What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation
The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simp...
Uloženo v:
| Vydáno v: | Evolutionary computation Ročník 28; číslo 2; s. 227 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.06.2020
|
| Témata: | |
| ISSN: | 1530-9304, 1530-9304 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional. |
|---|---|
| AbstractList | The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional. The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional. |
| Author | Yao, Xin Li, Miqing |
| Author_xml | – sequence: 1 givenname: Miqing surname: Li fullname: Li, Miqing email: limitsing@gmail.com organization: CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K. limitsing@gmail.com – sequence: 2 givenname: Xin surname: Yao fullname: Yao, Xin email: x.yao@cs.bham.ac.uk organization: Department of Computer Science, Southern University of Science and Technology, Shenzhen, China; CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K. x.yao@cs.bham.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101027$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLw0AUhQep2IfuXMss3UTnkdespNZWhUoFleIqTCY37dQkEzOTQv-Av9sUq7g65_IdDvfeIepVpgKEzim5ojRk17BVJpEJISwUR2hAA048wYnf--f7aGjthhDKGaEnqM8ZJZSwaIC-lmvp8BL0au0sXprmA-emwe-mvcHjTNZOV6s_vCfjaoefZQPO4FljKodf1rIGrCt8B8qUtbHaaVN5t9JChqdbU7T7WTY7_NQWnU03oJzeAl505aW2co9P0XEuCwtnBx2ht9n0dfLgzRf3j5Px3FO-HznPl0JAlMZhnOXCj_I8Z5lKleAp4aITwWicMQkQEBZkcUZYHIW-CnmUA_iKshG6_OmtG_PZgnVJt4GCopAVmNYmjIcBFYRz0kUvDtE2LSFL6kaX3RXJ7-_YNz7DdO4 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2022_101082 crossref_primary_10_1016_j_ejor_2025_08_030 crossref_primary_10_1109_TCYB_2020_3008697 crossref_primary_10_1007_s10489_024_05398_x crossref_primary_10_1016_j_knosys_2022_108691 crossref_primary_10_1109_TEVC_2022_3140265 crossref_primary_10_1016_j_asoc_2023_110162 crossref_primary_10_1109_ACCESS_2023_3331747 crossref_primary_10_1016_j_asoc_2025_113669 crossref_primary_10_1080_0305215X_2025_2463976 crossref_primary_10_1016_j_rineng_2025_104372 crossref_primary_10_1016_j_swevo_2024_101515 crossref_primary_10_1016_j_asoc_2024_111369 crossref_primary_10_1016_j_swevo_2024_101516 crossref_primary_10_1016_j_swevo_2022_101079 crossref_primary_10_1016_j_swevo_2024_101750 crossref_primary_10_1007_s11465_022_0706_2 crossref_primary_10_1016_j_cie_2024_110600 crossref_primary_10_1007_s11227_024_06496_w crossref_primary_10_1002_cpe_7974 crossref_primary_10_1002_cpe_7973 crossref_primary_10_1007_s10489_024_05906_z crossref_primary_10_1093_jcde_qwae081 crossref_primary_10_1109_ACCESS_2024_3486255 crossref_primary_10_1109_TEVC_2024_3405197 crossref_primary_10_1007_s11227_023_05118_1 crossref_primary_10_1109_TSMC_2022_3187370 crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1109_TEVC_2023_3314152 crossref_primary_10_3390_e27050524 crossref_primary_10_1016_j_swevo_2023_101408 crossref_primary_10_1016_j_swevo_2024_101585 crossref_primary_10_1109_TCYB_2023_3336369 crossref_primary_10_1155_2020_9474580 crossref_primary_10_1155_2024_4737604 crossref_primary_10_1109_ACCESS_2021_3101899 crossref_primary_10_3390_electronics12194167 crossref_primary_10_1016_j_asoc_2024_112161 