What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation

The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Evolutionary computation Ročník 28; číslo 2; s. 227
Hlavní autori: Li, Miqing, Yao, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.06.2020
Predmet:
ISSN:1530-9304, 1530-9304
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.
AbstractList The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.
The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency between a given problem's Pareto front shape and the specified weights' distribution. A set of weights distributed uniformly in a simplex often leads to a set of well-distributed solutions on a Pareto front with a simplex-like shape, but may fail on other Pareto front shapes. It is an open problem on how to specify a set of appropriate weights without the information of the problem's Pareto front beforehand. In this article, we propose an approach to adapt weights during the evolutionary process (called AdaW). AdaW progressively seeks a suitable distribution of weights for the given problem by elaborating several key parts in weight adaptation-weight generation, weight addition, weight deletion, and weight update frequency. Experimental results have shown the effectiveness of the proposed approach. AdaW works well for Pareto fronts with very different shapes: 1) the simplex-like, 2) the inverted simplex-like, 3) the highly nonlinear, 4) the disconnect, 5) the degenerate, 6) the scaled, and 7) the high-dimensional.
Author Yao, Xin
Li, Miqing
Author_xml – sequence: 1
  givenname: Miqing
  surname: Li
  fullname: Li, Miqing
  email: limitsing@gmail.com
  organization: CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K. limitsing@gmail.com
– sequence: 2
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
  email: x.yao@cs.bham.ac.uk
  organization: Department of Computer Science, Southern University of Science and Technology, Shenzhen, China; CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K. x.yao@cs.bham.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32101027$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AUhQep2IfuXMss3UTnkdespNZWhUoFleIqTCY37dQkEzOTQv-Av9sUq7g65_IdDvfeIepVpgKEzim5ojRk17BVJpEJISwUR2hAA048wYnf--f7aGjthhDKGaEnqM8ZJZSwaIC-lmvp8BL0au0sXprmA-emwe-mvcHjTNZOV6s_vCfjaoefZQPO4FljKodf1rIGrCt8B8qUtbHaaVN5t9JChqdbU7T7WTY7_NQWnU03oJzeAl505aW2co9P0XEuCwtnBx2ht9n0dfLgzRf3j5Px3FO-HznPl0JAlMZhnOXCj_I8Z5lKleAp4aITwWicMQkQEBZkcUZYHIW-CnmUA_iKshG6_OmtG_PZgnVJt4GCopAVmNYmjIcBFYRz0kUvDtE2LSFL6kaX3RXJ7-_YNz7DdO4
CitedBy_id crossref_primary_10_1016_j_swevo_2022_101082
crossref_primary_10_1016_j_ejor_2025_08_030
crossref_primary_10_1109_TCYB_2020_3008697
crossref_primary_10_1007_s10489_024_05398_x
crossref_primary_10_1016_j_knosys_2022_108691
crossref_primary_10_1109_TEVC_2022_3140265
crossref_primary_10_1016_j_asoc_2023_110162
crossref_primary_10_1109_ACCESS_2023_3331747
crossref_primary_10_1016_j_asoc_2025_113669
crossref_primary_10_1080_0305215X_2025_2463976
crossref_primary_10_1016_j_rineng_2025_104372
crossref_primary_10_1016_j_swevo_2024_101515
crossref_primary_10_1016_j_asoc_2024_111369
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1016_j_swevo_2022_101079
crossref_primary_10_1016_j_swevo_2024_101750
crossref_primary_10_1007_s11465_022_0706_2
crossref_primary_10_1016_j_cie_2024_110600
crossref_primary_10_1007_s11227_024_06496_w
crossref_primary_10_1002_cpe_7974
crossref_primary_10_1002_cpe_7973
crossref_primary_10_1007_s10489_024_05906_z
crossref_primary_10_1093_jcde_qwae081
crossref_primary_10_1109_ACCESS_2024_3486255
crossref_primary_10_1109_TEVC_2024_3405197
crossref_primary_10_1007_s11227_023_05118_1
crossref_primary_10_1109_TSMC_2022_3187370
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_3390_e27050524
crossref_primary_10_1016_j_swevo_2023_101408
crossref_primary_10_1016_j_swevo_2024_101585
crossref_primary_10_1109_TCYB_2023_3336369
crossref_primary_10_1155_2020_9474580
crossref_primary_10_1155_2024_4737604
crossref_primary_10_1109_ACCESS_2021_3101899
crossref_primary_10_3390_electronics12194167
crossref_primary_10_1016_j_asoc_2024_112161
crossref_primary_10_1016_j_cor_2021_105624
crossref_primary_10_1007_s12293_025_00450_w
crossref_primary_10_1016_j_asoc_2024_112434
crossref_primary_10_3390_axioms13090644
crossref_primary_10_1016_j_ijpharm_2024_124888
crossref_primary_10_1002_sat_1555
crossref_primary_10_1049_cit2_12335
crossref_primary_10_1109_TEVC_2022_3194211
crossref_primary_10_1016_j_eswa_2024_124952
crossref_primary_10_1016_j_ins_2021_06_068
crossref_primary_10_1016_j_knosys_2021_107392
crossref_primary_10_1016_j_swevo_2023_101308
crossref_primary_10_1080_0305215X_2024_2420726
crossref_primary_10_1145_3514233
crossref_primary_10_1016_j_swevo_2023_101305
crossref_primary_10_1109_TCYB_2020_3020630
crossref_primary_10_1016_j_eswa_2023_121149
crossref_primary_10_1016_j_swevo_2024_101566
crossref_primary_10_1016_j_swevo_2024_101722
crossref_primary_10_1109_TSMC_2022_3196853
crossref_primary_10_1007_s40747_024_01353_y
crossref_primary_10_1109_TEVC_2022_3192100
crossref_primary_10_1016_j_ins_2023_119289
crossref_primary_10_1145_3465335
crossref_primary_10_1155_2023_2005465
crossref_primary_10_1016_j_asoc_2023_110360
crossref_primary_10_1016_j_asoc_2025_113111
crossref_primary_10_1016_j_jclepro_2024_142144
crossref_primary_10_1109_ACCESS_2020_3032639
crossref_primary_10_1016_j_swevo_2021_100980
crossref_primary_10_1016_j_swevo_2023_101313
crossref_primary_10_1016_j_neucom_2024_127491
crossref_primary_10_1016_j_engappai_2023_106454
crossref_primary_10_1080_0305215X_2023_2283038
crossref_primary_10_1371_journal_pone_0321384
crossref_primary_10_1016_j_engappai_2023_105889
crossref_primary_10_1109_TEVC_2022_3219521
crossref_primary_10_1109_TSMC_2022_3221466
crossref_primary_10_1016_j_asoc_2025_113639
crossref_primary_10_1007_s00500_023_08922_2
crossref_primary_10_1016_j_swevo_2022_101145
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_1016_j_swevo_2024_101667
crossref_primary_10_1016_j_ndteint_2025_103464
crossref_primary_10_1080_09544828_2025_2550934
crossref_primary_10_1016_j_eswa_2024_124641
crossref_primary_10_1007_s11227_024_06258_8
crossref_primary_10_1109_TCYB_2022_3165557
crossref_primary_10_1016_j_ins_2021_03_067
crossref_primary_10_1109_TII_2020_3043734
crossref_primary_10_1016_j_knosys_2022_108197
crossref_primary_10_1007_s10586_025_05336_7
crossref_primary_10_3934_math_2025625
crossref_primary_10_1007_s40747_024_01637_3
crossref_primary_10_1109_TEVC_2023_3261134
crossref_primary_10_1016_j_ins_2024_120143
crossref_primary_10_1080_00207543_2022_2093680
crossref_primary_10_1016_j_eswa_2025_127232
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1049_cth2_12399
crossref_primary_10_1109_TCYB_2022_3182167
crossref_primary_10_3390_math11010010
crossref_primary_10_1016_j_swevo_2024_101497
crossref_primary_10_1016_j_eswa_2025_126830
crossref_primary_10_1177_16878132241227109
crossref_primary_10_1016_j_rico_2025_100606
crossref_primary_10_1111_exsy_13802
crossref_primary_10_1016_j_eswa_2024_123703
crossref_primary_10_1155_2021_2764558
crossref_primary_10_1016_j_eswa_2024_125607
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_1016_j_engappai_2025_110056
crossref_primary_10_1007_s40747_023_01161_w
crossref_primary_10_1016_j_ins_2022_05_005
crossref_primary_10_1016_j_eswa_2025_126675
crossref_primary_10_1109_JAS_2024_124515
crossref_primary_10_1016_j_eswa_2022_116939
crossref_primary_10_1016_j_swevo_2024_101641
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/evco_a_00269
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 32101027
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABAZT
ABDBF
ABJNI
ABVLG
ACM
ACUHS
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
ZWS
7X8
ID FETCH-LOGICAL-c447t-4a99e7b868df947fff2dcbc93b039c939218d2aee5025d8d028764c637fee4c12
IEDL.DBID 7X8
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000539231700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Fri Jul 11 16:24:03 EDT 2025
Mon Jul 21 06:03:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords many-objective optimisation
decomposition-based EMO
weight adaptation
Multiobjective optimisation
evolutionary algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-4a99e7b868df947fff2dcbc93b039c939218d2aee5025d8d028764c637fee4c12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://direct.mit.edu/evco/article-pdf/28/2/227/1858918/evco_a_00269.pdf
PMID 32101027
PQID 2365190330
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2365190330
pubmed_primary_32101027
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2020
SSID ssj0013201
Score 2.6123052
Snippet The quality of solution sets generated by decomposition-based evolutionary multi-objective optimisation (EMO) algorithms depends heavily on the consistency...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 227
SubjectTerms Algorithms
Biological Evolution
Computer Simulation
Title What Weights Work for You? Adapting Weights for Any Pareto Front Shape in Decomposition-Based Evolutionary Multiobjective Optimisation
URI https://www.ncbi.nlm.nih.gov/pubmed/32101027
https://www.proquest.com/docview/2365190330
Volume 28
WOSCitedRecordID wos000539231700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-Dnqwvt8SwWtwN0mTzUnqo3ixFlTsbcnmgRXcrVYL_gF_t5Ntqj2J4GX3EHYZksnkm5kvMwgdayecsWmTaCoF4Z4lRAmrScGKVDPmRaaLutmE7HSyXk91Y8BtGGmVE5tYG2pbmRAjP6FMANhIwP0-HbyQ0DUqZFdjC41ZNM8AygRKl-xNZxGSWC8VJAC_fUJ8F_TEjUyV6zy4IL-Ay_qQaTf-K94KWo7wErfG-rCKZly5hhqT1g047uQ1tDRVh3AdfYYC3vihjpIOcYifY8CyGCzBKW5ZPQjU6O_hMNIqP3A39MetcDtUQMC3j3rgcL_EFy6Q1CMTjJzBGWnx5Sjqt379wPWN36p4GhtafAM_f46Uog103768O78isUEDMZzLN8K1Uk4WmcisV1x676k1hVGsSJiClwL8YKl2rgnIymYWsIwU3AgmvXPcpHQTzZVV6bYR5lnqU6MSD_aCK-YU9YKlvpDM0dQKvYOOJvOeg1Qhq6FLV70P85-Z30Fb48XLB-NKHXm4oAQISu7-4es9tEiDL11HWPbRvIft7w7Qghm99Yevh7VmwbPTvf4CGbPbyw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+Weights+Work+for+You%3F+Adapting+Weights+for+Any+Pareto+Front+Shape+in+Decomposition-Based+Evolutionary+Multiobjective+Optimisation&rft.jtitle=Evolutionary+computation&rft.au=Li%2C+Miqing&rft.au=Yao%2C+Xin&rft.date=2020-06-01&rft.eissn=1530-9304&rft.volume=28&rft.issue=2&rft.spage=227&rft_id=info:doi/10.1162%2Fevco_a_00269&rft_id=info%3Apmid%2F32101027&rft_id=info%3Apmid%2F32101027&rft.externalDocID=32101027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon