Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations

Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of tempo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of neuroscience Ročník 34; číslo 1; s. 218
Hlavní autori: Chung, Yoojin, Hancock, Kenneth E, Nam, Sung-Il, Delgutte, Bertrand
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2014
Predmet:
ISSN:1529-2401, 1529-2401
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.
AbstractList Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.
Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.
Author Nam, Sung-Il
Hancock, Kenneth E
Delgutte, Bertrand
Chung, Yoojin
Author_xml – sequence: 1
  givenname: Yoojin
  surname: Chung
  fullname: Chung, Yoojin
  organization: Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, Department of Otolaryngology, School of Medicine, Keimyung University, Daegu, South Korea 700-712, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
– sequence: 2
  givenname: Kenneth E
  surname: Hancock
  fullname: Hancock, Kenneth E
– sequence: 3
  givenname: Sung-Il
  surname: Nam
  fullname: Nam, Sung-Il
– sequence: 4
  givenname: Bertrand
  surname: Delgutte
  fullname: Delgutte, Bertrand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24381283$$D View this record in MEDLINE/PubMed
BookMark eNpNUMlOwzAQtRCIpfALyEcuKbbjNCk3VLEKUQnoufIybg2JHWxHVfkRfhcjQOL0RnrLvJkjtOu8A4ROKRnTipXn949Xi6f58-xuzEjDC1pmpHwHHWZ2WjBO6O6_-QAdxfhKCKkJrffRAeNlQ1lTHqLPmdfWrbA3GFpQKViF-6GNgFMQ1kXcB4jgEmic1sEPqzVWXq1bEAHbrm-FSxFbl0nAYtA2-bDFndXy2_2dKjbiDXAQUtp0kb1dL4KN3uGNTWssHMRsTfYjL8irMimS9S4eoz0jco2TXxyhxfXVy-y2eJjf3M0uHwrFeZ2KSpeyqTgrKxC1YqbmE8MkqUCbqjENGC0I1Zo1k6lkxKja0HqiKmNkXUoxYWyEzn5y--Dfh1xm2dmooM2HgR_ikvIpyaEVIVl6-isdZAd62QfbibBd_j2TfQGUEn7B
CitedBy_id crossref_primary_10_1038_s42003_019_0602_4
crossref_primary_10_1007_s10162_014_0492_6
crossref_primary_10_1152_jn_00392_2016
crossref_primary_10_1002_jnr_24991
crossref_primary_10_1016_j_heares_2024_109026
crossref_primary_10_1038_s41598_023_30569_0
crossref_primary_10_3389_fnsys_2018_00059
crossref_primary_10_1155_2018_9303674
crossref_primary_10_1523_JNEUROSCI_3795_15_2016
crossref_primary_10_1152_jn_00081_2019
crossref_primary_10_1111_vop_12507
crossref_primary_10_1007_s10162_017_0616_x
crossref_primary_10_1523_JNEUROSCI_1076_20_2021
crossref_primary_10_1016_j_heares_2024_109028
crossref_primary_10_1007_s10162_017_0638_4
crossref_primary_10_1016_j_heares_2019_05_003
crossref_primary_10_1016_j_heares_2015_01_004
crossref_primary_10_1007_s10162_015_0527_7
crossref_primary_10_1177_23312165251317006
crossref_primary_10_1007_s10162_016_0569_5
crossref_primary_10_1152_jn_00511_2022
crossref_primary_10_1007_s10162_018_00708_w
crossref_primary_10_1371_journal_pbio_3003309
crossref_primary_10_1152_jn_00278_2020
crossref_primary_10_1523_JNEUROSCI_1699_16_2016
crossref_primary_10_1007_s10162_021_00792_5
crossref_primary_10_1152_jn_00512_2019
crossref_primary_10_1007_s10162_023_00897_z
crossref_primary_10_1007_s10162_018_00693_0
crossref_primary_10_1121_10_0038980
crossref_primary_10_1097_AUD_0000000000000284
crossref_primary_10_1007_s00429_014_0862_1
crossref_primary_10_1152_jn_00366_2021
crossref_primary_10_3389_fncom_2022_889992
crossref_primary_10_1523_JNEUROSCI_1421_16_2016
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1523/JNEUROSCI.2084-13.2014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
ExternalDocumentID 24381283
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: P30 DC005209