crossref_primary_10_1016_j_cor_2021_105624 crossref_primary_10_1007_s12293_025_00450_w crossref_primary_10_1016_j_asoc_2024_112434 crossref_primary_10_3390_axioms13090644 crossref_primary_10_1016_j_ijpharm_2024_124888 crossref_primary_10_1002_sat_1555 crossref_primary_10_1049_cit2_12335 crossref_primary_10_1109_TEVC_2022_3194211 crossref_primary_10_1016_j_eswa_2024_124952 crossref_primary_10_1016_j_ins_2021_06_068 crossref_primary_10_1016_j_knosys_2021_107392 crossref_primary_10_1016_j_swevo_2023_101308 crossref_primary_10_1080_0305215X_2024_2420726 crossref_primary_10_1145_3514233 crossref_primary_10_1016_j_swevo_2023_101305 crossref_primary_10_1109_TCYB_2020_3020630 crossref_primary_10_1016_j_eswa_2023_121149 crossref_primary_10_1016_j_swevo_2024_101566 crossref_primary_10_1016_j_swevo_2024_101722 crossref_primary_10_1109_TSMC_2022_3196853 crossref_primary_10_1007_s40747_024_01353_y crossref_primary_10_1109_TEVC_2022_3192100 crossref_primary_10_1016_j_ins_2023_119289 crossref_primary_10_1145_3465335 crossref_primary_10_1155_2023_2005465 crossref_primary_10_1016_j_asoc_2023_110360 crossref_primary_10_1016_j_asoc_2025_113111 crossref_primary_10_1016_j_jclepro_2024_142144 crossref_primary_10_1109_ACCESS_2020_3032639 crossref_primary_10_1016_j_swevo_2021_100980 crossref_primary_10_1016_j_swevo_2023_101313 crossref_primary_10_1016_j_neucom_2024_127491 crossref_primary_10_1016_j_engappai_2023_106454 crossref_primary_10_1080_0305215X_2023_2283038 crossref_primary_10_1371_journal_pone_0321384 crossref_primary_10_1016_j_engappai_2023_105889 crossref_primary_10_1109_TEVC_2022_3219521 crossref_primary_10_1109_TSMC_2022_3221466 crossref_primary_10_1016_j_asoc_2025_113639 crossref_primary_10_1007_s00500_023_08922_2 crossref_primary_10_1016_j_swevo_2022_101145 crossref_primary_10_1016_j_eswa_2023_121244 crossref_primary_10_1016_j_swevo_2024_101667 crossref_primary_10_1016_j_ndteint_2025_103464 crossref_primary_10_1080_09544828_2025_2550934 crossref_primary_10_1016_j_eswa_2024_124641 crossref_primary_10_1007_s11227_024_06258_8 crossref_primary_10_1109_TCYB_2022_3165557 crossref_primary_10_1016_j_ins_2021_03_067 crossref_primary_10_1109_TII_2020_3043734 crossref_primary_10_1016_j_knosys_2022_108197 crossref_primary_10_1007_s10586_025_05336_7 crossref_primary_10_3934_math_2025625 crossref_primary_10_1007_s40747_024_01637_3 crossref_primary_10_1109_TEVC_2023_3261134 crossref_primary_10_1016_j_ins_2024_120143 crossref_primary_10_1080_00207543_2022_2093680 crossref_primary_10_1016_j_eswa_2025_127232 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1049_cth2_12399 crossref_primary_10_1109_TCYB_2022_3182167 crossref_primary_10_3390_math11010010 crossref_primary_10_1016_j_swevo_2024_101497 crossref_primary_10_1016_j_eswa_2025_126830 crossref_primary_10_1177_16878132241227109 crossref_primary_10_1016_j_rico_2025_100606 crossref_primary_10_1111_exsy_13802 crossref_primary_10_1016_j_eswa_2024_123703 crossref_primary_10_1155_2021_2764558 crossref_primary_10_1016_j_eswa_2024_125607 crossref_primary_10_1016_j_eswa_2024_123949 crossref_primary_10_1016_j_engappai_2025_110056 crossref_primary_10_1007_s40747_023_01161_w crossref_primary_10_1016_j_ins_2022_05_005 crossref_primary_10_1016_j_eswa_2025_126675 crossref_primary_10_1109_JAS_2024_124515 crossref_primary_10_1016_j_eswa_2022_116939 crossref_primary_10_1016_j_swevo_2024_101641 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1162/evco_a_00269 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1530-9304 |
| ExternalDocumentID | 32101027 |
| Genre | Journal Article |
| GroupedDBID | --- .4S .DC 0R~ 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX ABAZT ABDBF ABJNI ABVLG ACM ACUHS ADL AEBYY AEFXT AEJOY AENEX AENSD AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CCLIF CGR COF CS3 CUY CVF DU5 EAP EAS EBC EBD EBS ECM ECS EDO EIF EJD EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF LHSKQ MCG MINIK NPM O9- OCL P2P PK0 RMI SV3 TUS ZWS 7X8 |
| ID | FETCH-LOGICAL-c447t-4a99e7b868df947fff2dcbc93b039c939218d2aee5025d8d028764c637fee4c12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539231700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-9304 |
| IngestDate | Fri Jul 11 16:24:03 EDT 2025 Mon Jul 21 06:03:03 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | many-objective optimisation decomposition-based EMO weight adaptation Multiobjective optimisation evolutionary algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-4a99e7b868df947fff2dcbc93b039c939218d2aee5025d8d028764c637fee4c12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://direct.mit.edu/evco/article-pdf/28/2/227/1858918/evco_a_00269.pdf |
| PMID | 32101027 |
| PQID | 2365190330 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2365190330 pubmed_primary_32101027 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Evolutionary computation |
| PublicationTitleAlternate | Evol Comput |
| PublicationYear | 2020 |
| SSID | ssj0013201 |
| Score | 2.6123052 |
| Snippet | The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 227 |
| SubjectTerms | Algorithms Biological Evolution Computer Simulation |
| Title | What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32101027 https://www.proquest.com/docview/2365190330 |
| Volume | 28 |
| WOSCitedRecordID | wos000539231700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDnBgKfsmI3G1mjqOHZ-qslRcKJUA0VvkLaJIJKUtlfoDfDfj1AVOCIlLcrAcWc7M-M3M8wxC51Rqx5nipKESRRjTnKRwLpAElBxcIqbz2FTNJkSnk_Z6shsCbqNAq5zbxMpQ29L4GHmdxhzARgTud3PwRnzXKJ9dDS00FtFyDFDGK6bo_cwiRKFeakQk-O1z4jundTcxZaYy74L8Ai6rQ6a98d_lbaL1AC9xayYPW2jBFTW0MW_dgIMm19DajzqE2-jDF_DGT1WUdIR9_BwDlsVgCZq4ZdXAU6O_hv1Iq5jiru-PW-K2r4CA75_VwOF-ga-cJ6kHJhi5gDPS4utJkG81nOLqxm-pX2aGFt_Bx18DpWgHPbavHy5vSGjQQAxjYkyYktIJnfLU5pKJPM-pNdrIWEexhJcE_GCpci4BZGVTC1hGcGZ4LHLnmGnQXbRUlIXbR7ihYSY1Oo0UZwm4LdyAmDjrEhGxnLoDdDbf9wxW5bMaqnDl-yj73vkDtDf7edlgVqkj8xeUAEGJwz_MPkKr1PvSVYTlGC3noP7uBK2Yybg_Gp5WkgXPTvf2Ewwg3BM |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Weights+Work+for+You%3F+Adapting+Weights+for+Any+Pareto+Front+Shape+in+Decomposition-Based+Evolutionary+Multiobjective+Optimisation&rft.jtitle=Evolutionary+computation&rft.au=Li%2C+Miqing&rft.au=Yao%2C+Xin&rft.date=2020-06-01&rft.eissn=1530-9304&rft.volume=28&rft.issue=2&rft.spage=227&rft_id=info:doi/10.1162%2Fevco_a_00269&rft_id=info%3Apmid%2F32101027&rft_id=info%3Apmid%2F32101027&rft.externalDocID=32101027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon |