Analysis of mean-square error and transient speed of the LMS adaptive algorithm

For the least mean square (LMS) algorithm, we analyze the correlation matrix of the filter coefficient estimation error and the signal estimation error in the transient phase as well as in steady state. We establish the convergence of the second-order statistics as the number of iterations increases...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 48; no. 7; pp. 1873 - 1894
Main Authors: Dabeer, O., Masry, E.
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the least mean square (LMS) algorithm, we analyze the correlation matrix of the filter coefficient estimation error and the signal estimation error in the transient phase as well as in steady state. We establish the convergence of the second-order statistics as the number of iterations increases, and we derive the exact asymptotic expressions for the mean square errors. In particular, the result for the excess signal estimation error gives conditions under which the LMS algorithm outperforms the Wiener filter with the same number of taps. We also analyze a new measure of transient speed. We do not assume a linear regression model: the desired signal and the data process are allowed to be nonlinearly related. The data is assumed to be an instantaneous transformation of a stationary Markov process satisfying certain ergodic conditions.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2002.1013131