PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal Jg. 43; H. 6; S. 1015 - 1042
Hauptverfasser: Andronikou, Christina, Burdova, Kamila, Dibitetto, Diego, Lieftink, Cor, Malzer, Elke, Kuiken, Hendrik J, Gogola, Ewa, Ray Chaudhuri, Arnab, Beijersbergen, Roderick L, Hanzlikova, Hana, Jonkers, Jos, Rottenberg, Sven
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 15.03.2024
Schlagworte:
ISSN:1460-2075, 0261-4189, 1460-2075
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors. Synopsis Targeting poly(ADP-ribose) glycohydrolase (PARG) is being explored as anti-cancer therapeutic strategy, and PARG loss may also contribute to resistance to PARP inhibitor (PARPi) treatment. This study provides insights into specific vulnerabilities that can render homologous-recombination (HR)-deficient tumors susceptible to the loss of PARG activity. Impaired de-PARylation in PARG-deficient cells affects the repair of single-strand breaks (SSBs) and processing of unligated Okazaki fragments. Genome-wide CRISPR/Cas9 screens reveal EXO1 and FEN1 as critical factors in cells deficient for PARG and BRCA2. Inhibition of EXO1/FEN1 in PARG;BRCA2-deficient cells results in unresolved Okazaki fragments, which persist as single-strand DNA (ssDNA) gaps. Persistent ssDNA gaps become specifically lethal to HR-deficient cells when converted into double-strand breaks (DSBs) upon replication. Genome-wide loss-of-function screens reveal DNA repair genes essential in HR-defective cells lacking PARG, suggesting ways for therapeutically exploiting PARG inhibitors and targeting PARPi-resistant tumors.
AbstractList Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors. Targeting poly(ADP-ribose) glycohydrolase (PARG) is being explored as anti-cancer therapeutic strategy, and PARG loss may also contribute to resistance to PARP inhibitor (PARPi) treatment. This study provides insights into specific vulnerabilities that can render homologous-recombination (HR)-deficient tumors susceptible to the loss of PARG activity. Impaired de-PARylation in PARG-deficient cells affects the repair of single-strand breaks (SSBs) and processing of unligated Okazaki fragments.Genome-wide CRISPR/Cas9 screens reveal EXO1 and FEN1 as critical factors in cells deficient for PARG and BRCA2.Inhibition of EXO1/FEN1 in PARG;BRCA2-deficient cells results in unresolved Okazaki fragments, which persist as single-strand DNA (ssDNA) gaps.Persistent ssDNA gaps become specifically lethal to HR-deficient cells when converted into double-strand breaks (DSBs) upon replication. Genome-wide loss-of-function screens reveal DNA repair genes essential in HR-defective cells lacking PARG, suggesting ways for therapeutically exploiting PARG inhibitors and targeting PARPi-resistant tumors.
Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors. Synopsis Targeting poly(ADP-ribose) glycohydrolase (PARG) is being explored as anti-cancer therapeutic strategy, and PARG loss may also contribute to resistance to PARP inhibitor (PARPi) treatment. This study provides insights into specific vulnerabilities that can render homologous-recombination (HR)-deficient tumors susceptible to the loss of PARG activity. Impaired de-PARylation in PARG-deficient cells affects the repair of single-strand breaks (SSBs) and processing of unligated Okazaki fragments. Genome-wide CRISPR/Cas9 screens reveal EXO1 and FEN1 as critical factors in cells deficient for PARG and BRCA2. Inhibition of EXO1/FEN1 in PARG;BRCA2-deficient cells results in unresolved Okazaki fragments, which persist as single-strand DNA (ssDNA) gaps. Persistent ssDNA gaps become specifically lethal to HR-deficient cells when converted into double-strand breaks (DSBs) upon replication. Genome-wide loss-of-function screens reveal DNA repair genes essential in HR-defective cells lacking PARG, suggesting ways for therapeutically exploiting PARG inhibitors and targeting PARPi-resistant tumors.
Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.
Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.
Author Malzer, Elke
Kuiken, Hendrik J
Andronikou, Christina
Jonkers, Jos
Rottenberg, Sven
Gogola, Ewa
Dibitetto, Diego
Hanzlikova, Hana
Ray Chaudhuri, Arnab
Burdova, Kamila
Beijersbergen, Roderick L
Lieftink, Cor
Author_xml – sequence: 1
  givenname: Christina
  orcidid: 0000-0003-4845-8398
  surname: Andronikou
  fullname: Andronikou, Christina
  organization: Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute, Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern
– sequence: 2
  givenname: Kamila
  surname: Burdova
  fullname: Burdova, Kamila
  organization: Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences
– sequence: 3
  givenname: Diego
  surname: Dibitetto
  fullname: Dibitetto, Diego
  organization: Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern
– sequence: 4
  givenname: Cor
  surname: Lieftink
  fullname: Lieftink, Cor
  organization: Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 5
  givenname: Elke
  surname: Malzer
  fullname: Malzer, Elke
  organization: Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 6
  givenname: Hendrik J
  orcidid: 0000-0002-1015-4607
  surname: Kuiken
  fullname: Kuiken, Hendrik J
  organization: Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 7
  givenname: Ewa
  surname: Gogola
  fullname: Gogola, Ewa
  organization: Division of Molecular Pathology, The Netherlands Cancer Institute
– sequence: 8
  givenname: Arnab
  surname: Ray Chaudhuri
  fullname: Ray Chaudhuri, Arnab
  organization: Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center
– sequence: 9
  givenname: Roderick L
  surname: Beijersbergen
  fullname: Beijersbergen, Roderick L
  organization: Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute
– sequence: 10
  givenname: Hana
  surname: Hanzlikova
  fullname: Hanzlikova, Hana
  organization: Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences
– sequence: 11
  givenname: Jos
  orcidid: 0000-0002-9264-9792
  surname: Jonkers
  fullname: Jonkers, Jos
  email: j.jonkers@nki.nl
  organization: Division of Molecular Pathology, The Netherlands Cancer Institute, Oncode Institute
– sequence: 12
  givenname: Sven
  orcidid: 0000-0003-2044-9844
  surname: Rottenberg
  fullname: Rottenberg, Sven
  email: sven.rottenberg@unibe.ch
  organization: Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Division of Molecular Pathology, The Netherlands Cancer Institute, Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38360994$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHTEYhUOx1I_2D3RRsuwmmq_5WpWLvWpBtIgFd-Gd5B2NzE1ukxmh_95crxbbhasM5DnnZM7ZJzshBiTks-CHgqv2KGutRMu41IxzrhWT78ie0DVnkjfVzqvvXbKf832BqrYRH8iualXNu07vkZufi6tT5nDw1mOY6DSvYqIWxzHTO3hACoH6YBNCRkcdrjE4DBZpDHR5cymOTpYXgq3QeZgK8P1iQROuwaeP5P0AY8ZPz-cB-XWyvD4-Y-eXpz-OF-fMat1MTA_t0NSyF51rFG-7ChuHtUZoKit6XvccwNUKcOi1qgAsRxRdNzhZS1t4dUC-bX3Xc1-eYctPJBjNOvkVpD8mgjf_3gR_Z27jgxG8K_UJWRy-Pjuk-HvGPJmVz5sGIGCcs5GdbKVuSmBBv7wO-5vy0mcB2i1gU8w54WCsn2DycZPtxxJqNtOZ7XSmTGeepjMbb_mf9MX9TZHainKBwy0mcx_nFErhb6keAWbxqtk
CitedBy_id crossref_primary_10_1016_j_tranon_2025_102337
crossref_primary_10_1016_j_neo_2024_101092
crossref_primary_10_1093_jmcb_mjae050
crossref_primary_10_1016_j_dnarep_2025_103863
crossref_primary_10_1073_pnas_2413954121
crossref_primary_10_3389_fonc_2024_1492725
crossref_primary_10_1016_j_tips_2025_02_009
crossref_primary_10_1007_s00335_024_10092_x
Cites_doi 10.1021/acschembio.6b00609
10.1038/s41467-020-17069-9
10.1128/MCB.01077-14
10.1158/2159-8290.CD-17-0734
10.1128/MCB.02248-06
10.1038/s41467-017-01180-5
10.1002/bies.20085
10.1158/1078-0432.CCR-07-4953
10.1038/nrm.2017.53
10.1038/nature03445
10.7554/eLife.28533
10.1371/journal.pone.0018618
10.1083/jcb.201402114
10.1016/j.annonc.2020.10.470
10.1371/journal.pone.0179278
10.1158/0008-5472.CAN-12-2753
10.1371/journal.pone.0010089
10.1016/j.molcel.2023.12.039
10.1101/gad.334516.119
10.1038/nmeth.3047
10.1038/ncomms1889
10.1038/s41594-022-00747-1
10.3389/fcell.2020.564601
10.1093/nar/gku936
10.1126/sciadv.aav4340
10.1038/nature03443
10.1126/scitranslmed.aaf9246
10.1038/s41467-019-08859-x
10.1021/acs.jmedchem.8b01407
10.1101/gr.191452.115
10.3390/ijms23158412
10.1038/nsmb.2305
10.1038/emboj.2013.51
10.1091/mbc.E18-10-0650
10.1186/s12859-017-1934-z
10.1038/nature06548
10.1146/annurev-cancerbio-030617-050232
10.1038/s41571-021-00532-x
10.1038/nchembio.2148
10.1101/gad.1331805
10.1093/jnci/djw148
10.1038/ncomms3164
10.1242/jcs.128272
10.1073/pnas.131009198
10.1074/jbc.M510290200
10.1016/j.pbiomolbio.2021.01.004
10.1158/1078-0432.CCR-13-1262
10.1016/bs.mie.2017.03.019
10.1146/annurev-cancerbio-030617-050502
10.1002/path.4140
10.1124/jpet.113.210146
10.1016/j.ccell.2018.05.008
10.1038/nature10404
10.1038/ng747
10.1016/j.molcel.2018.04.016
10.1016/j.celrep.2016.09.079
10.1016/j.dnarep.2018.08.021
10.1038/76095
10.1016/j.dnarep.2015.04.008
10.1016/S0076-6879(05)09024-5
10.1038/sj.embor.7400774
10.1016/j.celrep.2023.112538
10.1007/978-1-4939-6337-9_5
10.1042/BSR20150058
10.1002/1878-0261.13224
10.1038/nature06633
10.1016/j.molcel.2018.06.004
10.1016/j.molcel.2018.12.008
10.1016/j.ccell.2019.02.004
10.1093/nar/gky1131
10.1007/s00412-013-0442-9
10.1038/cddiscovery.2016.11
10.1158/2159-8290.CD-18-0715
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/s44318-024-00043-2
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 1042
ExternalDocumentID PMC10943112
38360994
10_1038_s44318_024_00043_2
Genre Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)
  grantid: 310030_179360; P1BEP3_195482
  funderid: http://dx.doi.org/10.13039/501100001711
– fundername: Krebsliga Schweiz (Swiss Cancer League)
  grantid: KFS-5519-02-2022
  funderid: http://dx.doi.org/10.13039/501100004361
– fundername: Wilhelm Sander-Stiftung (Wilhelm Sander Foundation)
  grantid: 2019.069.1
  funderid: http://dx.doi.org/10.13039/100008672
– fundername: Grantová Agentura České Republiky (GAČR)
  grantid: 22-00885S
  funderid: http://dx.doi.org/10.13039/501100001824
– fundername: EC | European Research Council (ERC)
  grantid: ERC-2019-AdG-883877
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: KWF Kankerbestrijding (DCS)
  grantid: KWF 2017-61169; KWF 2020-12894
  funderid: http://dx.doi.org/10.13039/501100004622
– fundername: Oncode Institute
  funderid: http://dx.doi.org/10.13039/501100021821
– fundername: Ministerie van Volksgezondheid, Welzijn en Sport (VWS)
  funderid: http://dx.doi.org/10.13039/501100002999
– fundername: Wilhelm Sander-Stiftung (Wilhelm Sander Foundation)
  grantid: 2019.069.1
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)
  grantid: 310030_179360
– fundername: Krebsliga Schweiz (Swiss Cancer League)
  grantid: KFS-5519-02-2022
– fundername: Grantová Agentura České Republiky (GAČR)
  grantid: 22-00885S
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF)
  grantid: P1BEP3_195482
– fundername: KWF Kankerbestrijding (DCS)
  grantid: KWF 2017-61169
– fundername: KWF Kankerbestrijding (DCS)
  grantid: KWF 2020-12894
– fundername: EC | European Research Council (ERC)
  grantid: ERC-2019-AdG-883877
GroupedDBID ---
-DZ
-~X
0R~
123
1OC
24P
29G
33P
36B
39C
53G
70F
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBLON
EBS
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HK~
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WYJ
YSK
ZCA
ZZTAW
~KM
2WC
5VS
8R4
8R5
AASML
AAYXX
CITATION
DIK
EBD
HH5
HYE
NAO
O8X
Q2X
-Q-
.55
3O-
4.4
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
AAMMB
AANHP
AASGY
ABUWG
ACBWZ
ACKIV
ACRPL
ACYXJ
ADNMO
AEFGJ
AEUYN
AFKRA
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
ALUQN
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
CGR
COF
CUY
CVF
D1J
DWQXO
ECM
EIF
EJD
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
H13
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
LW6
M1P
M2O
M7P
MEWTI
NPM
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
WXSBR
X7M
XSW
Y6R
YYP
ZGI
ZXP
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c447t-4f8f762b19d730895e7de64ea75c1b06b0aad63aefb435aac0ee199fd262c0893
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220428400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2075
0261-4189
IngestDate Tue Sep 30 17:09:52 EDT 2025
Fri Sep 05 14:06:13 EDT 2025
Mon Jul 21 05:57:44 EDT 2025
Sat Nov 29 03:03:11 EST 2025
Tue Nov 18 20:58:52 EST 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords FEN1
PARG
BRCA2
EXO1
DNA Repair
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-4f8f762b19d730895e7de64ea75c1b06b0aad63aefb435aac0ee199fd262c0893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4845-8398
0000-0002-1015-4607
0000-0003-2044-9844
0000-0002-9264-9792
OpenAccessLink http://dx.doi.org/10.1038/s44318-024-00043-2
PMID 38360994
PQID 2928247262
PQPubID 23479
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10943112
proquest_miscellaneous_2928247262
pubmed_primary_38360994
crossref_citationtrail_10_1038_s44318_024_00043_2
crossref_primary_10_1038_s44318_024_00043_2
springer_journals_10_1038_s44318_024_00043_2
PublicationCentury 2000
PublicationDate 2024-03-15
PublicationDateYYYYMMDD 2024-03-15
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2024
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Ray Chaudhuri, Nussenzweig (CR58) 2017; 18
Pascal, Ellenberger (CR52) 2015; 32
Houl, Ye, Brosey, Balapiti-Modarage, Namjoshi, Bacolla, Laverty, Walker, Pourfarjam, Warden (CR30) 2019; 10
Rueden, Schindelin, Hiner, DeZonia, Walter, Arena, Eliceiri (CR60) 2017; 18
Tzelepis, Koike-Yusa, De Braekeleer, Li, Metzakopian, Dovey, Mupo, Grinkevich, Li, Mazan (CR69) 2016; 17
Vaitsiankova, Burdova, Sobol, Gautam, Benada, Hanzlikova, Caldecott (CR71) 2022; 29
Oka, Kato, Moss (CR50) 2006; 281
Waszkowycz, Smith, McGonagle, Jordan, Acton, Fairweather, Griffiths, Hamilton, Hamilton, Hitchin (CR73) 2018; 61
Pommier, O’Connor, de Bono (CR55) 2016; 8
Tallis, Morra, Barkauskaite, Ahel (CR67) 2014; 123
CR38
Pillay, Tighe, Nelson, Littler, Coulson-Gilmer, Bah, Golder, Bakker, Spierings, James (CR54) 2019; 35
CR77
Cortés-Ledesma, Aguilera (CR13) 2006; 7
Murai, Zhang, Morris, Ji, Takeda, Doroshow, Pommier (CR48) 2014; 349
Lin, Harrell, Oza, Oaknin, Ray-coquard, Tinker, Helman, Radke, Say, Vo (CR43) 2019; 9
Leung (CR41) 2014; 205
Lupo, Trusolino (CR45) 2014; 1846
D’Andrea (CR14) 2018; 71
Murata, Kong, Moncada, Chen, Imamura, Wang, Berns, Yokomori, Digman (CR49) 2019; 30
Chen, Yu (CR12) 2019; 5
Jastrzebski, Evers, Beijersbergen (CR32) 2016; 1470
Love, Huber, Anders (CR44) 2014; 15
Ray Chaudhuri, Ahuja, Herrador, Lopes (CR57) 2015; 35
Amé, Spenlehauer, de Murcia (CR1) 2004; 26
Hanzlikova, Prokhorova, Krejcikova, Cihlarova, Kalasova, Kubovciak, Sachova, Hailstone, Brazina, Ghosh (CR29) 2020; 11
Slade, Dunstan, Barkauskaite, Weston, Lafite, Dixon, Ahel, Leys, Ahel (CR65) 2011; 477
Dias, Moser, Ganesan, Jonkers (CR15) 2021; 18
Gogola, Duarte, de Ruiter, Wiegant, Schmid, de Bruijn, James, Guerrero Llobet, Vis, Annunziato (CR26) 2018; 33
Lemaçon, Jackson, Quinet, Brickner, Li, Yazinski, You, Ira, Zou, Mosammaparast (CR40) 2017; 8
Tobalina, Armenia, Irving, O’Connor, Forment (CR68) 2021; 32
O’Sullivan, Tedim Ferreira, Gagné, Sharma, Hendzel, Masson, Poirier (CR51) 2019; 10
ter Brugge, Kristel, van der Burg, Boon, de Maaker, Lips, Mulder, de Ruiter, Moutinho, Gevensleben (CR9) 2016; 108
Xu, Sun, Liu, Guo, Liu, Jiang, Zou, Gong, Tischfield, Shao (CR75) 2011; 6
Evers, Drost, Schut, De Bruin, Van Burg, Der, Derksen, Holstege, Liu, Van Drunen, Beverloo (CR20) 2008; 14
Sakai, Swisher, Karlan, Agarwal, Higgins, Friedman, Villegas, Jacquemont, Farrugia, Couch (CR61) 2008; 451
Sharifi, Morra, Appel, Tallis, Chioza, Jankevicius, Simpson, Matic, Ozkan, Golia (CR63) 2013; 32
Quinet, Carvajal-Maldonado, Lemacon, Vindigni (CR56) 2017; 591
Li, Xu, Xiao, Cong, Love, Zhang, Irizarry, Liu, Brown, Liu (CR42) 2014; 15
Bhin, Paes Dias, Gogola, Rolfs, Piersma, de Bruijn, de Ruiter, van den Broek, Duarte, Sol (CR6) 2023; 42
Jonkers, Meuwissen, van der Gulden, Peterse, van der Valk, Berns (CR33) 2001; 29
Szklarczyk, Gable, Lyon, Junge, Wyder, Huerta-cepas, Simonovic, Doncheva, Morris, Bork (CR66) 2019; 47
Kuzminov (CR39) 2001; 98
Dunstan, Barkauskaite, Lafite, Knezevic, Brassington, Ahel, Hergenrother, Leys, Ahel (CR18) 2012; 3
Ward, McHugh, Durant (CR72) 2017; 12
Rose, Burgess, O’Byrne, Richard, Bolderson (CR59) 2020; 8
Chen, Feng, Lim, Kass, Jasin (CR11) 2018; 2
Follenzi, Ailles, Bakovic, Geuna, Naldini (CR24) 2000; 25
Wei, Nakajima, Hsieh, Kanno, Masutani, Levine, Yasui, Lan (CR74) 2013; 126
Kim, Zhang, Kraus (CR37) 2005; 19
Ding, Zhang, Wang, Zhang, Gao, Yin, Li, Li, Chen (CR16) 2016; 2
Edwards, Brough, Lord, Natrajan, Vatcheva, Levine, Boyd, Reis-Filho, Ashworth (CR19) 2008; 451
Hanzlikova, Kalasova, Demin, Pennicott, Cihlarova, Caldecott (CR28) 2018; 71
Kim, Nam (CR35) 2022; 23
Slade (CR64) 2020; 34
Kim, Kiefer, Ho, Stegeman, Classen, Tainer, Ellenberger (CR36) 2012; 19
Ang, Gourley, Powell, High, Shapira-Frommer, Castonguay, De Greve, Atkinson, Yap, Sandhu (CR2) 2013; 19
Barber, Sandhu, Chen, Campbell, Kozarewa, Fenwick, Assiotis, Rodrigues, Reis Filho, Moreno (CR3) 2013; 229
Utani, Kohno, Okamoto, Shimizu (CR70) 2010; 5
Keijzers, Bohr, Rasmussen (CR34) 2015; 35
Exell, Thompson, Finger, Shaw, Debreczeni, Ward, McWhirter, Siöberg, Molina, Abbott (CR21) 2016; 12
Bryant, Schultz, Thomas, Parker, Flower, Lopez, Kyle, Meuth, Curtin, Helleday (CR10) 2005; 434
Murai, Huang, Das, Renaud, Zhang, Doroshow, Ji, Takeda, Pommier (CR47) 2012; 72
Sanjana, Shalem, Zhang (CR62) 2014; 11
Barkauskaite, Brassington, Tan, Warwicker, Dunstan, Banos, Lafite, Ahel, Mitchison, Ahel (CR4) 2013; 4
Brinkman, Chen, de Haas, Holland, Akhtar, van Steensel (CR8) 2018; 70
Fisher, Hochegger, Takeda, Caldecott (CR23) 2007; 27
Pillay, Brady, Dey, Morgan, Taylor (CR53) 2021; 163
Baxter, Zatreanu, Pettitt, Lord (CR5) 2022; 16
Domchek (CR17) 2017; 7
Fontana, Bonfiglio, Palazzo, Bartlett, Matic, Ahel (CR25) 2017; 6
Mengwasser, Adeyemi, Leng, Choi, Clairmont, D’Andrea, Elledge (CR46) 2019; 73
Brinkman, Chen, Amendola, Van Steensel (CR7) 2014; 42
Xu, Xiao, Chen, Li, Meyer, Wu, Wu, Cong, Zhang, Liu (CR76) 2015; 25
Gogola, Rottenberg, Jonkers (CR27) 2017; 3
James, Smith, Jordan, Fairweather, Gri, Hamilton, Hitchin, Hutton, Jones, Kelly (CR31) 2016; 11
Farmer, McCabe, Lord, Tutt, Johnson, Richardson, Santarosa, Dillon, Hickson, Knights (CR22) 2005; 434
B Xu (43_CR75) 2011; 6
E Gogola (43_CR26) 2018; 33
AKL Leung (43_CR41) 2014; 205
L Tobalina (43_CR68) 2021; 32
A Kuzminov (43_CR39) 2001; 98
DI James (43_CR31) 2016; 11
L Wei (43_CR74) 2013; 126
K Utani (43_CR70) 2010; 5
A Vaitsiankova (43_CR71) 2022; 29
H Hanzlikova (43_CR29) 2020; 11
D Slade (43_CR64) 2020; 34
NE Sanjana (43_CR62) 2014; 11
H Hanzlikova (43_CR28) 2018; 71
LJ Barber (43_CR3) 2013; 229
JH Houl (43_CR30) 2019; 10
N Pillay (43_CR53) 2021; 163
H Xu (43_CR76) 2015; 25
R Sharifi (43_CR63) 2013; 32
S-H Chen (43_CR12) 2019; 5
A Quinet (43_CR56) 2017; 591
MS Dunstan (43_CR18) 2012; 3
N Pillay (43_CR54) 2019; 35
H Farmer (43_CR22) 2005; 434
J-C Amé (43_CR1) 2004; 26
SL Edwards (43_CR19) 2008; 451
EK Brinkman (43_CR8) 2018; 70
M Rose (43_CR59) 2020; 8
D Slade (43_CR65) 2011; 477
B Waszkowycz (43_CR73) 2018; 61
JM Pascal (43_CR52) 2015; 32
J Bhin (43_CR6) 2023; 42
W Li (43_CR42) 2014; 15
Evers (43_CR20) 2008; 14
A Ray Chaudhuri (43_CR58) 2017; 18
S Oka (43_CR50) 2006; 281
A Follenzi (43_CR24) 2000; 25
MP Dias (43_CR15) 2021; 18
K Tzelepis (43_CR69) 2016; 17
CT Rueden (43_CR60) 2017; 18
I-K Kim (43_CR36) 2012; 19
F Cortés-Ledesma (43_CR13) 2006; 7
K Jastrzebski (43_CR32) 2016; 1470
TA Ward (43_CR72) 2017; 12
G Keijzers (43_CR34) 2015; 35
D Szklarczyk (43_CR66) 2019; 47
JC Exell (43_CR21) 2016; 12
D Kim (43_CR35) 2022; 23
JE Ang (43_CR2) 2013; 19
A Ray Chaudhuri (43_CR57) 2015; 35
E Barkauskaite (43_CR4) 2013; 4
P Fontana (43_CR25) 2017; 6
AEO Fisher (43_CR23) 2007; 27
JS Baxter (43_CR5) 2022; 16
MM Murata (43_CR49) 2019; 30
D Ding (43_CR16) 2016; 2
B Lupo (43_CR45) 2014; 1846
D Lemaçon (43_CR40) 2017; 8
MI Love (43_CR44) 2014; 15
J Murai (43_CR47) 2012; 72
43_CR77
M Tallis (43_CR67) 2014; 123
MY Kim (43_CR37) 2005; 19
P ter Brugge (43_CR9) 2016; 108
KE Mengwasser (43_CR46) 2019; 73
W Sakai (43_CR61) 2008; 451
43_CR38
KK Lin (43_CR43) 2019; 9
AD D’Andrea (43_CR14) 2018; 71
EK Brinkman (43_CR7) 2014; 42
HE Bryant (43_CR10) 2005; 434
J Murai (43_CR48) 2014; 349
Y Pommier (43_CR55) 2016; 8
C-C Chen (43_CR11) 2018; 2
J O’Sullivan (43_CR51) 2019; 10
E Gogola (43_CR27) 2017; 3
SM Domchek (43_CR17) 2017; 7
J Jonkers (43_CR33) 2001; 29
References_xml – volume: 72
  start-page: 5588
  issue: 21
  year: 2012
  end-page: 5600
  ident: CR47
  article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors
  publication-title: Cancer Res
– volume: 14
  start-page: 3916
  year: 2008
  end-page: 3925
  ident: CR20
  article-title: Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin
  publication-title: Clin Cancer Res
– volume: 29
  start-page: 329
  year: 2022
  end-page: 338
  ident: CR71
  article-title: PARP inhibition impedes the maturation of nascent DNA strands during DNA replication
  publication-title: Nat Struct Mol Biol
– volume: 12
  start-page: e0179278
  year: 2017
  ident: CR72
  article-title: Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes
  publication-title: PLoS ONE
– volume: 15
  year: 2014
  ident: CR44
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 25
  start-page: 217
  year: 2000
  end-page: 222
  ident: CR24
  article-title: Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences
  publication-title: Nat Genet
– volume: 451
  start-page: 1111
  year: 2008
  end-page: 1115
  ident: CR19
  article-title: Resistance to therapy caused by intragenic deletion in BRCA2
  publication-title: Nature
– volume: 11
  year: 2020
  ident: CR29
  article-title: Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair
  publication-title: Nat Commun
– volume: 35
  start-page: 519
  year: 2019
  end-page: 533.e8
  ident: CR54
  article-title: DNA replication vulnerabilities render ovarian cancer cells sensitive to Poly(ADP-Ribose) glycohydrolase inhibitors
  publication-title: Cancer Cell
– volume: 42
  start-page: e168
  issue: 22
  year: 2014
  ident: CR7
  article-title: Easy quantitative assessment of genome editing by sequence trace decomposition
  publication-title: Nucleic Acids Res
– volume: 2
  start-page: 16011
  year: 2016
  ident: CR16
  article-title: Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation
  publication-title: Cell death Discov
– ident: CR77
– volume: 34
  start-page: 360
  year: 2020
  end-page: 394
  ident: CR64
  article-title: PARP and PARG inhibitors in cancer treatment
  publication-title: Genes Dev
– volume: 42
  start-page: 112538
  year: 2023
  ident: CR6
  article-title: Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors
  publication-title: Cell Rep
– volume: 3
  start-page: 235
  issue: 1
  year: 2017
  end-page: 254
  ident: CR27
  article-title: Resistance to PARP inhibitors: lessons from preclinical models of BRCA-associated cancer
  publication-title: Annu Rev Cancer Bio
– volume: 205
  start-page: 613
  year: 2014
  end-page: 619
  ident: CR41
  article-title: Poly(ADP-ribose): an organizer of cellular architecture
  publication-title: J Cell Biol
– volume: 126
  start-page: 4414
  year: 2013
  end-page: 4423
  ident: CR74
  article-title: Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose)
  publication-title: J Cell Sci
– volume: 434
  start-page: 917
  year: 2005
  ident: CR22
  article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
  publication-title: Nature
– volume: 9
  start-page: 210
  issue: 2
  year: 2019
  end-page: 219
  ident: CR43
  article-title: BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma
  publication-title: Cancer Discov
– volume: 19
  start-page: 5485
  year: 2013
  end-page: 5493
  ident: CR2
  article-title: Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study
  publication-title: Clin Cancer Res
– volume: 7
  start-page: 919
  year: 2006
  end-page: 926
  ident: CR13
  article-title: Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange
  publication-title: EMBO Rep
– volume: 32
  start-page: 1225
  year: 2013
  end-page: 1237
  ident: CR63
  article-title: Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
  publication-title: EMBO J
– volume: 98
  start-page: 8241
  year: 2001
  end-page: 8246
  ident: CR39
  article-title: Single-strand interruptions in replicating chromosomes cause double-strand breaks
  publication-title: Proc Natl Acad Sci USA
– volume: 349
  start-page: 408 LP
  year: 2014
  end-page: 416
  ident: CR48
  article-title: Rationale for Poly(ADP-ribose) polymerase (PARP) inhibitors in combination therapy with camptothecins or temozolomide based on PARP trapping versus catalytic inhibition
  publication-title: J Pharmacol Exp Ther
– volume: 3
  year: 2012
  ident: CR18
  article-title: Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase
  publication-title: Nat Commun
– volume: 32
  start-page: 10
  year: 2015
  end-page: 16
  ident: CR52
  article-title: The rise and fall of poly (ADP-ribose). An enzymatic perspective
  publication-title: DNA Repair
– volume: 434
  start-page: 913
  year: 2005
  end-page: 917
  ident: CR10
  article-title: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
  publication-title: Nature
– volume: 19
  start-page: 1951
  year: 2005
  end-page: 1967
  ident: CR37
  article-title: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal
  publication-title: Genes Dev
– volume: 25
  start-page: 1147
  year: 2015
  end-page: 1157
  ident: CR76
  article-title: Sequence determinants of improved CRISPR sgRNA design
  publication-title: Genome Res
– volume: 229
  start-page: 422
  year: 2013
  end-page: 429
  ident: CR3
  article-title: Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor
  publication-title: J Pathol
– volume: 73
  start-page: 885
  year: 2019
  end-page: 899.e6
  ident: CR46
  article-title: Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets
  publication-title: Mol Cell
– volume: 30
  start-page: 2584
  year: 2019
  end-page: 2597
  ident: CR49
  article-title: NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival
  publication-title: Mol Biol Cell
– volume: 2
  start-page: 313
  year: 2018
  end-page: 336
  ident: CR11
  article-title: Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer
  publication-title: Annu Rev Cancer Biol
– volume: 27
  start-page: 5597
  year: 2007
  end-page: 5605
  ident: CR23
  article-title: Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase
  publication-title: Mol Cell Biol
– volume: 8
  start-page: 362ps17
  year: 2016
  ident: CR55
  article-title: Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action
  publication-title: Sci Transl Med
– volume: 47
  start-page: 607
  year: 2019
  end-page: 613
  ident: CR66
  article-title: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res
– volume: 16
  start-page: 3811
  year: 2022
  end-page: 3827
  ident: CR5
  article-title: Resistance to DNA repair inhibitors in cancer
  publication-title: Mol Oncol
– volume: 5
  start-page: e10089
  year: 2010
  ident: CR70
  article-title: Emergence of micronuclei and their effects on the fate of cells under replication stress
  publication-title: PLoS ONE
– volume: 4
  year: 2013
  ident: CR4
  article-title: Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities
  publication-title: Nat Commun
– volume: 12
  start-page: 815
  year: 2016
  end-page: 821
  ident: CR21
  article-title: Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site
  publication-title: Nat Chem Biol
– volume: 451
  start-page: 1116
  year: 2008
  end-page: 1120
  ident: CR61
  article-title: Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers
  publication-title: Nature
– volume: 123
  start-page: 79
  year: 2014
  end-page: 90
  ident: CR67
  article-title: Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response
  publication-title: Chromosoma
– volume: 32
  start-page: 103
  year: 2021
  end-page: 112
  ident: CR68
  article-title: A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance
  publication-title: Ann Oncol
– volume: 26
  start-page: 882
  year: 2004
  end-page: 893
  ident: CR1
  article-title: The PARP superfamily
  publication-title: Bioessays
– volume: 17
  start-page: 1193
  issue: 4
  year: 2016
  end-page: 1205
  ident: CR69
  article-title: A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia
  publication-title: Cell Rep
– volume: 10
  year: 2019
  ident: CR51
  article-title: Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation
  publication-title: Nat Commun
– volume: 18
  start-page: 610
  year: 2017
  ident: CR58
  article-title: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling
  publication-title: Nat Rev Mol Cell Biol
– volume: 11
  start-page: 3179
  issue: 11
  year: 2016
  end-page: 3190
  ident: CR31
  article-title: First-in-class chemical probes against Poly(ADP-ribose) glycohydrolase (PARG) inhibit DNA repair with differential pharmacology to olaparib
  publication-title: ACS Chem Biol
– volume: 71
  start-page: 172
  year: 2018
  end-page: 176
  ident: CR14
  article-title: Mechanisms of PARP inhibitor sensitivity and resistance
  publication-title: DNA Repair
– volume: 8
  start-page: 564601
  year: 2020
  ident: CR59
  article-title: PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance
  publication-title: Front cell Dev Biol
– volume: 15
  year: 2014
  ident: CR42
  article-title: MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
  publication-title: Genome Biol
– volume: 108
  start-page: djw148
  year: 2016
  ident: CR9
  article-title: Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer
  publication-title: JNCI J Natl Cancer Inst
– volume: 6
  start-page: e18618
  year: 2011
  ident: CR75
  article-title: Replication stress induces micronuclei comprising of aggregated DNA double-strand breaks
  publication-title: PLoS ONE
– volume: 19
  start-page: 653
  year: 2012
  end-page: 656
  ident: CR36
  article-title: Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element
  publication-title: Nat Struct Mol Biol
– volume: 33
  start-page: 1078
  year: 2018
  end-page: 1093.e12
  ident: CR26
  article-title: Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality
  publication-title: Cancer Cell
– volume: 1846
  start-page: 201
  year: 2014
  end-page: 215
  ident: CR45
  article-title: Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited
  publication-title: Biochim Biophys Acta
– volume: 477
  start-page: 616
  year: 2011
  end-page: 620
  ident: CR65
  article-title: The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
  publication-title: Nature
– volume: 10
  year: 2019
  ident: CR30
  article-title: Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death
  publication-title: Nat Commun
– volume: 11
  start-page: 783
  year: 2014
  end-page: 784
  ident: CR62
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat Methods
– ident: CR38
– volume: 35
  start-page: e00206
  issue: 3
  year: 2015
  ident: CR34
  article-title: Human exonuclease 1 (EXO1) activity characterization and its function on flap structures
  publication-title: Biosci Rep
– volume: 163
  start-page: 160
  year: 2021
  end-page: 170
  ident: CR53
  article-title: DNA replication stress and emerging prospects for PARG inhibitors in ovarian cancer therapy
  publication-title: Prog Biophys Mol Biol
– volume: 61
  start-page: 10767
  issue: 23
  year: 2018
  end-page: 10792
  ident: CR73
  article-title: Cell-active small molecule inhibitors of the DNA-damage repair enzyme Poly(ADP-ribose) glycohydrolase (PARG): discovery and optimization of orally bioavailable quinazolinedione sulfonamides
  publication-title: J Med Chem
– volume: 71
  start-page: 319
  year: 2018
  end-page: 331.e3
  ident: CR28
  article-title: The importance of poly(ADP-Ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication
  publication-title: Mol Cell
– volume: 8
  year: 2017
  ident: CR40
  article-title: MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells
  publication-title: Nat Commun
– volume: 7
  start-page: 937
  year: 2017
  end-page: 939
  ident: CR17
  article-title: Reversion mutations with clinical use of PARP inhibitors: many genes, many versions
  publication-title: Cancer Discov
– volume: 18
  start-page: 773
  year: 2021
  end-page: 791
  ident: CR15
  article-title: Understanding and overcoming resistance to PARP inhibitors in cancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 23
  start-page: 8412
  issue: 15
  year: 2022
  ident: CR35
  article-title: PARP inhibitors: clinical limitations and recent attempts to overcome them
  publication-title: Int J Mol Sci
– volume: 35
  start-page: 856
  year: 2015
  end-page: 865
  ident: CR57
  article-title: Poly(ADP-ribosyl) glycohydrolase prevents the accumulation of unusual replication structures during unperturbed S phase
  publication-title: Mol Cell Biol
– volume: 18
  year: 2017
  ident: CR60
  article-title: ImageJ2: ImageJ for the next generation of scientific image data
  publication-title: BMC Bioinforma
– volume: 6
  start-page: e28533
  year: 2017
  ident: CR25
  article-title: Serine ADP-ribosylation reversal by the hydrolase ARH3
  publication-title: eLife
– volume: 281
  start-page: 705
  year: 2006
  end-page: 713
  ident: CR50
  article-title: Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase
  publication-title: J Biol Chem
– volume: 5
  start-page: eaav4340
  issue: 4
  year: 2019
  ident: CR12
  article-title: Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies
  publication-title: Sci Adv
– volume: 70
  start-page: 801
  year: 2018
  end-page: 813.e6
  ident: CR8
  article-title: Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks
  publication-title: Mol Cell
– volume: 1470
  start-page: 49
  year: 2016
  end-page: 73
  ident: CR32
  article-title: Pooled shRNA screening in mammalian cells as a functional genomic discovery platform
  publication-title: Methods Mol Biol
– volume: 591
  start-page: 55
  year: 2017
  end-page: 82
  ident: CR56
  article-title: DNA fiber analysis: mind the gap!
  publication-title: Methods Enzymol
– volume: 29
  start-page: 418
  year: 2001
  end-page: 425
  ident: CR33
  article-title: Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer
  publication-title: Nat Genet
– volume: 11
  start-page: 3179
  issue: 11
  year: 2016
  ident: 43_CR31
  publication-title: ACS Chem Biol
  doi: 10.1021/acschembio.6b00609
– volume: 11
  year: 2020
  ident: 43_CR29
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17069-9
– volume: 15
  year: 2014
  ident: 43_CR44
  publication-title: Genome Biol
– volume: 35
  start-page: 856
  year: 2015
  ident: 43_CR57
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01077-14
– volume: 7
  start-page: 937
  year: 2017
  ident: 43_CR17
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-17-0734
– volume: 27
  start-page: 5597
  year: 2007
  ident: 43_CR23
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.02248-06
– volume: 8
  year: 2017
  ident: 43_CR40
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01180-5
– volume: 26
  start-page: 882
  year: 2004
  ident: 43_CR1
  publication-title: Bioessays
  doi: 10.1002/bies.20085
– volume: 14
  start-page: 3916
  year: 2008
  ident: 43_CR20
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-4953
– volume: 18
  start-page: 610
  year: 2017
  ident: 43_CR58
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.53
– volume: 434
  start-page: 917
  year: 2005
  ident: 43_CR22
  publication-title: Nature
  doi: 10.1038/nature03445
– volume: 6
  start-page: e28533
  year: 2017
  ident: 43_CR25
  publication-title: eLife
  doi: 10.7554/eLife.28533
– volume: 6
  start-page: e18618
  year: 2011
  ident: 43_CR75
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0018618
– volume: 205
  start-page: 613
  year: 2014
  ident: 43_CR41
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201402114
– volume: 32
  start-page: 103
  year: 2021
  ident: 43_CR68
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.10.470
– volume: 12
  start-page: e0179278
  year: 2017
  ident: 43_CR72
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179278
– volume: 72
  start-page: 5588
  issue: 21
  year: 2012
  ident: 43_CR47
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2753
– volume: 5
  start-page: e10089
  year: 2010
  ident: 43_CR70
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0010089
– ident: 43_CR38
  doi: 10.1016/j.molcel.2023.12.039
– volume: 34
  start-page: 360
  year: 2020
  ident: 43_CR64
  publication-title: Genes Dev
  doi: 10.1101/gad.334516.119
– volume: 11
  start-page: 783
  year: 2014
  ident: 43_CR62
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3047
– volume: 3
  year: 2012
  ident: 43_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms1889
– volume: 29
  start-page: 329
  year: 2022
  ident: 43_CR71
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/s41594-022-00747-1
– volume: 8
  start-page: 564601
  year: 2020
  ident: 43_CR59
  publication-title: Front cell Dev Biol
  doi: 10.3389/fcell.2020.564601
– volume: 42
  start-page: e168
  issue: 22
  year: 2014
  ident: 43_CR7
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku936
– volume: 5
  start-page: eaav4340
  issue: 4
  year: 2019
  ident: 43_CR12
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aav4340
– volume: 434
  start-page: 913
  year: 2005
  ident: 43_CR10
  publication-title: Nature
  doi: 10.1038/nature03443
– volume: 8
  start-page: 362ps17
  year: 2016
  ident: 43_CR55
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf9246
– volume: 10
  year: 2019
  ident: 43_CR51
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08859-x
– volume: 61
  start-page: 10767
  issue: 23
  year: 2018
  ident: 43_CR73
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.8b01407
– volume: 25
  start-page: 1147
  year: 2015
  ident: 43_CR76
  publication-title: Genome Res
  doi: 10.1101/gr.191452.115
– volume: 23
  start-page: 8412
  issue: 15
  year: 2022
  ident: 43_CR35
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23158412
– volume: 19
  start-page: 653
  year: 2012
  ident: 43_CR36
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2305
– volume: 32
  start-page: 1225
  year: 2013
  ident: 43_CR63
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.51
– volume: 30
  start-page: 2584
  year: 2019
  ident: 43_CR49
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E18-10-0650
– volume: 18
  year: 2017
  ident: 43_CR60
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-017-1934-z
– volume: 451
  start-page: 1111
  year: 2008
  ident: 43_CR19
  publication-title: Nature
  doi: 10.1038/nature06548
– volume: 3
  start-page: 235
  issue: 1
  year: 2017
  ident: 43_CR27
  publication-title: Annu Rev Cancer Bio
  doi: 10.1146/annurev-cancerbio-030617-050232
– volume: 18
  start-page: 773
  year: 2021
  ident: 43_CR15
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-021-00532-x
– volume: 12
  start-page: 815
  year: 2016
  ident: 43_CR21
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2148
– volume: 19
  start-page: 1951
  year: 2005
  ident: 43_CR37
  publication-title: Genes Dev
  doi: 10.1101/gad.1331805
– volume: 108
  start-page: djw148
  year: 2016
  ident: 43_CR9
  publication-title: JNCI J Natl Cancer Inst
  doi: 10.1093/jnci/djw148
– volume: 4
  year: 2013
  ident: 43_CR4
  publication-title: Nat Commun
  doi: 10.1038/ncomms3164
– volume: 126
  start-page: 4414
  year: 2013
  ident: 43_CR74
  publication-title: J Cell Sci
  doi: 10.1242/jcs.128272
– volume: 98
  start-page: 8241
  year: 2001
  ident: 43_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.131009198
– volume: 15
  year: 2014
  ident: 43_CR42
  publication-title: Genome Biol
– volume: 281
  start-page: 705
  year: 2006
  ident: 43_CR50
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M510290200
– volume: 163
  start-page: 160
  year: 2021
  ident: 43_CR53
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2021.01.004
– volume: 19
  start-page: 5485
  year: 2013
  ident: 43_CR2
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-1262
– volume: 10
  year: 2019
  ident: 43_CR30
  publication-title: Nat Commun
– volume: 591
  start-page: 55
  year: 2017
  ident: 43_CR56
  publication-title: Methods Enzymol
  doi: 10.1016/bs.mie.2017.03.019
– volume: 2
  start-page: 313
  year: 2018
  ident: 43_CR11
  publication-title: Annu Rev Cancer Biol
  doi: 10.1146/annurev-cancerbio-030617-050502
– volume: 229
  start-page: 422
  year: 2013
  ident: 43_CR3
  publication-title: J Pathol
  doi: 10.1002/path.4140
– volume: 349
  start-page: 408 LP
  year: 2014
  ident: 43_CR48
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.113.210146
– volume: 33
  start-page: 1078
  year: 2018
  ident: 43_CR26
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.05.008
– volume: 477
  start-page: 616
  year: 2011
  ident: 43_CR65
  publication-title: Nature
  doi: 10.1038/nature10404
– volume: 29
  start-page: 418
  year: 2001
  ident: 43_CR33
  publication-title: Nat Genet
  doi: 10.1038/ng747
– volume: 1846
  start-page: 201
  year: 2014
  ident: 43_CR45
  publication-title: Biochim Biophys Acta
– volume: 70
  start-page: 801
  year: 2018
  ident: 43_CR8
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.04.016
– volume: 17
  start-page: 1193
  issue: 4
  year: 2016
  ident: 43_CR69
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.09.079
– volume: 71
  start-page: 172
  year: 2018
  ident: 43_CR14
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2018.08.021
– volume: 25
  start-page: 217
  year: 2000
  ident: 43_CR24
  publication-title: Nat Genet
  doi: 10.1038/76095
– volume: 32
  start-page: 10
  year: 2015
  ident: 43_CR52
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2015.04.008
– ident: 43_CR77
  doi: 10.1016/S0076-6879(05)09024-5
– volume: 7
  start-page: 919
  year: 2006
  ident: 43_CR13
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400774
– volume: 42
  start-page: 112538
  year: 2023
  ident: 43_CR6
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2023.112538
– volume: 1470
  start-page: 49
  year: 2016
  ident: 43_CR32
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-6337-9_5
– volume: 35
  start-page: e00206
  issue: 3
  year: 2015
  ident: 43_CR34
  publication-title: Biosci Rep
  doi: 10.1042/BSR20150058
– volume: 16
  start-page: 3811
  year: 2022
  ident: 43_CR5
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.13224
– volume: 451
  start-page: 1116
  year: 2008
  ident: 43_CR61
  publication-title: Nature
  doi: 10.1038/nature06633
– volume: 71
  start-page: 319
  year: 2018
  ident: 43_CR28
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.06.004
– volume: 73
  start-page: 885
  year: 2019
  ident: 43_CR46
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.12.008
– volume: 35
  start-page: 519
  year: 2019
  ident: 43_CR54
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.02.004
– volume: 47
  start-page: 607
  year: 2019
  ident: 43_CR66
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1131
– volume: 123
  start-page: 79
  year: 2014
  ident: 43_CR67
  publication-title: Chromosoma
  doi: 10.1007/s00412-013-0442-9
– volume: 2
  start-page: 16011
  year: 2016
  ident: 43_CR16
  publication-title: Cell death Discov
  doi: 10.1038/cddiscovery.2016.11
– volume: 9
  start-page: 210
  issue: 2
  year: 2019
  ident: 43_CR43
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0715
SSID ssj0005871
Score 2.5070338
Snippet Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1015
SubjectTerms Biomedical and Life Sciences
DNA Damage
DNA Repair
DNA Repair Enzymes - genetics
EMBO03
EMBO13
EMBO31
Exodeoxyribonucleases - genetics
Flap Endonucleases - genetics
Flap Endonucleases - metabolism
Flap Endonucleases - therapeutic use
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Humans
Life Sciences
Neoplasms - drug therapy
Neoplasms - genetics
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Title PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair
URI https://link.springer.com/article/10.1038/s44318-024-00043-2
https://www.ncbi.nlm.nih.gov/pubmed/38360994
https://www.proquest.com/docview/2928247262
https://pubmed.ncbi.nlm.nih.gov/PMC10943112
Volume 43
WOSCitedRecordID wos001220428400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 1460-2075
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 1460-2075
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLaydJe-TFt3yy6RJ-0tYw1gwDxmuWzS2jSqWilvyIDZ0BKIclP39_bLdmxjAslUbZP2giJwwPB9Pj6-nPMh9M4lNIKONTZi24UBimN5Rsg8z4hdx47M0PGJnUixCW88ptOpP2k0fupYmO3MyzJ6c-Mv_ivUcA7AFqGzfwF3eVM4Ab8BdDgC7HD8I-AnvctPRsxFZgixzr_ezPNlR8zPC-GUrVgt6KSZ8BVX4GtqDVxo3UCD4fRCGLbRcGwaMqREuKODcU-sLLB0WXVkBb2G5x8vOtU6yemEWGTb_Z5vdqkLCoVuHTWRb4swtHk6Ky8M0hCc37UUdQI7zL_m-spZyhO4hbTa_XxZnaawiNinpQI1dZZvsSCyP7fWuf5SMXhiLoyYSlLoA1cGmbhdgFepq2iLrRI7Fcysml-wL06lK4ehpvXbbkIlhV8R8J6oISsrdyHUCgOqi7nkiC0CXXylxbyXnHty3jfF3kxTCF0fWZ7j0yY6GlyOrs92G42oHPaXb1eEbkEdTg9rcIzu68fVPaWD4c_hLt69pXzpIV09Qg-LoQ3uKUo-Rg2enaB7Suz0xwl60Nfagk_QtE5SLEmKJUmxIClmGS5JinckxXmGBUlPaxTFQFGsKPoUXY-GV_3PRqHxYUSEeGuDJDSB_jg0_Rj6Guo73Iu5SzjzHDAVXTfsMha7NuNJCI49Y1GXc9P3k9hyrQjK289QM8sz_gJhBiP32PQTIjURTJsx4kDv7Ya-mDZLui1k6u8ZREUCfKHDMgvkRgybBgqOAOAIJByB1UKd8j8Llf7l1tJvNUwBfFDx1VjG880qsHyLWsSDSrfQcwVbeT-NdwvRGqBlAZEBvn4lS7_JTPCaey30XmMfFM1-dUs9X_77k16h413rfo2a6-WGv0F3o-06XS3b6I43pW05r9UumsEvpvDgwQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARG-deficient+tumor+cells+have+an+increased+dependence+on+EXO1%2FFEN1-mediated+DNA+repair&rft.jtitle=The+EMBO+journal&rft.au=Andronikou%2C+Christina&rft.au=Burdova%2C+Kamila&rft.au=Dibitetto%2C+Diego&rft.au=Lieftink%2C+Cor&rft.date=2024-03-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=43&rft.issue=6&rft.spage=1015&rft.epage=1042&rft_id=info:doi/10.1038%2Fs44318-024-00043-2&rft_id=info%3Apmid%2F38360994&rft.externalDocID=PMC10943112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2075&client=summon