Vitamin C and immune cell function in inflammation and cancer
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can re...
Gespeichert in:
| Veröffentlicht in: | Biochemical Society transactions Jg. 46; H. 5; S. 1147 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
19.10.2018
|
| Schlagworte: | |
| ISSN: | 1470-8752, 1470-8752 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions. |
|---|---|
| AbstractList | Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions. Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions. |
| Author | Vissers, Margreet C M Ang, Abel Pullar, Juliet M Currie, Margaret J |
| Author_xml | – sequence: 1 givenname: Abel surname: Ang fullname: Ang, Abel organization: Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand – sequence: 2 givenname: Juliet M surname: Pullar fullname: Pullar, Juliet M organization: Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand – sequence: 3 givenname: Margaret J surname: Currie fullname: Currie, Margaret J organization: Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand – sequence: 4 givenname: Margreet C M surname: Vissers fullname: Vissers, Margreet C M email: margreet.vissers@otago.ac.nz organization: Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand margreet.vissers@otago.ac.nz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30301842$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLxDAQxoOsuA89eZccvVSTSdLHwYMWX7DgweK1TNIEIk269nHwv7frriAMfPPBb4aZb00WsYuWkEvObjiTcPvwXgHjOeNpcUJWXGYsyTMFi3_9kqyH4ZMxLrlMz8hSMDFPSFiRuw8_YvCRlhRjQ30IU7TU2Lalbopm9F2kfl-uxRDw1-9Bg9HY_pycOmwHe3HUDameHqvyJdm-Pb-W99vESJmNiVSoUDYaIOemKASCkCx3qVbaKi1SYWUhnEOeAuagNGAGVqWoC2dkpmFDrg9rd333NdlhrIMf9jditN001MB5lsOcBZvRqyM66WCbetf7gP13_fcx_AA8i1eY |
| CitedBy_id | crossref_primary_10_3390_antiox10030430 crossref_primary_10_3390_nu12082338 crossref_primary_10_1080_15592294_2019_1666652 crossref_primary_10_1093_nar_gkac941 crossref_primary_10_1016_j_peptides_2021_170580 crossref_primary_10_1016_j_biopha_2023_114263 crossref_primary_10_1016_j_prp_2025_156207 crossref_primary_10_3389_fonc_2022_981547 crossref_primary_10_5812_aapm_119332 crossref_primary_10_1016_j_niox_2020_07_005 crossref_primary_10_3390_ijms22136928 crossref_primary_10_1017_S0007114519001922 crossref_primary_10_1016_j_biomaterials_2022_121673 crossref_primary_10_1016_j_freeradbiomed_2019_06_022 crossref_primary_10_1016_j_plaphy_2020_03_006 crossref_primary_10_3390_nu12041193 crossref_primary_10_1016_j_lfs_2020_118617 crossref_primary_10_1038_s41467_023_37037_3 crossref_primary_10_1111_aas_13752 crossref_primary_10_1186_s12970_019_0299_2 crossref_primary_10_1007_s40520_020_01669_y crossref_primary_10_3389_fendo_2020_00161 crossref_primary_10_1016_j_intimp_2023_111321 crossref_primary_10_1016_j_jmb_2019_07_031 crossref_primary_10_1371_journal_pone_0311857 crossref_primary_10_3390_nu17101687 crossref_primary_10_1016_j_ad_2023_07_034 crossref_primary_10_1016_j_redox_2025_103658 crossref_primary_10_1016_j_dialog_2023_100106 crossref_primary_10_3389_fnut_2021_673174 crossref_primary_10_1016_j_jbior_2020_100741 crossref_primary_10_3390_nu16173008 crossref_primary_10_1038_s41568_019_0135_7 crossref_primary_10_3389_fphys_2024_1488152 crossref_primary_10_1016_j_biopha_2020_110588 crossref_primary_10_1016_j_csbj_2020_11_056 crossref_primary_10_1016_j_ecoenv_2022_113735 crossref_primary_10_1016_j_tifs_2025_104922 crossref_primary_10_1073_pnas_1908158117 crossref_primary_10_1002_bies_202300035 crossref_primary_10_1016_j_clnu_2022_02_015 crossref_primary_10_1093_nutrit_nuae154 crossref_primary_10_1186_s12916_021_02041_1 crossref_primary_10_3389_fphar_2022_899198 crossref_primary_10_1002_eji_202451139 crossref_primary_10_5507_bp_2023_035 crossref_primary_10_1016_j_csbj_2021_02_009 crossref_primary_10_3389_fcell_2020_623948 crossref_primary_10_3389_fimmu_2022_989000 crossref_primary_10_1093_mrcr_rxac059 crossref_primary_10_3390_cells12020254 crossref_primary_10_3390_nu12082199 crossref_primary_10_3389_fimmu_2024_1512605 crossref_primary_10_1016_j_freeradbiomed_2022_01_007 crossref_primary_10_1016_j_lfs_2020_118166 crossref_primary_10_3389_fimmu_2022_898827 crossref_primary_10_1016_j_clnesp_2021_04_009 crossref_primary_10_1016_j_intimp_2019_02_031 crossref_primary_10_5306_wjco_v12_i9_712 crossref_primary_10_3390_antiox11101993 crossref_primary_10_3390_nu11040708 crossref_primary_10_1016_j_nut_2020_110948 crossref_primary_10_1016_j_nut_2020_111047 crossref_primary_10_1016_j_pharmthera_2020_107700 crossref_primary_10_1080_10715762_2020_1866757 crossref_primary_10_3390_antiox12040916 crossref_primary_10_1016_j_molmed_2023_04_004 crossref_primary_10_3390_antiox11071247 crossref_primary_10_1016_j_indcrop_2022_114845 crossref_primary_10_1016_j_mehy_2022_110845 crossref_primary_10_1007_s13233_023_00186_x crossref_primary_10_1186_s12889_023_17229_8 crossref_primary_10_1016_j_ecoenv_2023_115481 crossref_primary_10_1016_j_exger_2020_111118 crossref_primary_10_1161_JAHA_121_023690 crossref_primary_10_3389_fphys_2019_00734 crossref_primary_10_1186_s13046_021_02134_y crossref_primary_10_3390_life12010062 crossref_primary_10_1016_j_gendis_2025_101742 crossref_primary_10_1021_jacs_4c04840 crossref_primary_10_3389_fnut_2024_1373499 crossref_primary_10_3724_abbs_2025078 crossref_primary_10_1038_s41598_020_59890_8 crossref_primary_10_3389_fimmu_2020_574029 crossref_primary_10_1371_journal_pone_0233047 crossref_primary_10_3389_fnut_2023_1290749 crossref_primary_10_1016_j_ad_2024_10_038 crossref_primary_10_1097_MD_0000000000043015 crossref_primary_10_1146_annurev_food_060822_122236 crossref_primary_10_1002_edm2_432 crossref_primary_10_1089_ars_2020_8233 crossref_primary_10_3389_fimmu_2025_1635071 crossref_primary_10_1016_j_jsps_2022_01_019 crossref_primary_10_1111_pai_13160 |
| ContentType | Journal Article |
| Copyright | 2018 The Author(s). |
| Copyright_xml | – notice: 2018 The Author(s). |
| DBID | NPM 7X8 |
| DOI | 10.1042/BST20180169 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1470-8752 |
| ExternalDocumentID | 30301842 |
| Genre | Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 4.4 5GY 5RE 6J9 A8Z AAHRG AAKDD ABJNI ACGFO ACGFS ACNCT AEGXH AENEX AFFNX AFHIN AIAGR ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBD EBS EJD EMOBN F5P H13 HZ~ IH2 ML- MV1 NPM NTEUP O9- P2P RHI RNS RPO SV3 TWZ UBE ~02 7X8 ESTFP |
| ID | FETCH-LOGICAL-c447t-45a5a4db2281c993a23408f6b5be5b363e493ffa162a825b2a72e56ab9fc47b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447780600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8752 |
| IngestDate | Mon Sep 08 13:55:54 EDT 2025 Mon Jul 21 06:06:26 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | demethylation ascorbate hypoxia inducible factors vitamin C hydroxylases |
| Language | English |
| License | 2018 The Author(s). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-45a5a4db2281c993a23408f6b5be5b363e493ffa162a825b2a72e56ab9fc47b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6195639 |
| PMID | 30301842 |
| PQID | 2117820420 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2117820420 pubmed_primary_30301842 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-19 |
| PublicationDateYYYYMMDD | 2018-10-19 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical Society transactions |
| PublicationTitleAlternate | Biochem Soc Trans |
| PublicationYear | 2018 |
| SSID | ssj0014146 |
| Score | 2.5908248 |
| SecondaryResourceType | review_article |
| Snippet | Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1147 |
| Title | Vitamin C and immune cell function in inflammation and cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30301842 https://www.proquest.com/docview/2117820420 |
| Volume | 46 |
| WOSCitedRecordID | wos000447780600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qFb34aH3UFxHE29Jukt3sHkTaYvGgpWApvZUkm8Aeuq1tFfz3zuyD3kQQlrCH3ZBkZjLzTTIzhNxrncQmAZgqI6c8oTSIlFS-56AJMbRT5KmUxq9yMIgmk3hYOtxW5bXKak_MN-pkbtBH3gKggqndBGs_LT48rBqFp6tlCY1tUuNgyqBgysnmFEFU0UWyDVIfsDI-Dzppdd9HDHNX-eEvtmWuY_pH_x3dMTksrUvaKdjhhGzZrE4anQyQ9eybPtD8vmfuSK-TvW71tt-rqr41yOM4XatZmtEeVVlCUwwfsRTd-xRVIJKRpvg4YKUi7DH_0CD3LE_JqP886r14ZYkFzwgh154IVKBEohmLfAOmimJctCMX6kDbQPOQWxFz54BuTAGW1ExJZoNQ6dgZITU7IzvZPLMXhNrY8ERpGRoeCucAsEMvTspEcwNmHW-Su2rlpjAlHLfK7PxzNd2sXZOcF8s_XRSpNqYcEVsk2OUf_r4iB0hSVCx-fE1qDuTX3pBd87VOV8vbnDWgHQzffgBleMJ7 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+C+and+immune+cell+function+in+inflammation+and+cancer&rft.jtitle=Biochemical+Society+transactions&rft.au=Ang%2C+Abel&rft.au=Pullar%2C+Juliet+M&rft.au=Currie%2C+Margaret+J&rft.au=Vissers%2C+Margreet+C+M&rft.date=2018-10-19&rft.eissn=1470-8752&rft.volume=46&rft.issue=5&rft.spage=1147&rft_id=info:doi/10.1042%2FBST20180169&rft_id=info%3Apmid%2F30301842&rft_id=info%3Apmid%2F30301842&rft.externalDocID=30301842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8752&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8752&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8752&client=summon |