A surrogate-assisted evolution strategy for constrained multi-objective optimization

•New surrogate-assisted ES for constrained multi-objective optimization is developed.•Surrogates are used to identify the most promising among many trial offspring.•A radial basis function (RBF) model is used to implement the method.•Method is tested on benchmark problems and manufacturing and robot...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 57; pp. 270 - 284
Main Authors: Datta, Rituparna, Regis, Rommel G.
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.09.2016
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •New surrogate-assisted ES for constrained multi-objective optimization is developed.•Surrogates are used to identify the most promising among many trial offspring.•A radial basis function (RBF) model is used to implement the method.•Method is tested on benchmark problems and manufacturing and robotics applications.•Proposed method generally outperforms an ES and NSGA-II on the problems used. In many real-world optimization problems, several conflicting objectives must be achieved and optimized simultaneously and the solutions are often required to satisfy certain restrictions or constraints. Moreover, in some applications, the numerical values of the objectives and constraints are obtained from computationally expensive simulations. Many multi-objective optimization algorithms for continuous optimization have been proposed in the literature and some have been incorporated or used in conjunction with expert and intelligent systems. However, relatively few of these multi-objective algorithms handle constraints, and even fewer, use surrogates to approximate the objective or constraint functions when these functions are computationally expensive. This paper proposes a surrogate-assisted evolution strategy (ES) that can be used for constrained multi-objective optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. Such an algorithm can be incorporated into an intelligent system that finds approximate Pareto optimal solutions to simulation-based constrained multi-objective optimization problems in various applications including engineering design optimization, production management and manufacturing. The main idea in the proposed algorithm is to generate a large number of trial offspring in each generation and use the surrogates to predict the objective and constraint function values of these trial offspring. Then the algorithm performs an approximate non-dominated sort of the trial offspring based on the predicted objective and constraint function values, and then it selects the most promising offspring (those with the smallest predicted ranks from the non-dominated sort) to become the actual offspring for the current generation that will be evaluated using the expensive objective and constraint functions. The proposed method is implemented using cubic radial basis function (RBF) surrogate models to assist the ES. The resulting RBF-assisted ES is compared with the original ES and to NSGA-II on 20 test problems involving 2–15 decision variables, 2–5 objectives and up to 13 inequality constraints. These problems include well-known benchmark problems and application problems in manufacturing and robotics. The numerical results showed that the RBF-assisted ES generally outperformed the original ES and NSGA-II on the problems used when the computational budget is relatively limited. These results suggest that the proposed surrogate-assisted ES is promising for computationally expensive constrained multi-objective optimization.
AbstractList In many real-world optimization problems, several conflicting objectives must be achieved and optimized simultaneously and the solutions are often required to satisfy certain restrictions or constraints. Moreover, in some applications, the numerical values of the objectives and constraints are obtained from computationally expensive simulations. Many multi-objective optimization algorithms for continuous optimization have been proposed in the literature and some have been incorporated or used in conjunction with expert and intelligent systems. However, relatively few of these multi-objective algorithms handle constraints, and even fewer, use surrogates to approximate the objective or constraint functions when these functions are computationally expensive. This paper proposes a surrogate-assisted evolution strategy (ES) that can be used for constrained multi-objective optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. Such an algorithm can be incorporated into an intelligent system that finds approximate Pareto optimal solutions to simulation-based constrained multi-objective optimization problems in various applications including engineering design optimization, production management and manufacturing. The main idea in the proposed algorithm is to generate a large number of trial offspring in each generation and use the surrogates to predict the objective and constraint function values of these trial offspring. Then the algorithm performs an approximate non-dominated sort of the trial offspring based on the predicted objective and constraint function values, and then it selects the most promising offspring (those with the smallest predicted ranks from the non-dominated sort) to become the actual offspring for the current generation that will be evaluated using the expensive objective and constraint functions. The proposed method is implemented using cubic radial basis function (RBF) surrogate models to assist the ES. The resulting RBF-assisted ES is compared with the original ES and to NSGA-II on 20 test problems involving 2-15 decision variables, 2-5 objectives and up to 13 inequality constraints. These problems include well-known benchmark problems and application problems in manufacturing and robotics. The numerical results showed that the RBF-assisted ES generally outperformed the original ES and NSGA-II on the problems used when the computational budget is relatively limited. These results suggest that the proposed surrogate-assisted ES is promising for computationally expensive constrained multi-objective optimization.
•New surrogate-assisted ES for constrained multi-objective optimization is developed.•Surrogates are used to identify the most promising among many trial offspring.•A radial basis function (RBF) model is used to implement the method.•Method is tested on benchmark problems and manufacturing and robotics applications.•Proposed method generally outperforms an ES and NSGA-II on the problems used. In many real-world optimization problems, several conflicting objectives must be achieved and optimized simultaneously and the solutions are often required to satisfy certain restrictions or constraints. Moreover, in some applications, the numerical values of the objectives and constraints are obtained from computationally expensive simulations. Many multi-objective optimization algorithms for continuous optimization have been proposed in the literature and some have been incorporated or used in conjunction with expert and intelligent systems. However, relatively few of these multi-objective algorithms handle constraints, and even fewer, use surrogates to approximate the objective or constraint functions when these functions are computationally expensive. This paper proposes a surrogate-assisted evolution strategy (ES) that can be used for constrained multi-objective optimization of expensive black-box objective functions subject to expensive black-box inequality constraints. Such an algorithm can be incorporated into an intelligent system that finds approximate Pareto optimal solutions to simulation-based constrained multi-objective optimization problems in various applications including engineering design optimization, production management and manufacturing. The main idea in the proposed algorithm is to generate a large number of trial offspring in each generation and use the surrogates to predict the objective and constraint function values of these trial offspring. Then the algorithm performs an approximate non-dominated sort of the trial offspring based on the predicted objective and constraint function values, and then it selects the most promising offspring (those with the smallest predicted ranks from the non-dominated sort) to become the actual offspring for the current generation that will be evaluated using the expensive objective and constraint functions. The proposed method is implemented using cubic radial basis function (RBF) surrogate models to assist the ES. The resulting RBF-assisted ES is compared with the original ES and to NSGA-II on 20 test problems involving 2–15 decision variables, 2–5 objectives and up to 13 inequality constraints. These problems include well-known benchmark problems and application problems in manufacturing and robotics. The numerical results showed that the RBF-assisted ES generally outperformed the original ES and NSGA-II on the problems used when the computational budget is relatively limited. These results suggest that the proposed surrogate-assisted ES is promising for computationally expensive constrained multi-objective optimization.
Author Datta, Rituparna
Regis, Rommel G.
Author_xml – sequence: 1
  givenname: Rituparna
  surname: Datta
  fullname: Datta, Rituparna
  email: rdatta@iitk.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
– sequence: 2
  givenname: Rommel G.
  surname: Regis
  fullname: Regis, Rommel G.
  email: rregis@sju.edu
  organization: Department of Mathematics, Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA 19131, USA
BookMark eNp9kD1PwzAQhi0EEm3hDzBlZEmw4yR2JJaq4kuqxFJmy71cKkdJXGynqPx6EsrE0OnudO9z0j1zctnbHgm5YzRhlBUPTYL-Syfp2CeUJzTLLsiMScHjQpT8ksxomYs4YyK7JnPvG0qZoFTMyGYZ-cE5u9MBY-298QGrCA-2HYKxfeSDGze7Y1RbF4Htp9n0Y6Qb2mBiu20QgjlgZPfBdOZbT9QNuap16_H2ry7Ix_PTZvUar99f3lbLdQxZJkKc8wqgYpBXtYYcqEh5TestQ8lBM1liIUALKKQucZtR4MhqXaDEotQaueQLcn-6u3f2c0AfVGc8YNvqHu3gFZNpnuWikOUYTU9RcNZ7h7XaO9Npd1SMqkmhatSkUE0KFeVqVDhC8h8EJvx-OFloz6OPJxTH_w8GnfJgsAesjBuNqcqac_gPMzSSiQ
CitedBy_id crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1016_j_scs_2022_104215
crossref_primary_10_1016_j_watres_2024_122788
crossref_primary_10_1016_j_cja_2024_03_026
crossref_primary_10_3901_CJME_2016_1020_123
crossref_primary_10_1016_j_eswa_2025_126729
crossref_primary_10_1109_TEVC_2022_3159000
crossref_primary_10_1016_j_asoc_2018_08_016
crossref_primary_10_1016_j_asoc_2018_02_033
crossref_primary_10_1016_j_eswa_2023_121707
crossref_primary_10_1016_j_jtice_2023_105179
crossref_primary_10_3390_aerospace10080672
crossref_primary_10_1016_j_ins_2022_11_167
crossref_primary_10_1016_j_compchemeng_2018_02_017
crossref_primary_10_1016_j_ast_2021_106927
crossref_primary_10_1016_j_asoc_2023_110874
crossref_primary_10_1016_j_cor_2021_105444
crossref_primary_10_1007_s00500_018_3172_3
crossref_primary_10_1080_0305215X_2025_2492248
crossref_primary_10_1007_s00500_017_2965_0
crossref_primary_10_1016_j_swevo_2023_101315
crossref_primary_10_1080_23248378_2020_1792808
crossref_primary_10_1007_s00158_019_02256_0
crossref_primary_10_1007_s41965_024_00172_x
crossref_primary_10_1016_j_eswa_2024_123448
crossref_primary_10_1016_j_ins_2023_119016
crossref_primary_10_1007_s10898_024_01387_z
crossref_primary_10_1287_ijoc_2017_0749
crossref_primary_10_1109_TPS_2024_3519032
crossref_primary_10_1016_j_jocs_2017_10_001
crossref_primary_10_1016_j_swevo_2024_101508
crossref_primary_10_1080_09544828_2024_2306097
crossref_primary_10_1109_TCYB_2020_2998038
crossref_primary_10_1080_0305215X_2022_2090545
crossref_primary_10_1007_s00521_024_09787_8
crossref_primary_10_1007_s42064_021_0109_x
crossref_primary_10_3390_app14219975
crossref_primary_10_1109_TEVC_2022_3155533
crossref_primary_10_1109_TEVC_2024_3425629
crossref_primary_10_1080_10407782_2023_2292200
crossref_primary_10_3390_aerospace10070605
crossref_primary_10_1007_s00521_020_05258_y
crossref_primary_10_1016_j_swevo_2025_102033
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1007_s10589_020_00233_8
crossref_primary_10_1007_s12293_022_00363_y
crossref_primary_10_1029_2024WR038554
crossref_primary_10_1109_TSMC_2024_3383219
crossref_primary_10_1016_j_eswa_2020_114554
crossref_primary_10_2514_1_J057989
crossref_primary_10_1007_s40192_025_00419_0
crossref_primary_10_1109_TEVC_2024_3394005
crossref_primary_10_1007_s10479_024_05963_0
crossref_primary_10_1016_j_asoc_2023_110576
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_3390_mca29050078
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_21078_JSSI_2019_532_18
crossref_primary_10_1016_j_eswa_2025_127768
crossref_primary_10_1155_2018_5316379
crossref_primary_10_1016_j_asoc_2022_108409
crossref_primary_10_1016_j_ces_2024_121170
crossref_primary_10_1109_TIE_2017_2782203
crossref_primary_10_1080_23799927_2023_2227147
crossref_primary_10_1061__ASCE_IR_1943_4774_0001699
crossref_primary_10_1109_TCYB_2023_3267454
crossref_primary_10_1007_s13369_019_03888_6
crossref_primary_10_1016_j_eswa_2022_119001
crossref_primary_10_1016_j_ins_2018_09_003
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_eswa_2021_115474
crossref_primary_10_1038_s41598_023_27990_w
crossref_primary_10_1016_j_eswa_2022_116499
crossref_primary_10_1016_j_asoc_2024_112226
crossref_primary_10_1016_j_asoc_2025_113216
crossref_primary_10_1016_j_envsoft_2021_105272
crossref_primary_10_1016_j_asoc_2018_09_014
crossref_primary_10_1007_s10898_020_00912_0
crossref_primary_10_1007_s00170_020_05317_7
crossref_primary_10_1016_j_asoc_2022_108495
crossref_primary_10_1109_TETCI_2018_2872055
crossref_primary_10_1016_j_eswa_2017_05_047
Cites_doi 10.1109/4235.797969
10.1016/j.amc.2012.04.057
10.1080/03052150600744555
10.1109/TEVC.2004.826067
10.1016/j.asoc.2008.04.001
10.1162/evco.1996.4.1.1
10.1023/A:1008306431147
10.1023/A:1011255519438
10.1016/j.eswa.2014.11.020
10.1007/s10898-015-0270-y
10.1016/S0736-5845(02)00068-6
10.1007/BF01742932
10.1080/03052150903143935
10.1109/TEVC.2004.835247
10.1109/TEVC.2005.851274
10.1016/j.cor.2010.09.013
10.1080/0305215X.2010.502935
10.1080/03052150600882538
10.1007/s10044-013-0345-7
10.1007/s10898-013-0118-2
10.1137/10079731X
10.1016/j.eswa.2013.01.054
10.1137/120864738
10.1016/j.ejor.2009.11.010
10.1109/4235.996017
10.1109/TEVC.2013.2262111
10.1109/TEVC.2005.859463
10.1016/j.engappai.2005.06.007
10.1016/0957-4174(96)00008-5
10.1137/070691814
10.1016/j.eswa.2012.02.197
10.1162/106365600568167
10.1016/j.ijpe.2013.10.016
10.1155/2012/534783
10.1057/jos.2015.5
10.1504/IJPD.2009.026179
10.1109/TEVC.2007.892759
10.1109/TEVC.2009.2033671
10.1002/fld.2282
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2016.03.044
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 284
ExternalDocumentID 10_1016_j_eswa_2016_03_044
S0957417416301452
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c447t-53dccd1c5dfac5c0723f0fb1e83ca189e67ca7c68a9eb40c3e1fa6e8e69aae383
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376052200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 14:25:26 EST 2025
Sat Nov 29 04:44:45 EST 2025
Tue Nov 18 20:42:36 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis function
Multi-objective optimization
Evolution strategy
Surrogate
Metamodel
Constrained optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-53dccd1c5dfac5c0723f0fb1e83ca189e67ca7c68a9eb40c3e1fa6e8e69aae383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825457689
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1825457689
crossref_primary_10_1016_j_eswa_2016_03_044
crossref_citationtrail_10_1016_j_eswa_2016_03_044
elsevier_sciencedirect_doi_10_1016_j_eswa_2016_03_044
PublicationCentury 2000
PublicationDate 2016-09-15
PublicationDateYYYYMMDD 2016-09-15
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Acar (bib0001) 2015; 42
Knowles (bib0029) 2006; 10
Emmerich, Giannakoglou, Naujoks (bib0017) 2006; 10
Deb (bib0013) 2001
Zhang, Li (bib0058) 2007; 11
Husain, Lee, Kim (bib0024) 2011; 66
Akhtar, Shoemaker (bib0002) 2016; 64
Fan, Li, Cai, Li, Hu, Yin (bib0018) 2015
Wagner, Emmerich, Deutz, Ponweiser (bib0056) 2010
Zhang, Liu, Tsang, Virginas (bib0059) 2010; 14
Kanyakam, Bureerat (bib0027) 2012; 2012
Lin, S. (2011). NPGM – A NSGA program in matlab, version 1.4.
Jones, Schonlau, Welch (bib0026) 1998; 13
Accessed 05.03.14.
Redondo, Sedano, Vera, Hernando, Corchado (bib0046) 2013; 18
Kunakote, Bureerat (bib0032) 2011; 43
Osyczka, Kuchta, Czula (bib0040) 1994; 8
Ponweiser, Wagner, Biermann, Vincze (bib0041) 2008
Andrés, Salcedo-Sanz, Monge, Pérez-Bellido (bib0003) 2012; 39
Singh, Couckuyt, Ferranti, Dhaene (bib0054) 2014
Liu, Sun (bib0035) 2013; 40
Couckuyt, Deschrijver, Dhaene (bib0009) 2014; 60
Gansterer, Almeder, Hartl (bib0021) 2014; 151
Regis, Shoemaker (bib0049) 2004; 8
Knowles, Corne (bib0030) 2000; 8
Cus, Balic (bib0010) 2003; 19
Accessed 07.02.15.
Bäck (bib0005) 1996
Deb, Agrawal, Pratap, Meyarivan (bib0015) 2002; 6
Coello, Pulido, Lechuga (bib0008) 2004; 8
Saravanan, Ramabalan, Ebenezer, Dharmaraja (bib0052) 2009; 9
Ortiz, G. A. (2012). Multi-objective optimization using evolution strategies (ES) as evolutionary algorithm (EA).
Knowles, Nakayama (bib0031) 2008
Bureerat, Srisomporn (bib0007) 2010; 42
Custódio, Madeira, Vaz, Vicente (bib0011) 2011; 21
Deb, Agrawal, Pratap, Meyarivan (bib0014) 2000
Kasperska, Ostwald (bib0028) 2006; 38
Mezura-Montes, Cetina-Dominguez (bib0036) 2012; 218
Powell (bib0042) 1992
Deb, Goel (bib0016) 2001
Lee, Kim (bib0033) 1996; 11
Bhattacharya (bib0006) 2007
Ryu, Kim (bib0051) 2014; 24
Audet, Savard, Zghal (bib0004) 2010; 204
Gutmann (bib0023) 2001; 19
Forrester, Sobester, Keane (bib0020) 2008
Tesch, Schneider, Choset (bib0055) 2013
Zitzler, Thiele (bib0061) 1999; 3
Regis (bib0050) 2013
Regis (bib0048) 2014; 18
Datta, Deb (bib0012) 2011
Wild, Regis, Shoemaker (bib0057) 2008; 30
Fan, Z., Li, W., Cai, X., Lin, H., Xie, S., & Goodman, E. (2015b). A new repair operator for multi-objective evolutionary algorithm in constrained optimization problems . CoRR, abs/1504.00154, 2015.
Güller, Uygun, Noche (bib0022) 2015; 9
Quiza Sardiñas, Rivas Santana, Alfonso Brindis (bib0043) 2006; 19
Isaacs, Ray, Smith (bib0025) 2009; 9
Ray, Smith (bib0045) 2006; 38
Osyczka (bib0039) 2002
Regis (bib0047) 2011; 38
Rao (bib0044) 2009
Michalewicz, Schoenauer (bib0037) 1996; 4
Zitzler, Thiele (bib0060) 1998
Shi, Rasheed (bib0053) 2008
Bureerat (10.1016/j.eswa.2016.03.044_bib0007) 2010; 42
Mezura-Montes (10.1016/j.eswa.2016.03.044_bib0036) 2012; 218
Deb (10.1016/j.eswa.2016.03.044_bib0013) 2001
Güller (10.1016/j.eswa.2016.03.044_bib0022) 2015; 9
Gansterer (10.1016/j.eswa.2016.03.044_bib0021) 2014; 151
Wagner (10.1016/j.eswa.2016.03.044_bib0056) 2010
Deb (10.1016/j.eswa.2016.03.044_bib0015) 2002; 6
Lee (10.1016/j.eswa.2016.03.044_bib0033) 1996; 11
Zhang (10.1016/j.eswa.2016.03.044_bib0059) 2010; 14
10.1016/j.eswa.2016.03.044_bib0019
Akhtar (10.1016/j.eswa.2016.03.044_bib0002) 2016; 64
Knowles (10.1016/j.eswa.2016.03.044_bib0029) 2006; 10
Kasperska (10.1016/j.eswa.2016.03.044_bib0028) 2006; 38
Deb (10.1016/j.eswa.2016.03.044_bib0016) 2001
Shi (10.1016/j.eswa.2016.03.044_bib0053) 2008
Redondo (10.1016/j.eswa.2016.03.044_bib0046) 2013; 18
Acar (10.1016/j.eswa.2016.03.044_bib0001) 2015; 42
Knowles (10.1016/j.eswa.2016.03.044_bib0031) 2008
Wild (10.1016/j.eswa.2016.03.044_bib0057) 2008; 30
Zitzler (10.1016/j.eswa.2016.03.044_bib0061) 1999; 3
Regis (10.1016/j.eswa.2016.03.044_bib0047) 2011; 38
Ryu (10.1016/j.eswa.2016.03.044_bib0051) 2014; 24
Powell (10.1016/j.eswa.2016.03.044_bib0042) 1992
Tesch (10.1016/j.eswa.2016.03.044_bib0055) 2013
Gutmann (10.1016/j.eswa.2016.03.044_bib0023) 2001; 19
Coello (10.1016/j.eswa.2016.03.044_bib0008) 2004; 8
Husain (10.1016/j.eswa.2016.03.044_bib0024) 2011; 66
Forrester (10.1016/j.eswa.2016.03.044_bib0020) 2008
Saravanan (10.1016/j.eswa.2016.03.044_bib0052) 2009; 9
Isaacs (10.1016/j.eswa.2016.03.044_bib0025) 2009; 9
Custódio (10.1016/j.eswa.2016.03.044_bib0011) 2011; 21
Kanyakam (10.1016/j.eswa.2016.03.044_bib0027) 2012; 2012
Audet (10.1016/j.eswa.2016.03.044_bib0004) 2010; 204
Osyczka (10.1016/j.eswa.2016.03.044_bib0040) 1994; 8
Zhang (10.1016/j.eswa.2016.03.044_bib0058) 2007; 11
Singh (10.1016/j.eswa.2016.03.044_bib0054) 2014
Bhattacharya (10.1016/j.eswa.2016.03.044_bib0006) 2007
Datta (10.1016/j.eswa.2016.03.044_bib0012) 2011
Ray (10.1016/j.eswa.2016.03.044_bib0045) 2006; 38
10.1016/j.eswa.2016.03.044_bib0038
Cus (10.1016/j.eswa.2016.03.044_bib0010) 2003; 19
Couckuyt (10.1016/j.eswa.2016.03.044_bib0009) 2014; 60
Rao (10.1016/j.eswa.2016.03.044_bib0044) 2009
Bäck (10.1016/j.eswa.2016.03.044_bib0005) 1996
Regis (10.1016/j.eswa.2016.03.044_bib0050) 2013
Osyczka (10.1016/j.eswa.2016.03.044_bib0039) 2002
10.1016/j.eswa.2016.03.044_bib0034
Michalewicz (10.1016/j.eswa.2016.03.044_bib0037) 1996; 4
Fan (10.1016/j.eswa.2016.03.044_bib0018) 2015
Regis (10.1016/j.eswa.2016.03.044_bib0048) 2014; 18
Knowles (10.1016/j.eswa.2016.03.044_bib0030) 2000; 8
Emmerich (10.1016/j.eswa.2016.03.044_bib0017) 2006; 10
Deb (10.1016/j.eswa.2016.03.044_bib0014) 2000
Zitzler (10.1016/j.eswa.2016.03.044_bib0060) 1998
Jones (10.1016/j.eswa.2016.03.044_bib0026) 1998; 13
Andrés (10.1016/j.eswa.2016.03.044_bib0003) 2012; 39
Ponweiser (10.1016/j.eswa.2016.03.044_bib0041) 2008
Liu (10.1016/j.eswa.2016.03.044_bib0035) 2013; 40
Regis (10.1016/j.eswa.2016.03.044_bib0049) 2004; 8
Kunakote (10.1016/j.eswa.2016.03.044_bib0032) 2011; 43
Quiza Sardiñas (10.1016/j.eswa.2016.03.044_bib0043) 2006; 19
References_xml – volume: 8
  start-page: 490
  year: 2004
  end-page: 505
  ident: bib0049
  article-title: Local function approximation in evolutionary algorithms for costly black box optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 8
  start-page: 37
  year: 1994
  end-page: 41
  ident: bib0040
  article-title: Computer aided multicriterion optimization system for computationally expensive functions
  publication-title: Structural Optimization
– start-page: 67
  year: 2001
  end-page: 81
  ident: bib0016
  article-title: Controlled elitist non-dominated sorting genetic algorithms for better convergence
  publication-title: Evolutionary multi-criterion optimization
– volume: 19
  start-page: 113
  year: 2003
  end-page: 121
  ident: bib0010
  article-title: Optimization of cutting process by GA approach
  publication-title: Robotics and Computer-Integrated Manufacturing
– start-page: 51
  year: 2013
  end-page: 85
  ident: bib0050
  article-title: An initialization strategy for high-dimensional surrogate-based expensive black-box optimization
  publication-title: Selected contributions from the MOPTA 2012 conference series: Springer proceedings in mathematics & statistics, Volume 62
– volume: 64
  start-page: 17
  year: 2016
  end-page: 32
  ident: bib0002
  article-title: Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection
  publication-title: Journal of Global Optimization
– year: 2009
  ident: bib0044
  publication-title: Engineering optimization: Theory and practice
– volume: 2012
  year: 2012
  ident: bib0027
  article-title: Comparative performance of surrogate-assisted MOEAs for geometrical design of pin-fin heat sinks
  publication-title: Journal of Applied Mathematics
– volume: 21
  start-page: 1109
  year: 2011
  end-page: 1140
  ident: bib0011
  article-title: Direct multisearch for multiobjective optimization.
  publication-title: SIAM Journal on Optimization
– volume: 9
  start-page: 325
  year: 2015
  end-page: 336
  ident: bib0022
  article-title: Simulation-based optimization for a capacitated multi-echelon production-inventory system
  publication-title: Journal of Simulation
– volume: 10
  start-page: 50
  year: 2006
  end-page: 66
  ident: bib0029
  article-title: Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 784
  year: 2008
  end-page: 794
  ident: bib0041
  article-title: Multiobjective optimization on a limited budget of evaluations using model-assisted
  publication-title: Proceedings of parallel problem solving from nature – PPSN X, Dortmund, Germany
– volume: 218
  start-page: 10943
  year: 2012
  end-page: 10973
  ident: bib0036
  article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization
  publication-title: Applied Mathematics and Computation
– start-page: 718
  year: 2010
  end-page: 727
  ident: bib0056
  article-title: On expected-improvement criteria for model-based multi-objective optimization
  publication-title: Proceedings of parallel problem solving from nature – PPSN XI, Kraków, Poland
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: bib0026
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: Journal of Global Optimization
– volume: 19
  start-page: 127
  year: 2006
  end-page: 133
  ident: bib0043
  article-title: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 3847
  year: 2007
  end-page: 3854
  ident: bib0006
  article-title: Surrogate based ea for expensive optimization problems
  publication-title: Proceedings of the 2007 IEEE congress on evolutionary computation (CEC)
– volume: 9
  start-page: 159
  year: 2009
  end-page: 172
  ident: bib0052
  article-title: Evolutionary multi criteria design optimization of robot grippers.
  publication-title: Applied Soft Computing
– volume: 4
  start-page: 1
  year: 1996
  end-page: 32
  ident: bib0037
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evolutionary Computation
– reference: Ortiz, G. A. (2012). Multi-objective optimization using evolution strategies (ES) as evolutionary algorithm (EA).
– start-page: 1049
  year: 2008
  end-page: 1056
  ident: bib0053
  article-title: ASAGA: An adaptive surrogate-assisted genetic algorithm
  publication-title: Proceedings of the 10th annual conference on genetic and evolutionary computation
– start-page: 245
  year: 2008
  end-page: 284
  ident: bib0031
  article-title: Meta-modeling in multiobjective optimization
  publication-title: Multiobjective optimization: Interactive and evolutionary approaches
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0061
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 43
  start-page: 541
  year: 2011
  end-page: 557
  ident: bib0032
  article-title: Multi-objective topology optimization using evolutionary algorithms
  publication-title: Engineering Optimization
– volume: 18
  start-page: 31
  year: 2013
  end-page: 44
  ident: bib0046
  article-title: A novel hybrid intelligent system for multi-objective machine parameter optimization
  publication-title: Pattern Analysis and Applications
– year: 1996
  ident: bib0005
  publication-title: Evolutionary algorithms in theory and practice
– volume: 8
  start-page: 149
  year: 2000
  end-page: 172
  ident: bib0030
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evolutionary computation
– start-page: 1843
  year: 2011
  end-page: 1850
  ident: bib0012
  article-title: Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach
  publication-title: Proceedings of the 13th annual conference on Genetic and evolutionary computation
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0015
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 60
  start-page: 575
  year: 2014
  end-page: 594
  ident: bib0009
  article-title: Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization
  publication-title: Journal of Global Optimization
– start-page: 3080
  year: 2014
  end-page: 3087
  ident: bib0054
  article-title: A constrained multi-objective surrogate-based optimization algorithm
  publication-title: Proceedings of 2014 IEEE congress on evolutionary computation (CEC)
– year: 2002
  ident: bib0039
  publication-title: Evolutionary algorithms for single and multicriteria design optimization
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib0058
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 849
  year: 2000
  end-page: 858
  ident: bib0014
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: Proceedings of the parallel problem solving from nature VI (PPSN-VI)
– reference: . Accessed 05.03.14.
– year: 2008
  ident: bib0020
  publication-title: Engineering design via surrogate modelling: A practical guide
– reference: Lin, S. (2011). NPGM – A NSGA program in matlab, version 1.4.
– volume: 39
  start-page: 10700
  year: 2012
  end-page: 10708
  ident: bib0003
  article-title: Efficient aerodynamic design through evolutionary programming and support vector regression algorithms
  publication-title: Expert Systems with Applications
– volume: 151
  start-page: 206
  year: 2014
  end-page: 213
  ident: bib0021
  article-title: Simulation-based optimization methods for setting production planning parameters
  publication-title: International Journal of Production Economics
– volume: 38
  start-page: 837
  year: 2011
  end-page: 853
  ident: bib0047
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Computers and Operations Research
– volume: 42
  start-page: 305
  year: 2010
  end-page: 323
  ident: bib0007
  article-title: Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithm
  publication-title: Engineering Optimization
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: bib0008
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 38
  start-page: 739
  year: 2006
  end-page: 753
  ident: bib0028
  article-title: Polyoptimal design of sandwich cylindrical panels with the application of an expert system
  publication-title: Engineering Optimization
– volume: 19
  start-page: 201
  year: 2001
  end-page: 227
  ident: bib0023
  article-title: A radial basis function method for global optimization
  publication-title: Journal of Global Optimization
– reference: . Accessed 07.02.15.
– volume: 66
  start-page: 742
  year: 2011
  end-page: 759
  ident: bib0024
  article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 40
  start-page: 4496
  year: 2013
  end-page: 4502
  ident: bib0035
  article-title: Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 326
  year: 2014
  end-page: 347
  ident: bib0048
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 24
  start-page: 334
  year: 2014
  end-page: 362
  ident: bib0051
  article-title: A derivative-free trust-region method for biobjective optimization
  publication-title: SIAM Journal on Optimization
– reference: Fan, Z., Li, W., Cai, X., Lin, H., Xie, S., & Goodman, E. (2015b). A new repair operator for multi-objective evolutionary algorithm in constrained optimization problems . CoRR, abs/1504.00154, 2015.
– start-page: 76
  year: 2015
  end-page: 83
  ident: bib0018
  article-title: Difficulty controllable and scalable constrained multi-objective test problems
  publication-title: Proceedings of 2015 international conference on industrial informatics-computing technology, intelligent technology, industrial information integration (ICIICII)
– start-page: 973
  year: 2013
  end-page: 980
  ident: bib0055
  article-title: Expensive multiobjective optimization for robotics
  publication-title: Proceedings of the 2013 IEEE international conference on robotics and automation (ICRA)
– volume: 30
  start-page: 3197
  year: 2008
  end-page: 3219
  ident: bib0057
  article-title: ORBIT: Optimization by radial basis function interpolation in trust-regions
  publication-title: SIAM Journal on Scientific Computing
– volume: 10
  start-page: 421
  year: 2006
  end-page: 439
  ident: bib0017
  article-title: Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2001
  ident: bib0013
  publication-title: Multi-objective optimization using evolutionary algorithms
– volume: 14
  start-page: 456
  year: 2010
  end-page: 474
  ident: bib0059
  article-title: Expensive multiobjective optimization by MOEA/D with gaussian process model
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 38
  start-page: 997
  year: 2006
  end-page: 1011
  ident: bib0045
  article-title: A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design
  publication-title: Engineering Optimization
– volume: 9
  start-page: 188
  year: 2009
  end-page: 217
  ident: bib0025
  article-title: Multi-objective design optimisation using multiple adaptive spatially distributed surrogates
  publication-title: International Journal of Product Development
– year: 1998
  ident: bib0060
  article-title: An evolutionary algorithm for multiobjective optimization: The strength pareto approach
  publication-title: Technical report 43
– volume: 42
  start-page: 2703
  year: 2015
  end-page: 2709
  ident: bib0001
  article-title: Effect of error metrics on optimum weight factor selection for ensemble of metamodels
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 79
  year: 1996
  end-page: 87
  ident: bib0033
  article-title: A knowledge-based expert system as a pre-post processor in engineering optimization
  publication-title: Expert Systems with Applications
– start-page: 105
  year: 1992
  end-page: 210
  ident: bib0042
  article-title: The theory of radial basis function approximation in 1990
  publication-title: Advances in numerical analysis, Volume 2: Wavelets, subdivision algorithms and radial basis functions
– volume: 204
  start-page: 545
  year: 2010
  end-page: 556
  ident: bib0004
  article-title: A mesh adaptive direct search algorithm for multiobjective optimization
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2016.03.044_bib0061
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.797969
– ident: 10.1016/j.eswa.2016.03.044_bib0019
– volume: 218
  start-page: 10943
  issue: 22
  year: 2012
  ident: 10.1016/j.eswa.2016.03.044_bib0036
  article-title: Empirical analysis of a modified artificial bee colony for constrained numerical optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2012.04.057
– volume: 38
  start-page: 739
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2016.03.044_bib0028
  article-title: Polyoptimal design of sandwich cylindrical panels with the application of an expert system
  publication-title: Engineering Optimization
  doi: 10.1080/03052150600744555
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2016.03.044_bib0008
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 9
  start-page: 159
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2016.03.044_bib0052
  article-title: Evolutionary multi criteria design optimization of robot grippers.
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2008.04.001
– start-page: 1049
  year: 2008
  ident: 10.1016/j.eswa.2016.03.044_bib0053
  article-title: ASAGA: An adaptive surrogate-assisted genetic algorithm
– start-page: 51
  year: 2013
  ident: 10.1016/j.eswa.2016.03.044_bib0050
  article-title: An initialization strategy for high-dimensional surrogate-based expensive black-box optimization
– volume: 4
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2016.03.044_bib0037
  article-title: Evolutionary algorithms for constrained parameter optimization problems
  publication-title: Evolutionary Computation
  doi: 10.1162/evco.1996.4.1.1
– start-page: 67
  year: 2001
  ident: 10.1016/j.eswa.2016.03.044_bib0016
  article-title: Controlled elitist non-dominated sorting genetic algorithms for better convergence
– ident: 10.1016/j.eswa.2016.03.044_bib0034
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.eswa.2016.03.044_bib0026
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008306431147
– year: 2002
  ident: 10.1016/j.eswa.2016.03.044_bib0039
– year: 2009
  ident: 10.1016/j.eswa.2016.03.044_bib0044
– volume: 19
  start-page: 201
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2016.03.044_bib0023
  article-title: A radial basis function method for global optimization
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1011255519438
– start-page: 849
  year: 2000
  ident: 10.1016/j.eswa.2016.03.044_bib0014
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– ident: 10.1016/j.eswa.2016.03.044_bib0038
– volume: 42
  start-page: 2703
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2016.03.044_bib0001
  article-title: Effect of error metrics on optimum weight factor selection for ensemble of metamodels
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.11.020
– volume: 64
  start-page: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2016.03.044_bib0002
  article-title: Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-015-0270-y
– volume: 19
  start-page: 113
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2016.03.044_bib0010
  article-title: Optimization of cutting process by GA approach
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/S0736-5845(02)00068-6
– volume: 8
  start-page: 37
  year: 1994
  ident: 10.1016/j.eswa.2016.03.044_bib0040
  article-title: Computer aided multicriterion optimization system for computationally expensive functions
  publication-title: Structural Optimization
  doi: 10.1007/BF01742932
– start-page: 973
  year: 2013
  ident: 10.1016/j.eswa.2016.03.044_bib0055
  article-title: Expensive multiobjective optimization for robotics
– start-page: 3847
  year: 2007
  ident: 10.1016/j.eswa.2016.03.044_bib0006
  article-title: Surrogate based ea for expensive optimization problems
– volume: 42
  start-page: 305
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2016.03.044_bib0007
  article-title: Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithm
  publication-title: Engineering Optimization
  doi: 10.1080/03052150903143935
– volume: 8
  start-page: 490
  issue: 5
  year: 2004
  ident: 10.1016/j.eswa.2016.03.044_bib0049
  article-title: Local function approximation in evolutionary algorithms for costly black box optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.835247
– volume: 10
  start-page: 50
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2016.03.044_bib0029
  article-title: Parego: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.851274
– volume: 38
  start-page: 837
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2016.03.044_bib0047
  article-title: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2010.09.013
– volume: 43
  start-page: 541
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2016.03.044_bib0032
  article-title: Multi-objective topology optimization using evolutionary algorithms
  publication-title: Engineering Optimization
  doi: 10.1080/0305215X.2010.502935
– start-page: 3080
  year: 2014
  ident: 10.1016/j.eswa.2016.03.044_bib0054
  article-title: A constrained multi-objective surrogate-based optimization algorithm
– volume: 38
  start-page: 997
  issue: 8
  year: 2006
  ident: 10.1016/j.eswa.2016.03.044_bib0045
  article-title: A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design
  publication-title: Engineering Optimization
  doi: 10.1080/03052150600882538
– volume: 18
  start-page: 31
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2016.03.044_bib0046
  article-title: A novel hybrid intelligent system for multi-objective machine parameter optimization
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-013-0345-7
– volume: 60
  start-page: 575
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2016.03.044_bib0009
  article-title: Fast calculation of multiobjective probability of improvement and expected improvement criteria for pareto optimization
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-013-0118-2
– start-page: 1843
  year: 2011
  ident: 10.1016/j.eswa.2016.03.044_bib0012
  article-title: Multi-objective design and analysis of robot gripper configurations using an evolutionary-classical approach
– volume: 21
  start-page: 1109
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2016.03.044_bib0011
  article-title: Direct multisearch for multiobjective optimization.
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/10079731X
– volume: 40
  start-page: 4496
  issue: 11
  year: 2013
  ident: 10.1016/j.eswa.2016.03.044_bib0035
  article-title: Parameter estimation of a pressure swing adsorption model for air separation using multi-objective optimisation and support vector regression model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.01.054
– year: 1998
  ident: 10.1016/j.eswa.2016.03.044_bib0060
  article-title: An evolutionary algorithm for multiobjective optimization: The strength pareto approach
– volume: 24
  start-page: 334
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2016.03.044_bib0051
  article-title: A derivative-free trust-region method for biobjective optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/120864738
– start-page: 76
  year: 2015
  ident: 10.1016/j.eswa.2016.03.044_bib0018
  article-title: Difficulty controllable and scalable constrained multi-objective test problems
– volume: 204
  start-page: 545
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2016.03.044_bib0004
  article-title: A mesh adaptive direct search algorithm for multiobjective optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.11.010
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2016.03.044_bib0015
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– year: 2001
  ident: 10.1016/j.eswa.2016.03.044_bib0013
– volume: 18
  start-page: 326
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2016.03.044_bib0048
  article-title: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2262111
– year: 2008
  ident: 10.1016/j.eswa.2016.03.044_bib0020
– volume: 10
  start-page: 421
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2016.03.044_bib0017
  article-title: Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.859463
– start-page: 245
  year: 2008
  ident: 10.1016/j.eswa.2016.03.044_bib0031
  article-title: Meta-modeling in multiobjective optimization
– start-page: 784
  year: 2008
  ident: 10.1016/j.eswa.2016.03.044_bib0041
  article-title: Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection
– volume: 19
  start-page: 127
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2016.03.044_bib0043
  article-title: Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2005.06.007
– volume: 11
  start-page: 79
  issue: 1
  year: 1996
  ident: 10.1016/j.eswa.2016.03.044_bib0033
  article-title: A knowledge-based expert system as a pre-post processor in engineering optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/0957-4174(96)00008-5
– volume: 30
  start-page: 3197
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2016.03.044_bib0057
  article-title: ORBIT: Optimization by radial basis function interpolation in trust-regions
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/070691814
– volume: 39
  start-page: 10700
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2016.03.044_bib0003
  article-title: Efficient aerodynamic design through evolutionary programming and support vector regression algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.02.197
– volume: 8
  start-page: 149
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2016.03.044_bib0030
  article-title: Approximating the nondominated front using the pareto archived evolution strategy
  publication-title: Evolutionary computation
  doi: 10.1162/106365600568167
– volume: 151
  start-page: 206
  year: 2014
  ident: 10.1016/j.eswa.2016.03.044_bib0021
  article-title: Simulation-based optimization methods for setting production planning parameters
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.10.016
– volume: 2012
  year: 2012
  ident: 10.1016/j.eswa.2016.03.044_bib0027
  article-title: Comparative performance of surrogate-assisted MOEAs for geometrical design of pin-fin heat sinks
  publication-title: Journal of Applied Mathematics
  doi: 10.1155/2012/534783
– volume: 9
  start-page: 325
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2016.03.044_bib0022
  article-title: Simulation-based optimization for a capacitated multi-echelon production-inventory system
  publication-title: Journal of Simulation
  doi: 10.1057/jos.2015.5
– volume: 9
  start-page: 188
  issue: 1–3
  year: 2009
  ident: 10.1016/j.eswa.2016.03.044_bib0025
  article-title: Multi-objective design optimisation using multiple adaptive spatially distributed surrogates
  publication-title: International Journal of Product Development
  doi: 10.1504/IJPD.2009.026179
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2016.03.044_bib0058
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.892759
– volume: 14
  start-page: 456
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2016.03.044_bib0059
  article-title: Expensive multiobjective optimization by MOEA/D with gaussian process model
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2009.2033671
– start-page: 105
  year: 1992
  ident: 10.1016/j.eswa.2016.03.044_bib0042
  article-title: The theory of radial basis function approximation in 1990
– year: 1996
  ident: 10.1016/j.eswa.2016.03.044_bib0005
– volume: 66
  start-page: 742
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2016.03.044_bib0024
  article-title: Enhanced multi-objective optimization of a dimpled channel through evolutionary algorithms and multiple surrogate methods
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.2282
– start-page: 718
  year: 2010
  ident: 10.1016/j.eswa.2016.03.044_bib0056
  article-title: On expected-improvement criteria for model-based multi-objective optimization
SSID ssj0017007
Score 2.4951243
Snippet •New surrogate-assisted ES for constrained multi-objective optimization is developed.•Surrogates are used to identify the most promising among many trial...
In many real-world optimization problems, several conflicting objectives must be achieved and optimized simultaneously and the solutions are often required to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 270
SubjectTerms Algorithms
Approximation
Computation
Computer simulation
Constrained optimization
Constraints
Evolution strategy
Mathematical analysis
Mathematical models
Metamodel
Multi-objective optimization
Optimization
Radial basis function
Surrogate
Title A surrogate-assisted evolution strategy for constrained multi-objective optimization
URI https://dx.doi.org/10.1016/j.eswa.2016.03.044
https://www.proquest.com/docview/1825457689
Volume 57
WOSCitedRecordID wos000376052200020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYl6aGXvkvTFyr0ZrRYfkk6LiF9UUJJt7A3IctyyZK1F9ub5udntJK82w0NbaEXY4xkC83nmdE8EXpX5jSlheHESk-SFUYQYTQcXE2VGKZqkIobSn9hp6d8PhdfvaO937QTYE3Dr67E6r-SGp4BsW3q7F-Qe3wpPIB7IDpcgexw_SPCT6N-3XWtNY8R0IwtGavIXPpvRr0rR-viNLXVDm2TCBiyCS0kbblwLDBqgZksfZbmL_Z7Wxx58CWgQ3Lcjht8a_sevGZ6PqxXqmtGAXBmfrjKBmftcmkuog-TXdsDLWyghMu-dAaxkBSzjUBylkVGMuqa70yM46ucpaRgrhliYLyuMnXgnK5_iBfCiesbd4O_O1PDYmL6n7ZoFC02FWqzbCvNxhjDb3YddhmgcVrfKcjpw4TlAljf4fTTyfzz6GxiscuqD-v2uVUuDHD_S7_TX_Yk-UY9mT1E9_25Ak8dHh6hO6Z5jB6Enh3Ys_AnaDbFN-GBR3jgAA8M8MA78MB78MC78HiKvr8_mR1_JL6zBtFZxgaSp5XWFdV5VSud65glaR3XJTU81YpyYQqmFdMFV8KUWaxTQ2sFf7QphFIm5ekzdNC0jXmOcFJrJniiRMXrzLYP4ja_uazSksLIKj9CNOyX1L7svF35hQzxhQtp91jaPZZxKmGPj1A0zlm5oiu3js4DGaRXG506KAE1t857G2gmgadaR5lqTLvuJbVmE3sQFy_-8d0v0b3t__IKHQzd2rxGd_XlcN53bzwArwEJiaOb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+surrogate-assisted+evolution+strategy+for+constrained+multi-objective+optimization&rft.jtitle=Expert+systems+with+applications&rft.au=Datta%2C+Rituparna&rft.au=Regis%2C+Rommel+G.&rft.date=2016-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=57&rft.spage=270&rft.epage=284&rft_id=info:doi/10.1016%2Fj.eswa.2016.03.044&rft.externalDocID=S0957417416301452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon