Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations
Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of tempo...
Uložené v:
| Vydané v: | The Journal of neuroscience Ročník 34; číslo 1; s. 218 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.01.2014
|
| Predmet: | |
| ISSN: | 1529-2401, 1529-2401 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals. |
|---|---|
| AbstractList | Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals. Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals.Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference discrimination. Similar limits have been observed in neural responses to electric stimulation in animals with CI; however, the upper limit of temporal coding of electric pulse train stimuli in the inferior colliculus (IC) of anesthetized animals is lower than the perceptual limit. We hypothesize that the upper limit of temporal neural coding has been underestimated in previous studies due to the confound of anesthesia. To test this hypothesis, we developed a chronic, awake rabbit preparation for single-unit studies of IC neurons with electric stimulation through CI. Stimuli were periodic trains of biphasic pulses with rates varying from 20 to 1280 pulses per second. We found that IC neurons in awake rabbits showed higher spontaneous activity and greater sustained responses, both excitatory and suppressive, at high pulse rates. Maximum pulse rates that elicited synchronized responses were approximately two times higher in awake rabbits than in earlier studies with anesthetized animals. Here, we demonstrate directly that anesthesia is a major factor underlying these differences by monitoring the responses of single units in one rabbit before and after injection of an ultra-short-acting barbiturate. In general, the physiological rate limits of IC neurons in the awake rabbit are more consistent with the psychophysical limits in human CI subjects compared with limits from anesthetized animals. |
| Author | Nam, Sung-Il Hancock, Kenneth E Delgutte, Bertrand Chung, Yoojin |
| Author_xml | – sequence: 1 givenname: Yoojin surname: Chung fullname: Chung, Yoojin organization: Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, Department of Otolaryngology, School of Medicine, Keimyung University, Daegu, South Korea 700-712, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – sequence: 2 givenname: Kenneth E surname: Hancock fullname: Hancock, Kenneth E – sequence: 3 givenname: Sung-Il surname: Nam fullname: Nam, Sung-Il – sequence: 4 givenname: Bertrand surname: Delgutte fullname: Delgutte, Bertrand |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24381283$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMlOwzAQtRCIpfALyEcuKbbjNCk3VLEKUQnoufIybg2JHWxHVfkRfhcjQOL0RnrLvJkjtOu8A4ROKRnTipXn949Xi6f58-xuzEjDC1pmpHwHHWZ2WjBO6O6_-QAdxfhKCKkJrffRAeNlQ1lTHqLPmdfWrbA3GFpQKViF-6GNgFMQ1kXcB4jgEmic1sEPqzVWXq1bEAHbrm-FSxFbl0nAYtA2-bDFndXy2_2dKjbiDXAQUtp0kb1dL4KN3uGNTWssHMRsTfYjL8irMimS9S4eoz0jco2TXxyhxfXVy-y2eJjf3M0uHwrFeZ2KSpeyqTgrKxC1YqbmE8MkqUCbqjENGC0I1Zo1k6lkxKja0HqiKmNkXUoxYWyEzn5y--Dfh1xm2dmooM2HgR_ikvIpyaEVIVl6-isdZAd62QfbibBd_j2TfQGUEn7B |
| CitedBy_id | crossref_primary_10_1038_s42003_019_0602_4 crossref_primary_10_1007_s10162_014_0492_6 crossref_primary_10_1152_jn_00392_2016 crossref_primary_10_1002_jnr_24991 crossref_primary_10_1016_j_heares_2024_109026 crossref_primary_10_1038_s41598_023_30569_0 crossref_primary_10_3389_fnsys_2018_00059 crossref_primary_10_1155_2018_9303674 crossref_primary_10_1523_JNEUROSCI_3795_15_2016 crossref_primary_10_1152_jn_00081_2019 crossref_primary_10_1111_vop_12507 crossref_primary_10_1007_s10162_017_0616_x crossref_primary_10_1523_JNEUROSCI_1076_20_2021 crossref_primary_10_1016_j_heares_2024_109028 crossref_primary_10_1007_s10162_017_0638_4 crossref_primary_10_1016_j_heares_2019_05_003 crossref_primary_10_1016_j_heares_2015_01_004 crossref_primary_10_1007_s10162_015_0527_7 crossref_primary_10_1177_23312165251317006 crossref_primary_10_1007_s10162_016_0569_5 crossref_primary_10_1152_jn_00511_2022 crossref_primary_10_1007_s10162_018_00708_w crossref_primary_10_1371_journal_pbio_3003309 crossref_primary_10_1152_jn_00278_2020 crossref_primary_10_1523_JNEUROSCI_1699_16_2016 crossref_primary_10_1007_s10162_021_00792_5 crossref_primary_10_1152_jn_00512_2019 crossref_primary_10_1007_s10162_023_00897_z crossref_primary_10_1007_s10162_018_00693_0 crossref_primary_10_1121_10_0038980 crossref_primary_10_1097_AUD_0000000000000284 crossref_primary_10_1007_s00429_014_0862_1 crossref_primary_10_1152_jn_00366_2021 crossref_primary_10_3389_fncom_2022_889992 crossref_primary_10_1523_JNEUROSCI_1421_16_2016 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1523/JNEUROSCI.2084-13.2014 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1529-2401 |
| ExternalDocumentID | 24381283 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: P30 DC005209 – fundername: NIDCD NIH HHS grantid: R01 DC005775 |
| GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B NPM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK 7X8 ABUFD |
| ID | FETCH-LOGICAL-c447t-5d3b854235ea7c2f746f2b05edf58f8efda01dd2869b20fc7f176c5ffb73ba622 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000329177800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1529-2401 |
| IngestDate | Sun Nov 09 10:45:46 EST 2025 Thu Apr 03 06:55:49 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | inferior colliculus cochlear implant temporal coding anesthesia |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-5d3b854235ea7c2f746f2b05edf58f8efda01dd2869b20fc7f176c5ffb73ba622 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.jneurosci.org/content/jneuro/34/1/218.full.pdf |
| PMID | 24381283 |
| PQID | 1490746500 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1490746500 pubmed_primary_24381283 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Jan-01 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-Jan-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of neuroscience |
| PublicationTitleAlternate | J Neurosci |
| PublicationYear | 2014 |
| References | 18397032 - J Acoust Soc Am. 2008 Apr;123(4):2276-86 16425088 - J Assoc Res Otolaryngol. 2006 Mar;7(1):59-70 17079342 - J Neurophysiol. 2007 Jan;97(1):522-39 12466430 - J Neurophysiol. 2002 Dec;88(6):3067-77 17050830 - J Neurophysiol. 2007 Feb;97(2):1005-17 20962228 - J Neurosci. 2010 Oct 20;30(42):14068-79 18941838 - J Assoc Res Otolaryngol. 2009 Mar;10(1):91-110 22914651 - J Neurophysiol. 2012 Nov;108(9):2612-28 2412101 - Mol Pharmacol. 1985 Sep;28(3):269-77 8150729 - Hear Res. 1994 Jan;72(1-2):125-34 10899199 - J Neurophysiol. 2000 Jul;84(1):236-46 3624633 - J Acoust Soc Am. 1987 Jul;82(1):106-15 10601478 - J Neurophysiol. 1999 Dec;82(6):3506-26 7884463 - J Neurophysiol. 1994 Nov;72(5):2334-59 2918355 - J Neurophysiol. 1989 Feb;61(2):269-82 1880553 - J Neurosci. 1991 Sep;11(9):2865-80 14749317 - J Neurophysiol. 2004 Jun;91(6):2465-73 1769918 - Hear Res. 1991 Nov;56(1-2):246-64 9744940 - J Neurophysiol. 1998 Sep;80(3):1302-16 11508961 - J Acoust Soc Am. 2001 Jul;110(1):368-79 20130202 - J Neurosci. 2010 Feb 3;30(5):1937-46 8058206 - Neurosci Res. 1994 May;19(3):303-16 10962184 - Hear Res. 2000 Sep;147(1-2):183-7 18555164 - Neuroscience. 2008 Jun 12;154(1):294-303 12783954 - J Neurophysiol. 2003 Jun;89(6):3190-204 15295015 - J Neurophysiol. 2004 Dec;92(6):3286-97 21117760 - J Acoust Soc Am. 2010 May;127(5):3114-23 23462803 - J Assoc Res Otolaryngol. 2013 Jun;14(3):393-411 8294265 - Hear Res. 1993 Nov;70(2):205-15 10899201 - J Neurophysiol. 2000 Jul;84(1):255-73 9307111 - J Neurophysiol. 1997 Aug;78(2):767-79 12062467 - Brain Res. 2002 May 10;935(1-2):9-15 15319310 - Cereb Cortex. 2005 May;15(5):552-62 22349094 - Hear Res. 2013 Jan;295:124-9 4846390 - Brain Res. 1974 Aug 9;76(1):150-4 15659529 - J Neurophysiol. 2005 Jun;93(6):3339-55 15450092 - Eur J Neurosci. 2004 Oct;20(8):2133-40 21575678 - Neurosci Lett. 2011 Jul 1;498(1):72-7 15364415 - Neurosci Lett. 2004 Sep 30;368(3):297-302 11812690 - Anesth Analg. 2002 Feb;94(2):313-8, table of contents 17581961 - J Neurosci. 2007 Jun 20;27(25):6740-50 20534831 - J Neurosci. 2010 Jun 9;30(23):7826-37 17471732 - J Acoust Soc Am. 2007 Apr;121(4):2182-91 18614754 - J Neurophysiol. 2008 Sep;100(3):1602-9 21969022 - J Assoc Res Otolaryngol. 2012 Feb;13(1):67-80 22592306 - J Neurophysiol. 2012 Aug 1;108(3):714-28 11593234 - Nat Neurosci. 2001 Nov;4(11):1131-8 10601427 - J Neurophysiol. 1999 Dec;82(6):2883-902 19275322 - J Acoust Soc Am. 2009 Mar;125(3):1649-57 11147873 - J Neurosurg. 2001 Jan;94(1 Suppl):82-90 5810617 - J Neurophysiol. 1969 Jul;32(4):613-36 10320107 - Hear Res. 1999 Apr;130(1-2):171-88 7760111 - J Neurophysiol. 1995 Feb;73(2):449-67 17471733 - J Acoust Soc Am. 2007 Apr;121(4):2192-206 10906318 - Cereb Cortex. 2000 Jul;10(7):714-26 12806303 - Otol Neurotol. 2003 May;24(3):478-85 6631459 - J Neurophysiol. 1983 Oct;50(4):1020-42 23716241 - Adv Exp Med Biol. 2013;787:353-61 18972570 - J Comp Neurol. 2009 Jan 1;512(1):101-14 21527325 - Hear Res. 2011 Sep;279(1-2):111-7 17553982 - J Neurosci. 2007 Jun 6;27(23):6091-102 18834065 - Ann Otol Rhinol Laryngol. 2008 Sep;117(9):645-52 22552192 - J Neurophysiol. 2012 Aug;108(4):976-88 19158306 - J Neurosci. 2009 Jan 21;29(3):811-27 22479238 - Front Syst Neurosci. 2012 Mar 29;6:19 11310781 - Ann Biomed Eng. 2001 Mar;29(3):195-201 |
| References_xml | – reference: 18614754 - J Neurophysiol. 2008 Sep;100(3):1602-9 – reference: 19275322 - J Acoust Soc Am. 2009 Mar;125(3):1649-57 – reference: 10899199 - J Neurophysiol. 2000 Jul;84(1):236-46 – reference: 15364415 - Neurosci Lett. 2004 Sep 30;368(3):297-302 – reference: 12466430 - J Neurophysiol. 2002 Dec;88(6):3067-77 – reference: 10962184 - Hear Res. 2000 Sep;147(1-2):183-7 – reference: 12062467 - Brain Res. 2002 May 10;935(1-2):9-15 – reference: 11310781 - Ann Biomed Eng. 2001 Mar;29(3):195-201 – reference: 18397032 - J Acoust Soc Am. 2008 Apr;123(4):2276-86 – reference: 20962228 - J Neurosci. 2010 Oct 20;30(42):14068-79 – reference: 17050830 - J Neurophysiol. 2007 Feb;97(2):1005-17 – reference: 1769918 - Hear Res. 1991 Nov;56(1-2):246-64 – reference: 22914651 - J Neurophysiol. 2012 Nov;108(9):2612-28 – reference: 10906318 - Cereb Cortex. 2000 Jul;10(7):714-26 – reference: 15295015 - J Neurophysiol. 2004 Dec;92(6):3286-97 – reference: 9744940 - J Neurophysiol. 1998 Sep;80(3):1302-16 – reference: 23716241 - Adv Exp Med Biol. 2013;787:353-61 – reference: 17553982 - J Neurosci. 2007 Jun 6;27(23):6091-102 – reference: 10601427 - J Neurophysiol. 1999 Dec;82(6):2883-902 – reference: 11812690 - Anesth Analg. 2002 Feb;94(2):313-8, table of contents – reference: 8294265 - Hear Res. 1993 Nov;70(2):205-15 – reference: 22479238 - Front Syst Neurosci. 2012 Mar 29;6:19 – reference: 18834065 - Ann Otol Rhinol Laryngol. 2008 Sep;117(9):645-52 – reference: 14749317 - J Neurophysiol. 2004 Jun;91(6):2465-73 – reference: 12783954 - J Neurophysiol. 2003 Jun;89(6):3190-204 – reference: 2918355 - J Neurophysiol. 1989 Feb;61(2):269-82 – reference: 8150729 - Hear Res. 1994 Jan;72(1-2):125-34 – reference: 11508961 - J Acoust Soc Am. 2001 Jul;110(1):368-79 – reference: 2412101 - Mol Pharmacol. 1985 Sep;28(3):269-77 – reference: 15319310 - Cereb Cortex. 2005 May;15(5):552-62 – reference: 3624633 - J Acoust Soc Am. 1987 Jul;82(1):106-15 – reference: 7760111 - J Neurophysiol. 1995 Feb;73(2):449-67 – reference: 16425088 - J Assoc Res Otolaryngol. 2006 Mar;7(1):59-70 – reference: 18555164 - Neuroscience. 2008 Jun 12;154(1):294-303 – reference: 18972570 - J Comp Neurol. 2009 Jan 1;512(1):101-14 – reference: 23462803 - J Assoc Res Otolaryngol. 2013 Jun;14(3):393-411 – reference: 9307111 - J Neurophysiol. 1997 Aug;78(2):767-79 – reference: 21117760 - J Acoust Soc Am. 2010 May;127(5):3114-23 – reference: 17581961 - J Neurosci. 2007 Jun 20;27(25):6740-50 – reference: 17079342 - J Neurophysiol. 2007 Jan;97(1):522-39 – reference: 1880553 - J Neurosci. 1991 Sep;11(9):2865-80 – reference: 21969022 - J Assoc Res Otolaryngol. 2012 Feb;13(1):67-80 – reference: 21575678 - Neurosci Lett. 2011 Jul 1;498(1):72-7 – reference: 17471733 - J Acoust Soc Am. 2007 Apr;121(4):2192-206 – reference: 20130202 - J Neurosci. 2010 Feb 3;30(5):1937-46 – reference: 19158306 - J Neurosci. 2009 Jan 21;29(3):811-27 – reference: 17471732 - J Acoust Soc Am. 2007 Apr;121(4):2182-91 – reference: 21527325 - Hear Res. 2011 Sep;279(1-2):111-7 – reference: 12806303 - Otol Neurotol. 2003 May;24(3):478-85 – reference: 7884463 - J Neurophysiol. 1994 Nov;72(5):2334-59 – reference: 15450092 - Eur J Neurosci. 2004 Oct;20(8):2133-40 – reference: 22349094 - Hear Res. 2013 Jan;295:124-9 – reference: 5810617 - J Neurophysiol. 1969 Jul;32(4):613-36 – reference: 10899201 - J Neurophysiol. 2000 Jul;84(1):255-73 – reference: 6631459 - J Neurophysiol. 1983 Oct;50(4):1020-42 – reference: 8058206 - Neurosci Res. 1994 May;19(3):303-16 – reference: 15659529 - J Neurophysiol. 2005 Jun;93(6):3339-55 – reference: 11147873 - J Neurosurg. 2001 Jan;94(1 Suppl):82-90 – reference: 4846390 - Brain Res. 1974 Aug 9;76(1):150-4 – reference: 20534831 - J Neurosci. 2010 Jun 9;30(23):7826-37 – reference: 10320107 - Hear Res. 1999 Apr;130(1-2):171-88 – reference: 10601478 - J Neurophysiol. 1999 Dec;82(6):3506-26 – reference: 11593234 - Nat Neurosci. 2001 Nov;4(11):1131-8 – reference: 22552192 - J Neurophysiol. 2012 Aug;108(4):976-88 – reference: 22592306 - J Neurophysiol. 2012 Aug 1;108(3):714-28 – reference: 18941838 - J Assoc Res Otolaryngol. 2009 Mar;10(1):91-110 |
| SSID | ssj0007017 |
| Score | 2.2867491 |
| Snippet | Cochlear implant (CI) listeners show limits at high frequencies in tasks involving temporal processing such as rate pitch and interaural time difference... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 218 |
| SubjectTerms | Acoustic Stimulation - methods Action Potentials - physiology Anesthesia - methods Anesthetics, Intravenous - administration & dosage Animals Auditory Perception - drug effects Auditory Perception - physiology Cochlear Implants Electric Stimulation - methods Mesencephalon - drug effects Mesencephalon - physiology Rabbits Wakefulness - drug effects Wakefulness - physiology |
| Title | Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24381283 https://www.proquest.com/docview/1490746500 |
| Volume | 34 |
| WOSCitedRecordID | wos000329177800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG7UePDiKz5iVEoQb02mp6ene3IJYTGo4BJQYW9LP3GIOzPubiLxj_h3reqZmJMgeJnLUN1FP-rd9TH2GlVCrK1QvDaF5JX1grskah6N0CaqRE52BpvQ87lZLJrTKeC2mcoqr2RiFtSh9xQjP0BLnqAxVFEcDd85oUZRdnWC0LjJdiSaMlTSpRfX3cJ1kRF3kZ-cRRDTC2H0vQ4-zKlS7tPsPbqIpuJCUpVX9XczM6ubk3v_y-h9dncyNOF4PBkP2I3YPWS7xx062atLeAO59DPH1HfZr1lPKgz6BCMsTuthOEelCRlBYgPD-EgpBphwfQDl6FdCnIB2NXyjWhpoO_wZwdIzj359Cas2OKKmUe0PexZhbZ1rt4fg_2AfAoWBwaK4RdJt-xMnwKnGduR4HR6xLydvP8_e8Qmxgfuq0luugnRGoYWmotW-TLgOqXSFiiEpk0xMwRYihNLUjSuL5HUSuvYqJaels3VZPma3ur6LTxlIK5w10Smpy0rG2sikm9rZpqqaoGSzx15dLf8SbwSlOZDb_nyzvN6APfZk3MPlMLbuWJbU0Qwtqmf_QL3P7tCZGOMtz9lOQnkQX7Db_mLbbtYv81HD7_z0428lDeFI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coding+of+electric+pulse+trains+presented+through+cochlear+implants+in+the+auditory+midbrain+of+awake+rabbit%3A+comparison+with+anesthetized+preparations&rft.jtitle=The+Journal+of+neuroscience&rft.au=Chung%2C+Yoojin&rft.au=Hancock%2C+Kenneth+E&rft.au=Nam%2C+Sung-Il&rft.au=Delgutte%2C+Bertrand&rft.date=2014-01-01&rft.eissn=1529-2401&rft.volume=34&rft.issue=1&rft.spage=218&rft_id=info:doi/10.1523%2FJNEUROSCI.2084-13.2014&rft_id=info%3Apmid%2F24381283&rft_id=info%3Apmid%2F24381283&rft.externalDocID=24381283 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2401&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2401&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2401&client=summon |