– fundername: NIDCD NIH HHS
  grantid: R01 DC005775
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
7X8
ABUFD
ID FETCH-LOGICAL-c447t-5d3b854235ea7c2f746f2b05edf58f8efda01dd2869b20fc7f176c5ffb73ba622
IEDL.DBID 7X8
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329177800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1529-2401
IngestDate Sun Nov 09 10:45:46 EST 2025
Thu Apr 03 06:55:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords inferior colliculus
cochlear implant
temporal coding
anesthesia
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-5d3b854235ea7c2f746f2b05edf58f8efda01dd2869b20fc7f176c5ffb73ba622
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jneurosci.org/content/jneuro/34/1/218.full.pdf
PMID 24381283
PQID 1490746500
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1490746500
pubmed_primary_24381283
PublicationCentury 2000
PublicationDate 2014-Jan-01
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-Jan-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2014
References 18397032 - J Acoust Soc Am. 2008 Apr;123(4):2276-86
16425088 - J Assoc Res Otolaryngol. 2006 Mar;7(1):59-70
17079342 - J Neurophysiol. 2007 Jan;97(1):522-39
12466430 - J Neurophysiol. 2002 Dec;88(6):3067-77
17050830 - J Neurophysiol. 2007 Feb;97(2):1005-17
20962228 - J Neurosci. 2010 Oct 20;30(42):14068-79
18941838 - J Assoc Res Otolaryngol. 2009 Mar;10(1):91-110
22914651 - J Neurophysiol. 2012 Nov;108(9):2612-28
2412101 - Mol Pharmacol. 1985 Sep;28(3):269-77
8150729 - Hear Res. 1994 Jan;72(1-2):125-34
10899199 - J Neurophysiol. 2000 Jul;84(1):236-46
3624633 - J Acoust Soc Am. 1987 Jul;82(1):106-15
10601478 - J Neurophysiol. 1999 Dec;82(6):3506-26
7884463 - J Neurophysiol. 1994 Nov;72(5):2334-59
2918355 - J Neurophysiol. 1989 Feb;61(2):269-82
1880553 - J Neurosci. 1991 Sep;11(9):2865-80
14749317 - J Neurophysiol. 2004 Jun;91(6):2465-73
1769918 - Hear Res. 1991 Nov;56(1-2):246-64
9744940 - J Neurophysiol. 1998 Sep;80(3):1302-16
11508961 - J Acoust Soc Am. 2001 Jul;110(1):368-79
20130202 - J Neurosci. 2010 Feb 3;30(5):1937-46
8058206 - Neurosci Res. 1994 May;19(3):303-16
10962184 - Hear Res. 2000 Sep;147(1-2):183-7
18555164 - Neuroscience. 2008 Jun 12;154(1):294-303
12783954 - J Neurophysiol. 2003 Jun;89(6):3190-204
15295015 - J Neurophysiol. 2004 Dec;92(6):3286-97
21117760 - J Acoust Soc Am. 2010 May;127(5):3114-23
23462803 - J Assoc Res Otolaryngol. 2013 Jun;14(3):393-411
8294265 - Hear Res. 1993 Nov;70(2):205-15
10899201 - J Neurophysiol. 2000 Jul;84(1):255-73
9307111 - J Neurophysiol. 1997 Aug;78(2):767-79
12062467 - Brain Res. 2002 May 10;935(1-2):9-15
15319310 - Cereb Cortex. 2005 May;15(5):552-62
22349094 - Hear Res. 2013 Jan;295:124-9
4846390 - Brain Res. 1974 Aug 9;76(1):150-4
15659529 - J Neurophysiol. 2005 Jun;93(6):3339-55
15450092 - Eur J Neurosci. 2004 Oct;20(8):2133-40
21575678 - Neurosci Lett. 2011 Jul 1;498(1):72-7
15364415 - Neurosci Lett. 2004 Sep 30;368(3):297-302
11812690 - Anesth Analg. 2002 Feb;94(2):313-8, table of contents
17581961 - J Neurosci. 2007 Jun 20;27(25):6740-50
20534831 - J Neurosci. 2010 Jun 9;30(23):7826-37
17471732 - J Acoust Soc Am. 2007 Apr;121(4):2182-91
18614754 - J Neurophysiol. 2008 Sep;100(3):1602-9
21969022 - J Assoc Res Otolaryngol. 2012 Feb;13(1):67-80
22592306 - J Neurophysiol. 2012 Aug 1;108(3):714-28
11593234 - Nat Neurosci. 2001 Nov;4(11):1131-8
10601427 - J Neurophysiol. 1999 Dec;82(6):2883-902
19275322 - J Acoust Soc Am. 2009 Mar;125(3):1649-57
11147873 - J Neurosurg. 2001 Jan;94(1 Suppl):82-90
5810617 - J Neurophysiol. 1969 Jul;32(4):613-36
10320107 - Hear Res. 1999 Apr;130(1-2):171-88
7760111 - J Neurophysiol. 1995 Feb;73(2):449-67
17471733 - J Acoust Soc Am. 2007 Apr;121(4):2192-206
10906318 - Cereb Cortex. 2000 Jul;10(7):714-26
12806303 - Otol Neurotol. 2003 May;24(3):478-85
6631459 - J Neurophysiol. 1983 Oct;50(4):1020-42
23716241 - Adv Exp Med Biol. 2013;787:353-61
18972570 - J Comp Neurol. 2009 Jan 1;512(1):101-14
21527325 - Hear Res. 2011 Sep;279(1-2):111-7
17553982 - J Neurosci. 2007 Jun 6;27(23):6091-102
18834065 - Ann Otol Rhinol Laryngol. 2008 Sep;117(9):645-52
22552192 - J Neurophysiol. 2012 Aug;108(4):976-88
19158306 - J Neurosci. 2009 Jan 21;29(3):811-27
22479238 - Front Syst Neurosci. 2012 Mar 29;6:19
11310781 - Ann Biomed Eng. 2001 Mar;29(3):195-201
References_xml – reference: 18614754 - J Neurophysiol. 2008 Sep;100(3):1602-9
– reference: 19275322 - J Acoust Soc Am. 2009 Mar;125(3):1649-57
– reference: 10899199 - J Neurophysiol. 2000 Jul;84(1):236-46
– reference: 15364415 - Neurosci Lett. 2004 Sep 30;368(3):297-302
– reference: 12466430 - J Neurophysiol. 2002 Dec;88(6):3067-77
– reference: 10962184 - Hear Res. 2000 Sep;147(1-2):183-7
– reference: 12062467 - Brain Res. 2002 May 10;935(1-2):9-15
– reference: 11310781 - Ann Biomed Eng. 2001 Mar;29(3):195-201
– reference: 18397032 - J Acoust Soc Am. 2008 Apr;123(4):2276-86
– reference: 20962228 - J Neurosci. 2010 Oct 20;30(42):14068-79
– reference: 17050830 - J Neurophysiol. 2007 Feb;97(2):1005-17
– reference: 1769918 - Hear Res. 1991 Nov;56(1-2):246-64
– reference: 22914651 - J Neurophysiol. 2012 Nov;108(9):2612-28
– reference: 10906318 - Cereb Cortex. 2000 Jul;10(7):714-26
– reference: 15295015 - J Neurophysiol. 2004 Dec;92(6):3286-97
– reference: 9744940 - J Neurophysiol. 1998 Sep;80(3):1302-16
– reference: 23716241 - Adv Exp Med Biol. 2013;787:353-61
– reference: 17553982 - J Neurosci. 2007 Jun 6;27(23):6091-102
– reference: 10601427 - J Neurophysiol. 1999 Dec;82(6):2883-902
– reference: 11812690 - Anesth Analg. 2002 Feb;94(2):313-8, table of contents
– reference: 8294265 - Hear Res. 1993 Nov;70(2):205-15
– reference: 22479238 - Front Syst Neurosci. 2012 Mar 29;6:19
– reference: 18834065 - Ann Otol Rhinol Laryngol. 2008 Sep;117(9):645-52
– reference: 14749317 - J Neurophysiol. 2004 Jun;91(6):2465-73
– reference: 12783954 - J Neurophysiol. 2003 Jun;89(6):3190-204
– reference: 2918355 - J Neurophysiol. 1989 Feb;61(2):269-82
– reference: 8150729 - Hear Res. 1994 Jan;72(1-2):125-34
– reference: 11508961 - J Acoust Soc Am. 2001 Jul;110(1):368-79
– reference: 2412101 - Mol Pharmacol. 1985 Sep;28(3):269-77
– reference: 15319310 - Cereb Cortex. 2005 May;15(5):552-62
– reference: 3624633 - J Acoust Soc Am. 1987 Jul;82(1):106-15
– reference: 7760111 - J Neurophysiol. 1995 Feb;73(2):449-67
– reference: 16425088 - J Assoc Res Otolaryngol. 2006 Mar;7(1):59-70
– reference: 18555164 - Neuroscience. 2008 Jun 12;154(1):294-303
– reference: 18972570 - J Comp Neurol. 2009 Jan 1;512(1):101-14
– reference: 23462803 - J Assoc Res Otolaryngol. 2013 Jun;14(3):393-411
– reference: 9307111 - J Neurophysiol. 1997 Aug;78(2):767-79
– reference: 21117760 - J Acoust Soc Am. 2010 May;127(5):3114-23
– reference: 17581961 - J Neurosci. 2007 Jun 20;27(25):6740-50
– reference: 17079342 - J Neurophysiol. 2007 Jan;97(1):522-39
– reference: 1880553 - J Neurosci. 1991 Sep;11(9):2865-80
– reference: 21969022 - J Assoc Res Otolaryngol. 2012 Feb;13(1):67-80
– reference: 21575678 - Neurosci Lett. 2011 Jul 1;498(1):72-7
– reference: 17471733 - J Acoust Soc Am. 2007 Apr;121(4):2192-206
– reference: 20130202 - J Neurosci. 2010 Feb 3;30(5):1937-46
– reference: 19158306 - J Neurosci. 2009 Jan 21;29(3):811-27
– reference: 17471732 - J Acoust Soc Am. 2007 Apr;121(4):2182-91
– reference: 21527325 - Hear Res. 2011 Sep;279(1-2):111-7
– reference: 12806303 - Otol Neurotol. 2003 May;24(3):478-85
– reference: 7884463 - J Neurophysiol. 1994 Nov;72(5):2334-59
– reference: 15450092 - Eur J Neurosci. 2004 Oct;20(8):2133-40
– reference: 22349094 - Hear Res. 2013 Jan;295:124-9
– reference: 5810617 - J Neurophysiol. 1969 Jul;32(4):613-36
– reference: 10899201 - J Neurophysiol. 2000 Jul;84(1):255-73
– reference: 6631459 - J Neurophysiol. 1983 Oct;50(4):1020-42
– reference: 8058206 - Neurosci Res. 1994 May;19(3):303-16
– reference: 15659529 - J Neurophysiol. 2005 Jun;93(6):3339-55
– reference: 11147873 - J Neurosurg. 2001 Jan;94(1 Suppl):82-90
– reference: 4846390 - Brain Res. 1974 Aug 9;76(1):150-4
– reference: 20534831 - J Neurosci. 2010 Jun 9;30(23):7826-37
– reference: 10320107 - Hear Res. 1999 Apr;130(1-2):171-88
– reference: 10601478 - J Neurophysiol. 1999 Dec;82(6):3506-26
– reference: 11593234 - Nat Neurosci. 2001 Nov;4(11):1131-8
– reference: 22552192 - J Neurophysiol. 2012 Aug;108(4):976-88
– reference: 22592306 - J Neurophysiol. 2012 Aug 1;108(3):714-28
– reference: 18941838 - J Assoc Res Otolaryngol. 2009 Mar;10(1):91-110
SSID ssj0007017
Score 2.2867491
Snippet Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 218
SubjectTerms Acoustic Stimulation - methods
Action Potentials - physiology
Anesthesia - methods
Anesthetics, Intravenous - administration & dosage
Animals
Auditory Perception - drug effects
Auditory Perception - physiology
Cochlear Implants
Electric Stimulation - methods
Mesencephalon - drug effects
Mesencephalon - physiology
Rabbits
Wakefulness - drug effects
Wakefulness - physiology
Title Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations
URI https://www.ncbi.nlm.nih.gov/pubmed/24381283
https://www.proquest.com/docview/1490746500
Volume 34
WOSCitedRecordID wos000329177800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG7UePDiKz5iVEoQb02mp6ene3IJYTGo4BJQYW9LP3GIOzPubiLxj_h3reqZmJMgeJnLUN1FP-rd9TH2GlVCrK1QvDaF5JX1grskah6N0CaqRE52BpvQ87lZLJrTKeC2mcoqr2RiFtSh9xQjP0BLnqAxVFEcDd85oUZRdnWC0LjJdiSaMlTSpRfX3cJ1kRF3kZ-cRRDTC2H0vQ4-zKlS7tPsPbqIpuJCUpVX9XczM6ubk3v_y-h9dncyNOF4PBkP2I3YPWS7xx062atLeAO59DPH1HfZr1lPKgz6BCMsTuthOEelCRlBYgPD-EgpBphwfQDl6FdCnIB2NXyjWhpoO_wZwdIzj359Cas2OKKmUe0PexZhbZ1rt4fg_2AfAoWBwaK4RdJt-xMnwKnGduR4HR6xLydvP8_e8Qmxgfuq0luugnRGoYWmotW-TLgOqXSFiiEpk0xMwRYihNLUjSuL5HUSuvYqJaels3VZPma3ur6LTxlIK5w10Smpy0rG2sikm9rZpqqaoGSzx15dLf8SbwSlOZDb_nyzvN6APfZk3MPlMLbuWJbU0Qwtqmf_QL3P7tCZGOMtz9lOQnkQX7Db_mLbbtYv81HD7_z0428lDeFI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coding+of+electric+pulse+trains+presented+through+cochlear+implants+in+the+auditory+midbrain+of+awake+rabbit%3A+comparison+with+anesthetized+preparations&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chung%2C+Yoojin&rft.au=Hancock%2C+Kenneth+E&rft.au=Nam%2C+Sung-Il&rft.au=Delgutte%2C+Bertrand&rft.date=2014-01-01&rft.eissn=1529-2401&rft.volume=34&rft.issue=1&rft.spage=218&rft_id=info:doi/10.1523%2FJNEUROSCI.2084-13.2014&rft_id=info%3Apmid%2F24381283&rft_id=info%3Apmid%2F24381283&rft.externalDocID=24381283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon