms252413422
crossref_primary_10_1016_j_ijpharm_2025_125556
crossref_primary_10_1007_s40199_019_00315_x
crossref_primary_10_1080_13543784_2025_2532447
crossref_primary_10_1016_j_ejmech_2024_116680
crossref_primary_10_3390_ijms26189017
crossref_primary_10_3390_ijms24065679
crossref_primary_10_1093_nar_gkae643
crossref_primary_10_1080_07391102_2022_2130989
crossref_primary_10_3390_ph15050507
crossref_primary_10_1016_j_bioorg_2023_106548
crossref_primary_10_1038_s41477_022_01179_x
crossref_primary_10_3390_ijms24098457
crossref_primary_10_3390_ph17111487
ContentType Journal Article
Copyright 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Copyright_xml – notice: 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BCJ20160583
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 29363591
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI087671
– fundername: NIGMS NIH HHS
  grantid: T32 GM008365
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
4.4
53G
5GY
5RE
6J9
79B
A8Z
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
F5P
H13
HH6
HZ~
K-O
L7B
ML-
MV1
N9A
NPM
NTEUP
O9-
OK1
P2P
RHI
RNS
RPM
RPO
SV3
TR2
TWZ
WH7
XSW
Y6R
YNY
~02
~KM
7X8
ESTFP
ID FETCH-LOGICAL-c447t-73c5f1e777ede10110a0a5e3a9ca594149a40b83acdc948a49efc8ded4ffecd62
IEDL.DBID 7X8
ISICitedReferencesCount 366
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428085500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Mon Sep 08 12:20:52 EDT 2025
Wed Feb 19 02:05:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords topoisomerase II
topoisomerase inhibitors
chemotherapy
topoisomerase poisoning
anticancer agents
topoisomerase I
Language English
License 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-73c5f1e777ede10110a0a5e3a9ca594149a40b83acdc948a49efc8ded4ffecd62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6110615
PMID 29363591
PQID 1990857180
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1990857180
pubmed_primary_29363591
PublicationCentury 2000
PublicationDate 20180123
PublicationDateYYYYMMDD 2018-01-23
PublicationDate_xml – month: 1
  year: 2018
  text: 20180123
  day: 23
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2018
SSID ssj0014040
Score 2.668028
SecondaryResourceType review_article
Snippet Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 373
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Catalytic Domain
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Breaks, Double-Stranded
DNA Topoisomerases, Type II - chemistry
DNA Topoisomerases, Type II - genetics
DNA Topoisomerases, Type II - metabolism
DNA, Neoplasm - chemistry
DNA, Neoplasm - genetics
DNA, Neoplasm - metabolism
Drug Design
Gene Expression
Humans
Molecular Docking Simulation
Molecular Targeted Therapy - methods
Neoplasms - drug therapy
Neoplasms - enzymology
Neoplasms - genetics
Neoplasms - pathology
Protein Structure, Secondary
Structure-Activity Relationship
Topoisomerase Inhibitors - chemistry
Topoisomerase Inhibitors - pharmacology
Title Topoisomerases as anticancer targets
URI https://www.ncbi.nlm.nih.gov/pubmed/29363591
https://www.proquest.com/docview/1990857180
Volume 475
WOSCitedRecordID wos000428085500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_UCfrix-bH_KLC8C0sbdKmeRIdDhEce5iwt5IlKezBdi5T8L_30nbsSRCEkrdCuLvc_XJ3uR9AjzGGYd8kxEhNCTfKEqUSToRH77OUMcFNRTYhRqN0OpXjJuHmmrbKtU-sHLUptc-R90N0m2mMnpTeLz6IZ43y1dWGQmMbWgyhjLdqMd1UETitH0RyQfHUR2nzPg_ttP84eIn8cLXYzwv8DVtWMWZ4-N_dHcFBgy6Dh9ocjmHLFm3oPBR4s37_Du6Cqt-zSqS3YW-w5nrrQG9SLsq5K32GylkXKPwKn-VGk1gGdbe4O4G34dNk8Ewa_gSiORcrIpiO89AKIayxoQ_0iqrYMiW1iiXHu5HiFPWhtNGSp4pLm-vUWMN9K4lJolPYKcrCnkOgZoisZiKPqbFcJ57FKkkjYaiMchbzsAu3a7lkuHVfdFCFLT9dtpFMF85q4WaLepBGhlAD8Y4ML_7w9yXso8J84x2J2BW0cjyd9hp29ddq7pY3leJxHY1ffwA3i7cL
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topoisomerases+as+anticancer+targets&rft.jtitle=Biochemical+journal&rft.au=Delgado%2C+Justine+L&rft.au=Hsieh%2C+Chao-Ming&rft.au=Chan%2C+Nei-Li&rft.au=Hiasa%2C+Hiroshi&rft.date=2018-01-23&rft.eissn=1470-8728&rft.volume=475&rft.issue=2&rft.spage=373&rft_id=info:doi/10.1042%2FBCJ20160583&rft_id=info%3Apmid%2F29363591&rft_id=info%3Apmid%2F29363591&rft.externalDocID=29363591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon