Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning

Object Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and impr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magma (New York, N.Y.) Ročník 37; číslo 6; s. 1059 - 1076
Hlavní autoři: Zijlstra, Frank, While, Peter Thomas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2024
Témata:
ISSN:1352-8661, 0968-5243, 1352-8661
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Object Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality. Materials and methods An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data. Results Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%. Discussion Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
AbstractList Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality. An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data. Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%. Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality.OBJECTDeep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality.An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data.MATERIALS AND METHODSAn adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data.Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%.RESULTSTraining with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%.Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.DISCUSSIONSynthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
Object Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality. Materials and methods An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data. Results Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%. Discussion Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
Author Zijlstra, Frank
While, Peter Thomas
Author_xml – sequence: 1
  givenname: Frank
  orcidid: 0000-0002-9184-7666
  surname: Zijlstra
  fullname: Zijlstra, Frank
  email: Frank.Zijlstra@stolav.no
  organization: Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology
– sequence: 2
  givenname: Peter Thomas
  surname: While
  fullname: While, Peter Thomas
  organization: Department of Radiology and Nuclear Medicine, St Olav’s University Hospital, Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39207581$$D View this record in MEDLINE/PubMed
BookMark eNp9UctO3DAUtSoQr_IDXVResgn1K3HcTYVoS5FGYkPXluPcyRgl9tR2QPx9PQyMgAULy_Y9j2vfc4z2fPCA0BdKzikh8luihHNREVYWpYpX4hM6orxmVds0dO_V-RAdp3RHCKM14QfokCtGZN3SIzT9BFhXI5jonR-qziTosZvMADiCDT7lONvsgscPLq_w6CaXC6M32XzHA3iIJhchTo8-ryA7i6N5eILxnDZAX_zxi_9ntL80Y4LT5_0E_f396_byT7W4ubq-vFhUVgiZKyFBLTvFu7blS9Z3lvG6KxWgrSyVnpBaMCuNYEoCa4gwrWXQlGtDRd90_AT92Pqu526C3oLP0Yx6HcvP4qMOxum3iHcrPYR7TWndMlY3xeHs2SGGfzOkrCeXLIyj8RDmpDlRSirJuCrUr6-b7bq8DLkQ2JZgY0gpwnJHoURvktTbJHVJUj8lqUURte9E1mWzSaI82I0fS_lWmkofP0DUd2GOvgz8I9V_zSu0eA
CitedBy_id crossref_primary_10_1007_s11053_025_10543_5
crossref_primary_10_1016_j_cmpb_2025_108814
Cites_doi 10.1109/5.726791
10.1038/nature25988
10.1148/radiol.204097
10.1002/mrm.10171
10.1109/TMI.2023.3290149
10.1002/mrm.28148
10.1016/j.mri.2012.09.009
10.1016/j.media.2022.102479
10.1186/s40537-019-0197-0
10.1109/TMI.2022.3147426
10.1002/jemt.23694
10.1002/mrm.27106
10.1186/s40537-016-0043-6
10.1109/TMI.2022.3179981
10.1097/RLI.0000000000000928
10.48550/arXiv.1710.10196
10.1002/mrm.27355
10.1109/MSP.2019.2950433
10.1002/mrm.28827
10.1109/TMI.2021.3075856
10.1214/aoms/1177704014
10.1109/TIP.2003.819861
10.1002/mrm.21391
10.1002/mrm.28338
10.1109/TMI.2018.2865356
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1148/radiol.220425
10.1016/j.tics.2021.11.008
10.1117/1.JMI.10.5.054503
10.3390/bioengineering10030358
10.3390/diagnostics11101935
10.48550/arXiv.2004.06688
10.48550/arXiv.2307.13220
10.48550/arXiv.2312.10271
10.48550/arXiv.1909.11512
10.48550/arXiv.1511.05644
10.48550/arXiv.2106.13199
10.48550/arXiv.2112.10752
10.1109/CVPR42600.2020.00872
10.1109/ICCV.2019.00460
10.48550/arXiv.2006.11239
10.1109/CVPRW.2018.00143
10.1007/978-3-031-26438-2_12
10.1109/CVPR.2017.632
10.48550/arXiv.2111.05826
10.1109/CVPR.2019.00020
10.48550/arXiv.1910.07113
10.48550/arXiv.1911.08716
10.48550/arXiv.1811.08839
10.48550/arXiv.2109.08237
10.48550/arXiv.2204.06125
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1007/s10334-024-01193-4
DatabaseName Open Access资源_Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1352-8661
EndPage 1076
ExternalDocumentID PMC11582256
39207581
10_1007_s10334_024_01193_4
Genre Journal Article
GrantInformation_xml – fundername: Norges Forskningsråd
  grantid: 302624
  funderid: http://dx.doi.org/10.13039/501100005416
– fundername: NTNU Norwegian University of Science and Technology (incl St. Olavs Hospital - Trondheim University Hospital)
– fundername: Norges Forskningsråd
  grantid: 302624
GroupedDBID ---
--K
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1B1
1N0
1SB
203
28-
29M
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7X7
88E
88I
8FE
8FG
8FH
8FI
8FJ
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AAQXK
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIUM
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACRPL
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FDB
FEDTE
FERAY
FFXSO
FGOYB
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK5
LLZTM
M1P
M2P
M41
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PCBAR
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R2-
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
SSZ
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADHKG
AEUPX
AFPUW
AGQPQ
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c447t-47e9fb93b883f2dbc235b9fbe18783fd00542c7a4297e2604a8c2e6429614d6b3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302322900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1352-8661
0968-5243
IngestDate Tue Nov 04 02:04:53 EST 2025
Thu Sep 04 16:25:10 EDT 2025
Mon Jul 21 06:03:32 EDT 2025
Sat Nov 29 03:00:50 EST 2025
Tue Nov 18 21:49:59 EST 2025
Fri Feb 21 02:39:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Accelerated MRI
Image reconstruction
Synthetic data
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-47e9fb93b883f2dbc235b9fbe18783fd00542c7a4297e2604a8c2e6429614d6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9184-7666
OpenAccessLink https://link.springer.com/10.1007/s10334-024-01193-4
PMID 39207581
PQID 3099797239
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11582256
proquest_miscellaneous_3099797239
pubmed_primary_39207581
crossref_primary_10_1007_s10334_024_01193_4
crossref_citationtrail_10_1007_s10334_024_01193_4
springer_journals_10_1007_s10334_024_01193_4
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSubtitle Official Journal of the European Society for Magnetic Resonance in Medicine and Biology
PublicationTitle Magma (New York, N.Y.)
PublicationTitleAbbrev Magn Reson Mater Phy
PublicationTitleAlternate MAGMA
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Shorten, Khoshgoftaar (CR18) 2019; 6
Shin, Tenenholtz, Rogers, Schwarz, Senjem, Gunter, Andriole, Michalski, Gooya, Goksel, Oguz, Burgos (CR33) 2018
CR39
Chung, Ye (CR55) 2022; 80
CR38
CR36
Pruessmann, Weiger, Scheidegger, Boesiger (CR1) 1999; 42
CR34
Özbey, Dalmaz, Dar, Bedel, Özturk, Güngör, Çukur (CR56) 2023; 42
CR30
Muckley, Riemenschneider, Radmanesh, Kim, Jeong, Ko, Jun, Shin, Hwang, Mostapha, Arberet, Nickel, Ramzi, Ciuciu, Starck, Teuwen, Karkalousos, Zhang, Sriram, Huang, Yakubova, Lui, Knoll (CR9) 2021; 40
Lee, Mustafaev, Nishikawa (CR40) 2023; 10
Dar, Özbey, Çatlı, Çukur (CR21) 2020; 84
Han, Yoo, Kim, Shin, Sung, Ye (CR20) 2018; 80
Knoll, Hammernik, Kobler, Pock, Recht, Sodickson (CR6) 2019; 81
Zhu, Liu, Cauley, Rosen, Rosen (CR4) 2018; 555
Lin, Walter, Fritz (CR12) 2023; 58
Korkmaz, Dar, Yurt, Özbey, Çukur (CR22) 2022; 41
Tudosiu, Pinaya, Graham, Borges, Fernandez, Yang, Appleyard, Novati, Mehra, Vella, Nachev, Ourselin, Cardoso, Zhao, Svoboda, Wolterink, Escobar (CR37) 2022
Knoll, Murrell, Sriram, Yakubova, Zbontar, Rabbat, Defazio, Muckley, Sodickson, Zitnick, Recht (CR7) 2020; 84
CR48
CR47
CR44
CR43
CR42
CR41
Lecun, Bottou, Bengio, Haffner (CR58) 1998; 86
Deveshwar, Rajagopal, Sahin, Shimron, Larson (CR25) 2023; 10
Ronneberger, Fischer, Brox (CR59) 2015
de Melo, Torralba, Guibas, DiCarlo, Chellappa, Hodgins (CR32) 2022; 26
Khan, Khan, Harouni, Abbasi, Iqbal, Mehmood (CR31) 2021; 84
Lustig, Donoho, Pauly (CR3) 2007; 58
Hammernik, Schlemper, Qin, Duan, Summers, Rueckert (CR15) 2021; 86
Miao, Huang, Narayan, Wilson (CR46) 2013; 31
CR17
CR16
Ueda, Ohno, Yamamoto, Murayama, Ikedo, Yui, Hanamatsu, Tanaka, Obama, Ikeda, Toyama (CR10) 2022; 303
CR13
CR57
Griswold, Jakob, Heidemann, Nittka, Jellus, Wang, Kiefer, Haase (CR2) 2002; 47
CR54
CR53
Good (CR61) 1963; 34
CR52
Wang, Bovik, Sheikh, Simoncelli (CR45) 2004; 13
CR51
Weiss, Khoshgoftaar, Wang (CR19) 2016; 3
CR50
Sandino, Cheng, Chen, Mardani, Pauly, Vasanawala (CR8) 2020; 37
Yang, Lin, Wang, Bao, Wang, Ma, Zhou, Yang, Cai, He, Cai, Dong, Cheng, Chen, Zhong (CR35) 2022; 41
Karras, Aila, Laine, Lehtinen (CR60) 2018
CR29
Johnson, Muckley, Bruno, Kobler, Hammernik, Pock, Knoll, Knoll, Maier, Rueckert, Ye (CR14) 2019
CR28
Aggarwal, Mani, Jacob (CR5) 2019; 38
CR27
CR26
CR24
CR62
Johnson, Lin, Zbontar, Zitnick, Sriram, Muckley, Babb, Kline, Ciavarra, Alaia, Samim, Walter, Calderon, Pock, Sodickson, Recht, Knoll (CR11) 2023; 307
Wang, Zhang, Dai, Chen, Wang, Wang (CR23) 2021; 11
Larsen, Sønderby, Larochelle, Winther, Larsen (CR49) 2016
1193_CR24
T Karras (1193_CR60) 2018
Y Lecun (1193_CR58) 1998; 86
C Shorten (1193_CR18) 2019; 6
1193_CR62
1193_CR29
1193_CR28
1193_CR27
HK Aggarwal (1193_CR5) 2019; 38
N Deveshwar (1193_CR25) 2023; 10
1193_CR26
K Weiss (1193_CR19) 2016; 3
Z Wang (1193_CR45) 2004; 13
T Ueda (1193_CR10) 2022; 303
KP Pruessmann (1193_CR1) 1999; 42
1193_CR36
H-C Shin (1193_CR33) 2018
1193_CR34
H Chung (1193_CR55) 2022; 80
1193_CR30
IJ Good (1193_CR61) 1963; 34
B Zhu (1193_CR4) 2018; 555
1193_CR39
1193_CR38
Y Han (1193_CR20) 2018; 80
F Knoll (1193_CR6) 2019; 81
M Lustig (1193_CR3) 2007; 58
PM Johnson (1193_CR14) 2019
Y Korkmaz (1193_CR22) 2022; 41
ABL Larsen (1193_CR49) 2016
CM Sandino (1193_CR8) 2020; 37
PM Johnson (1193_CR11) 2023; 307
F Wang (1193_CR23) 2021; 11
Q Yang (1193_CR35) 2022; 41
1193_CR47
1193_CR44
1193_CR43
MJ Muckley (1193_CR9) 2021; 40
1193_CR42
1193_CR41
M Özbey (1193_CR56) 2023; 42
F Knoll (1193_CR7) 2020; 84
1193_CR48
MA Griswold (1193_CR2) 2002; 47
SUH Dar (1193_CR21) 2020; 84
1193_CR13
1193_CR57
K Hammernik (1193_CR15) 2021; 86
AR Khan (1193_CR31) 2021; 84
1193_CR54
1193_CR53
O Ronneberger (1193_CR59) 2015
1193_CR52
1193_CR51
CM de Melo (1193_CR32) 2022; 26
1193_CR17
1193_CR16
P-D Tudosiu (1193_CR37) 2022
J Miao (1193_CR46) 2013; 31
1193_CR50
DJ Lin (1193_CR12) 2023; 58
J Lee (1193_CR40) 2023; 10
References_xml – volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR58
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 555
  start-page: 487
  year: 2018
  end-page: 492
  ident: CR4
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 303
  start-page: 373
  year: 2022
  end-page: 381
  ident: CR10
  article-title: Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging
  publication-title: Radiology
  doi: 10.1148/radiol.204097
– start-page: 1
  year: 2018
  end-page: 11
  ident: CR33
  article-title: Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks
  publication-title: Simul
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: CR2
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10171
– volume: 42
  start-page: 3524
  year: 2023
  end-page: 3539
  ident: CR56
  article-title: Unsupervised medical image translation with adversarial diffusion models
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2023.3290149
– volume: 84
  start-page: 663
  year: 2020
  end-page: 685
  ident: CR21
  article-title: A Transfer-learning approach for accelerated mri using deep neural networks
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28148
– ident: CR29
– ident: CR54
– volume: 31
  start-page: 596
  year: 2013
  end-page: 603
  ident: CR46
  article-title: A new perceptual difference model for diagnostically relevant quantitative image quality evaluation: A preliminary study
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.09.009
– volume: 80
  year: 2022
  ident: CR55
  article-title: Score-based diffusion models for accelerated MRI
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102479
– ident: CR42
– volume: 6
  start-page: 60
  year: 2019
  ident: CR18
  article-title: A survey on image data augmentation for deep learning
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 41
  start-page: 1747
  year: 2022
  end-page: 1763
  ident: CR22
  article-title: Unsupervised MRI reconstruction via zero-shot learned adversarial transformers
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3147426
– volume: 84
  start-page: 1389
  year: 2021
  end-page: 1399
  ident: CR31
  article-title: Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23694
– volume: 80
  start-page: 1189
  year: 2018
  end-page: 1205
  ident: CR20
  article-title: Deep learning with domain adaptation for accelerated projection-reconstruction MR
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27106
– ident: CR50
– volume: 3
  start-page: 9
  year: 2016
  ident: CR19
  article-title: A survey of transfer learning
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 41
  start-page: 3167
  year: 2022
  end-page: 3181
  ident: CR35
  article-title: MOdel-based synthetic data-driven learning (MOST-DL): application in single-shot T2 mapping with severe head motion using overlapping-echo acquisition
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3179981
– volume: 58
  start-page: 28
  year: 2023
  end-page: 42
  ident: CR12
  article-title: Artificial intelligence-driven ultra-fast superresolution MRI : 10-fold accelerated musculoskeletal turbo spin echo MRI within reach
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000928
– ident: CR57
– ident: CR36
– year: 2018
  ident: CR60
  article-title: Progressive growing of GANs for improved Quality, Stability, and Variation
  publication-title: [cs.NE]
  doi: 10.48550/arXiv.1710.10196
– ident: CR26
– volume: 81
  start-page: 116
  year: 2019
  end-page: 128
  ident: CR6
  article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27355
– volume: 37
  start-page: 117
  year: 2020
  end-page: 127
  ident: CR8
  article-title: Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2950433
– ident: CR43
– ident: CR47
– year: 2015
  ident: CR59
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18
– start-page: 66
  year: 2022
  end-page: 78
  ident: CR37
  article-title: Morphology-Preserving Autoregressive 3D Generative Modelling of the Brain
  publication-title: Simul
– volume: 86
  start-page: 1859
  year: 2021
  end-page: 1872
  ident: CR15
  article-title: Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28827
– ident: CR53
– ident: CR30
– volume: 40
  start-page: 2306
  year: 2021
  end-page: 2317
  ident: CR9
  article-title: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3075856
– volume: 34
  start-page: 911
  year: 1963
  end-page: 934
  ident: CR61
  article-title: Maximum Entropy for hypothesis formulation, especially for multidimensional contingency tables
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704014
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: CR45
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: CR3
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– ident: CR27
– start-page: 71
  year: 2019
  end-page: 79
  ident: CR14
  article-title: Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions
  publication-title: Mach
– volume: 84
  start-page: 3054
  year: 2020
  end-page: 3070
  ident: CR7
  article-title: Advancing machine learning for MR image reconstruction with an open competition: overview of the 2019 fastMRI challenge
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28338
– year: 2016
  ident: CR49
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: International conference on machine learning
– ident: CR44
– volume: 38
  start-page: 394
  year: 2019
  end-page: 405
  ident: CR5
  article-title: MoDL: model-based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2865356
– ident: CR48
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: CR1
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 307
  start-page: e220425
  year: 2023
  ident: CR11
  article-title: Deep learning reconstruction enables prospectively accelerated clinical knee MRI
  publication-title: Radiology
  doi: 10.1148/radiol.220425
– volume: 26
  start-page: 174
  year: 2022
  end-page: 187
  ident: CR32
  article-title: Next-generation deep learning based on simulators and synthetic data
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2021.11.008
– ident: CR38
– ident: CR52
– ident: CR17
– volume: 10
  year: 2023
  ident: CR40
  article-title: Impact of GAN artifacts for simulating mammograms on identifying mammographically occult cancer
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.10.5.054503
– ident: CR13
– ident: CR34
– volume: 10
  start-page: 358
  year: 2023
  ident: CR25
  article-title: Synthesizing complex-valued multicoil MRI data from magnitude-only images
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030358
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR24
– volume: 11
  start-page: 1935
  year: 2021
  ident: CR23
  article-title: MAGnitude-image-to-complex K-space (MAGIC-K) net: a data augmentation network for image reconstruction
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11101935
– volume: 6
  start-page: 60
  year: 2019
  ident: 1193_CR18
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 37
  start-page: 117
  year: 2020
  ident: 1193_CR8
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2950433
– ident: 1193_CR44
  doi: 10.48550/arXiv.2004.06688
– volume-title: International conference on machine learning
  year: 2016
  ident: 1193_CR49
– volume: 13
  start-page: 600
  year: 2004
  ident: 1193_CR45
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– ident: 1193_CR24
  doi: 10.48550/arXiv.2307.13220
– volume: 42
  start-page: 952
  year: 1999
  ident: 1193_CR1
  publication-title: Magn Reson Med
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 80
  start-page: 1189
  year: 2018
  ident: 1193_CR20
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27106
– volume: 26
  start-page: 174
  year: 2022
  ident: 1193_CR32
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2021.11.008
– volume-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18
  year: 2015
  ident: 1193_CR59
– volume: 86
  start-page: 1859
  year: 2021
  ident: 1193_CR15
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28827
– volume: 84
  start-page: 663
  year: 2020
  ident: 1193_CR21
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28148
– volume: 40
  start-page: 2306
  year: 2021
  ident: 1193_CR9
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3075856
– ident: 1193_CR48
– volume: 84
  start-page: 3054
  year: 2020
  ident: 1193_CR7
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28338
– ident: 1193_CR16
  doi: 10.48550/arXiv.2312.10271
– ident: 1193_CR30
  doi: 10.48550/arXiv.1909.11512
– ident: 1193_CR42
  doi: 10.48550/arXiv.1511.05644
– volume: 42
  start-page: 3524
  year: 2023
  ident: 1193_CR56
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2023.3290149
– volume: 47
  start-page: 1202
  year: 2002
  ident: 1193_CR2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10171
– volume: 81
  start-page: 116
  year: 2019
  ident: 1193_CR6
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27355
– ident: 1193_CR17
– year: 2018
  ident: 1193_CR60
  publication-title: [cs.NE]
  doi: 10.48550/arXiv.1710.10196
– volume: 58
  start-page: 28
  year: 2023
  ident: 1193_CR12
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000928
– volume: 31
  start-page: 596
  year: 2013
  ident: 1193_CR46
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.09.009
– volume: 34
  start-page: 911
  year: 1963
  ident: 1193_CR61
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177704014
– ident: 1193_CR62
– volume: 555
  start-page: 487
  year: 2018
  ident: 1193_CR4
  publication-title: Nature
  doi: 10.1038/nature25988
– ident: 1193_CR36
  doi: 10.48550/arXiv.2106.13199
– ident: 1193_CR38
– ident: 1193_CR52
  doi: 10.48550/arXiv.2112.10752
– start-page: 66
  volume-title: Simul
  year: 2022
  ident: 1193_CR37
– ident: 1193_CR39
  doi: 10.1109/CVPR42600.2020.00872
– start-page: 71
  volume-title: Mach
  year: 2019
  ident: 1193_CR14
– ident: 1193_CR57
  doi: 10.1109/ICCV.2019.00460
– volume: 41
  start-page: 3167
  year: 2022
  ident: 1193_CR35
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3179981
– ident: 1193_CR50
  doi: 10.48550/arXiv.2006.11239
– start-page: 1
  volume-title: Simul
  year: 2018
  ident: 1193_CR33
– ident: 1193_CR27
  doi: 10.1109/CVPRW.2018.00143
– ident: 1193_CR34
  doi: 10.1007/978-3-031-26438-2_12
– ident: 1193_CR41
  doi: 10.1109/CVPR.2017.632
– volume: 38
  start-page: 394
  year: 2019
  ident: 1193_CR5
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2865356
– ident: 1193_CR53
  doi: 10.48550/arXiv.2111.05826
– volume: 10
  year: 2023
  ident: 1193_CR40
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.10.5.054503
– ident: 1193_CR47
  doi: 10.1109/CVPR.2019.00020
– ident: 1193_CR28
  doi: 10.48550/arXiv.1910.07113
– volume: 307
  start-page: e220425
  year: 2023
  ident: 1193_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.220425
– volume: 3
  start-page: 9
  year: 2016
  ident: 1193_CR19
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 84
  start-page: 1389
  year: 2021
  ident: 1193_CR31
  publication-title: Microsc Res Tech
  doi: 10.1002/jemt.23694
– volume: 58
  start-page: 1182
  year: 2007
  ident: 1193_CR3
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21391
– ident: 1193_CR29
  doi: 10.48550/arXiv.1911.08716
– volume: 86
  start-page: 2278
  year: 1998
  ident: 1193_CR58
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 11
  start-page: 1935
  year: 2021
  ident: 1193_CR23
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11101935
– ident: 1193_CR54
– volume: 303
  start-page: 373
  year: 2022
  ident: 1193_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.204097
– volume: 41
  start-page: 1747
  year: 2022
  ident: 1193_CR22
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2022.3147426
– ident: 1193_CR13
  doi: 10.48550/arXiv.1811.08839
– volume: 10
  start-page: 358
  year: 2023
  ident: 1193_CR25
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10030358
– ident: 1193_CR43
– ident: 1193_CR26
  doi: 10.48550/arXiv.2109.08237
– ident: 1193_CR51
  doi: 10.48550/arXiv.2204.06125
– volume: 80
  year: 2022
  ident: 1193_CR55
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102479
SSID ssj0021503
Score 2.3915968
Snippet Object Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw...
Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1059
SubjectTerms Algorithms
Basic Science - Reconstruction algorithms and artificial intelligence
Biomedical Engineering and Bioengineering
Brain - diagnostic imaging
Computer Appl. in Life Sciences
Deep Learning
Health Informatics
Humans
Image Processing, Computer-Assisted - methods
Imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Neural Networks, Computer
Radiology
Research Article
Solid State Physics
Title Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning
URI https://link.springer.com/article/10.1007/s10334-024-01193-4
https://www.ncbi.nlm.nih.gov/pubmed/39207581
https://www.proquest.com/docview/3099797239
https://pubmed.ncbi.nlm.nih.gov/PMC11582256
Volume 37
WOSCitedRecordID wos001302322900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1352-8661
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021503
  issn: 1352-8661
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xVIgXoAcQLrlS31pLTZzENm8IWPEACPVY7VuUOM6yEptFhEP8e2aco90uWqm8-opljz2fMzPfAHyxRkdRHvhcFbgNRHHOiWaMx3Gk_ULHRexyHfbP5eWlGgz0VRMUVrXe7q1J0t3UfwW7CRFy1CmceMoEDxdhGdWdooQNP372u2cWQhzRhMe83m9aBc3gyln3yH9spE719NbfNukNWGugJjuqZeM9LNjyA6xcNMb0jzA-sfaWN2kjhpz0Wc5GY7xgmHsmd9SyjH7Wsps6FIqRT-khGzq6avKZZtVziSgSP8Lu0idXzcibfshyHJ-143-C373TX8dnvMm-wE0YynseSquLTItMKVEEeWYCEWVYYn0lsSQnsBcYmaJCkxZfRWGqTGDxOaNR4-dxJjZhqZyUdhuYn0vEpUrjgUf49T1IM1MUfm4pBXmgjfTAbzckMQ01OWXIuEn-kCrTOia4jolbxyT04GvX57Ym5pjb-nO7zwmeHzKKpKWdPFSJoNBhSr2mPdiq970bD7EjIirle6CmJKJrQNzc0zXl6NpxdCPQRugVxR58awUjaW6Has48d_6v-S6sBiRbzr1mD5ZQLuw-vDOP96Pq7gAW5UAduMPxAjNuCQc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6VbQVcKJRXoAUj9QaWSJyHzQ3RIiqWFWoBcbMSx1lWgrAiPMS_Z8abBLZUSOXqVyx77PmcmfkG4Ls1KorywOeywG0ginNONGM8jiPlFyouYpfr8Kyb9Hry_Fwd10FhVePt3pgk3U39IthNiJCjTuHEUyZ4OAEfQ9RYxJj_-89Z-8xCiCPq8Jh_9xtXQa9w5Wv3yL9spE717H9-36RnYaaGmmx3JBtz8MGWX2DyqDamz8PVD2uHvE4b0eekz3I2uMILhrlncksty-hnLbschUIx8indYX1HV00-06x6LBFF4kfYTfrgqhl50_dZjuOzZvwFON3_ebJ3wOvsC9yEYXLLw8SqIlMik1IUQZ6ZQEQZllhfJliSE9gLTJKiQkssvorCVJrA4nNGocbP40wsQqe8Lu0yMD9PEJdKhQce4dd2kGamKPzcUgryQJnEA7_ZEG1qanLKkHGpn0mVaR01rqN266hDDzbbPsMRMcebrTeafdZ4fsgokpb2-q7SgkKHKfWa8mBptO_teIgdEVFJ3wM5JhFtA-LmHq8pBxeOoxuBNkKvKPZgqxEMXd8O1RvzXPm_5uswdXBy1NXdX73DVZgOSM6cq81X6KCM2G_wydzfDqqbNXdEngBobgsD
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61FCEulFJa0hYwEjdq0cR52L1VpSsQsELiIW5WYjvblSCs2AXUf98Z51EWEBLq1a8k9tjzTTzzDcCmMypJbBRyWeIyEMU5J5oxnqaJCkuVlqnPdXh2kPX78vxcHd2L4vfe7u2VZB3TQCxN1WR7ZMvte4FvQsQc9QsnzjLB49fwJiZHerLXj886kwvhjmhCZZ7uN62OHmHMx66SD-5LvRrqvf3_D1iEhQaCsh-1zLyDV65agrnD5pL9PVzuODfiTTqJASc9Z9nwEg8e5s3njnKW0U9cdlGHSDHyNf3OBp7Gmnyp2fhPhegSH8Ku8ztfzcjLfsAsjs_a8ZfhtPfr5Ocub7IycBPH2YTHmVNloUQhpSgjW5hIJAWWuFBmWGIJBEYmy1HRZQ6tpTiXJnJo5ihEAjYtxAeYqa4qtwIstBniVanwIEBY9i3KC1OWoXWUmjxSJgsgbBdHm4aynDJnXOh_ZMs0jxrnUft51HEAW12fUU3Y8WzrjXbNNe4ruizJK3d1M9aCQoopJZsK4GMtA914iCkRackwADklHV0D4uyerqmGvz13NwJwhGRJGsDXVkh0c2qMn3nPTy9rvg5zRzs9fbDX3_8M8xGJmffA-QIzKCJuFWbN7WQ4vl7zu-UvGC0T5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning-based+image+reconstruction+with+limited+data%3A+generating+synthetic+raw+data+using+deep+learning&rft.jtitle=Magma+%28New+York%2C+N.Y.%29&rft.au=Zijlstra%2C+Frank&rft.au=While%2C+Peter+Thomas&rft.date=2024-12-01&rft.eissn=1352-8661&rft.volume=37&rft.issue=6&rft.spage=1059&rft_id=info:doi/10.1007%2Fs10334-024-01193-4&rft_id=info%3Apmid%2F39207581&rft.externalDocID=39207581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-8661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-8661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-8661&client=summon