Crash injury severity analysis using a two-layer Stacking framework
•A two-layer Stacking model is proposed to predict crash injury severity.•The fist layer combines three classification methods: RF, AdaBoost and GBDT.•The second layer predicts crash injury severity based on a Logistic Regression model.•Several traditional models are compared in binary and multi cla...
Uloženo v:
| Vydáno v: | Accident analysis and prevention Ročník 122; s. 226 - 238 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.01.2019
|
| Témata: | |
| ISSN: | 0001-4575, 1879-2057, 1879-2057 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A two-layer Stacking model is proposed to predict crash injury severity.•The fist layer combines three classification methods: RF, AdaBoost and GBDT.•The second layer predicts crash injury severity based on a Logistic Regression model.•Several traditional models are compared in binary and multi classification experiments.•Prediction results show the Stacking model can achieve better performance.
Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy. |
|---|---|
| AbstractList | Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy.Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy. •A two-layer Stacking model is proposed to predict crash injury severity.•The fist layer combines three classification methods: RF, AdaBoost and GBDT.•The second layer predicts crash injury severity based on a Logistic Regression model.•Several traditional models are compared in binary and multi classification experiments.•Prediction results show the Stacking model can achieve better performance. Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy. Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in this study to predict the crash injury severity: The fist layer integrates advantages of three base classification methods: RF (Random Forests), AdaBoost (Adaptive Boosting), and GBDT (Gradient Boosting Decision Tree); the second layer completes classification of crash injury severity based on a Logistic Regression model. A total of 5538 crashes were recorded at 326 freeway diverge areas. In the model calibration, several parameters including the number of trees in three base classification methods, learning rate, and regularization coefficient are optimized via a systematic grid search approach. In the model validation, the performance of the Stacking model is compared with several traditional models including the Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests (RF) in the multi classification experiments. The prediction results show that Stacking model achieves superior performance evaluated by two indicators: accuracy and recall. Furthermore, all the factors used in severity prediction are classified into different categories according to their influence on the results, and sensitivity analysis of several significant factors is finally implemented to explore the impact of their value variation on the prediction accuracy. |
| Author | Tang, Jinjun Han, Chunyang Huang, Helai Li, Zhibin Liang, Jian |
| Author_xml | – sequence: 1 givenname: Jinjun surname: Tang fullname: Tang, Jinjun organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China – sequence: 2 givenname: Jian surname: Liang fullname: Liang, Jian organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China – sequence: 3 givenname: Chunyang surname: Han fullname: Han, Chunyang organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China – sequence: 4 givenname: Zhibin surname: Li fullname: Li, Zhibin email: lizhibin@seu.edu.cn organization: School of Transportation, Southeast University, Nanjing, 210096, China – sequence: 5 givenname: Helai orcidid: 0000-0003-2334-4124 surname: Huang fullname: Huang, Helai organization: School of Traffic and Transportation Engineering, Smart Transport Key Laboratory of Hunan Province, Central South University, Changsha, 410075, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30390518$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQhi0EgvLxA1hQRpYUO4ljR0yo4kuqxADM1tm5gNs0KbZTlH-PqwIDA9PpXj3PSfcek_2u75CQc0anjLLyajEFWE8zymTcpzHZIxMmRZVmlIt9MqGUsrTggh-RY-8XcRVS8ENylNO8opzJCZnNHPj3xHaLwY2Jxw06G8YEOmhHb30yeNu9JZCEzz5tYUSXPAcwy23YOFjhZ--Wp-Sggdbj2fc8Ia93ty-zh3T-dP84u5mnpihESHMsBaOZNohQcxSy0qB1JUHSom4MLXKUUJWmNAXXuQCeSWh0ybKiNFhqnZ-Qy93dtes_BvRBraw32LbQYT94lbGs4jmtqIjoxTc66BXWau3sCtyofh6PANsBxvXeO2x-EUbVtly1ULFctS13G8UkOuKPY2yAYPsuOLDtv-b1zsRYz8aiU95Y7AzW1qEJqu7tP_YXs4uT6Q |
| CitedBy_id | crossref_primary_10_3390_su12198158 crossref_primary_10_3390_su17157105 crossref_primary_10_1177_1687814019851391 crossref_primary_10_1680_jmuen_25_00005 crossref_primary_10_1016_j_iatssr_2025_06_001 crossref_primary_10_1093_tse_tdad014 crossref_primary_10_1016_j_aap_2023_107378 crossref_primary_10_1016_j_physa_2019_123759 crossref_primary_10_1080_13588265_2020_1858665 crossref_primary_10_1016_j_aap_2022_106681 crossref_primary_10_1371_journal_pone_0229211 crossref_primary_10_1016_j_aap_2024_107662 crossref_primary_10_1007_s11356_023_30123_5 crossref_primary_10_1080_17457300_2021_1928233 crossref_primary_10_3390_ijerph18168327 crossref_primary_10_1080_13873954_2025_2509514 crossref_primary_10_1016_j_amar_2020_100123 crossref_primary_10_3390_app142310790 crossref_primary_10_3390_su11205768 crossref_primary_10_1371_journal_pone_0281901 crossref_primary_10_1080_17457300_2025_2485040 crossref_primary_10_3390_app13010233 crossref_primary_10_1016_j_ssci_2023_106381 crossref_primary_10_1080_19439962_2020_1754983 crossref_primary_10_1016_j_eswa_2021_115658 crossref_primary_10_1109_ACCESS_2020_3040165 crossref_primary_10_3390_app15189884 crossref_primary_10_1109_ACCESS_2024_3443524 crossref_primary_10_1080_17457300_2020_1849312 crossref_primary_10_1016_j_jsr_2021_02_012 crossref_primary_10_1038_s41598_022_15693_7 crossref_primary_10_1186_s12911_020_01358_w crossref_primary_10_1016_j_trip_2025_101457 crossref_primary_10_1155_2020_9628957 crossref_primary_10_1016_j_aap_2023_107382 crossref_primary_10_1016_j_compeleceng_2024_109101 crossref_primary_10_1080_23249935_2020_1733132 crossref_primary_10_1016_j_aap_2024_107712 crossref_primary_10_1016_j_physa_2019_02_038 crossref_primary_10_1080_19439962_2022_2026543 crossref_primary_10_1080_19427867_2025_2500817 crossref_primary_10_1007_s11053_025_10498_7 crossref_primary_10_1038_s41598_025_88896_3 crossref_primary_10_3390_app13116773 crossref_primary_10_1155_stc_6695396 crossref_primary_10_1371_journal_pone_0219344 crossref_primary_10_3390_info15030145 crossref_primary_10_1016_j_heliyon_2024_e35595 crossref_primary_10_1016_j_jsr_2025_06_028 crossref_primary_10_1109_TMECH_2020_3043471 crossref_primary_10_1016_j_aap_2021_106149 crossref_primary_10_1016_j_aap_2022_106622 crossref_primary_10_3390_app14010279 crossref_primary_10_1016_j_apgeog_2024_103440 crossref_primary_10_1016_j_aap_2021_106261 crossref_primary_10_3390_ijerph16162942 crossref_primary_10_1080_15389588_2025_2459297 crossref_primary_10_1177_03611981251337460 crossref_primary_10_1016_j_engappai_2024_109386 crossref_primary_10_1016_j_aap_2023_107271 crossref_primary_10_1016_j_eswa_2021_116389 crossref_primary_10_1016_j_jsr_2021_12_007 crossref_primary_10_1111_mice_70023 crossref_primary_10_3233_JIFS_234155 crossref_primary_10_1155_2021_8453465 crossref_primary_10_1080_19439962_2022_2098442 crossref_primary_10_1016_j_aap_2024_107603 crossref_primary_10_3390_infrastructures5070061 crossref_primary_10_1038_s41598_025_16477_5 crossref_primary_10_1016_j_petrol_2020_107314 crossref_primary_10_3390_ijerph17062066 crossref_primary_10_1080_15389588_2023_2297168 crossref_primary_10_1016_j_physa_2019_03_062 crossref_primary_10_1155_2023_7833555 crossref_primary_10_1371_journal_pone_0263030 crossref_primary_10_1155_2020_6401082 crossref_primary_10_1155_2021_5543698 crossref_primary_10_1177_03611981241302340 crossref_primary_10_1016_j_aap_2022_106617 crossref_primary_10_1016_j_ergon_2021_103192 crossref_primary_10_3390_su12020620 crossref_primary_10_1109_ACCESS_2019_2941280 crossref_primary_10_1007_s12652_022_04441_4 crossref_primary_10_1186_s12879_024_09138_x crossref_primary_10_1016_j_aap_2021_106034 crossref_primary_10_1016_j_energy_2025_134927 crossref_primary_10_1016_j_ssci_2025_106843 crossref_primary_10_1016_j_jsr_2025_06_011 crossref_primary_10_1016_j_aap_2024_107693 crossref_primary_10_1016_j_autcon_2022_104686 crossref_primary_10_1007_s40890_024_00212_2 crossref_primary_10_1016_j_aap_2025_108201 crossref_primary_10_1016_j_heliyon_2024_e30117 crossref_primary_10_1155_2020_4079617 crossref_primary_10_3390_su16229642 crossref_primary_10_1016_j_oceaneng_2025_122570 crossref_primary_10_3390_rs15194713 crossref_primary_10_3390_ijerph17020572 crossref_primary_10_1016_j_eswa_2023_121782 crossref_primary_10_3390_brainsci13091326 crossref_primary_10_1109_ACCESS_2019_2916691 crossref_primary_10_1371_journal_pone_0221128 crossref_primary_10_1016_j_jnlssr_2025_100250 crossref_primary_10_1016_j_aap_2020_105833 crossref_primary_10_1016_j_physa_2019_122348 crossref_primary_10_1080_23311916_2020_1762525 crossref_primary_10_1177_03611981221134629 crossref_primary_10_21597_jist_1285239 crossref_primary_10_1016_j_engappai_2024_107933 crossref_primary_10_1080_19439962_2025_2471300 crossref_primary_10_1016_j_aap_2024_107740 crossref_primary_10_1080_01441647_2021_1954108 crossref_primary_10_3390_su132212773 crossref_primary_10_1016_j_compbiomed_2022_106393 crossref_primary_10_1016_j_tra_2023_103696 crossref_primary_10_1177_14759217241270792 crossref_primary_10_3233_JAD_215654 crossref_primary_10_1002_hfm_20975 crossref_primary_10_1177_03611981221084682 crossref_primary_10_3390_app12020828 crossref_primary_10_1016_j_aap_2020_105666 crossref_primary_10_1016_j_treng_2025_100352 crossref_primary_10_3390_su11102730 crossref_primary_10_1016_j_eswa_2020_113855 crossref_primary_10_3390_ijerph16132308 crossref_primary_10_1016_j_jsr_2022_12_005 crossref_primary_10_1016_j_physa_2019_121789 crossref_primary_10_3390_ijerph182312725 crossref_primary_10_3390_ijerph17207466 crossref_primary_10_3390_s21248401 crossref_primary_10_1371_journal_pone_0214966 crossref_primary_10_1109_TWC_2021_3123948 crossref_primary_10_1016_j_jenvman_2023_118790 crossref_primary_10_1080_17457300_2023_2202660 crossref_primary_10_1155_2020_5261580 crossref_primary_10_1080_17457300_2024_2351972 crossref_primary_10_1016_j_physa_2019_03_036 crossref_primary_10_1080_23249935_2025_2511816 crossref_primary_10_1155_2020_6623739 crossref_primary_10_1080_19439962_2024_2364661 crossref_primary_10_1080_23249935_2024_2437477 crossref_primary_10_1080_17457300_2023_2267040 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_3390_su13116102 crossref_primary_10_3390_e22111191 crossref_primary_10_1016_j_geoen_2024_212896 crossref_primary_10_1155_2021_3771640 crossref_primary_10_1080_10803548_2025_2485731 crossref_primary_10_1049_iet_its_2019_0361 crossref_primary_10_1049_itr2_70040 crossref_primary_10_1016_j_jneumeth_2020_109019 crossref_primary_10_1016_j_physa_2022_127277 crossref_primary_10_1016_j_aap_2021_106501 crossref_primary_10_1016_j_aap_2023_107119 crossref_primary_10_1108_ECAM_10_2024_1344 crossref_primary_10_1371_journal_pone_0217241 crossref_primary_10_1016_j_aap_2023_107235 crossref_primary_10_1016_j_physa_2019_123858 crossref_primary_10_14254_jsdtl_2022_7_2_1 crossref_primary_10_1177_0036850419886471 crossref_primary_10_1080_17457300_2024_2440939 crossref_primary_10_1016_j_jtrangeo_2023_103551 crossref_primary_10_1016_j_amar_2021_100182 crossref_primary_10_1155_2021_4216215 crossref_primary_10_1016_j_cscm_2022_e01653 crossref_primary_10_1016_j_amar_2021_100189 crossref_primary_10_1080_17457300_2025_2537683 crossref_primary_10_1155_2021_6652288 crossref_primary_10_3390_safety10010022 crossref_primary_10_1016_j_physa_2019_122774 crossref_primary_10_1080_17457300_2023_2180804 crossref_primary_10_3390_futuretransp2040052 crossref_primary_10_1016_j_aap_2020_105920 crossref_primary_10_1109_TITS_2025_3526217 crossref_primary_10_1016_j_trf_2023_07_014 crossref_primary_10_1177_1687814019841838 crossref_primary_10_1016_j_ssci_2024_106468 crossref_primary_10_1007_s10812_023_01491_0 crossref_primary_10_1155_2022_1716827 crossref_primary_10_1016_j_tre_2024_103678 crossref_primary_10_1016_j_aap_2025_108007 crossref_primary_10_1080_17457300_2025_2487635 crossref_primary_10_3390_electronics14173377 crossref_primary_10_3390_asi7020025 crossref_primary_10_1080_15389588_2019_1675154 crossref_primary_10_1155_2022_7239464 crossref_primary_10_1016_j_amar_2020_100153 |
| Cites_doi | 10.1016/j.aap.2014.09.006 10.1016/j.aap.2011.08.016 10.1016/j.amar.2014.09.001 10.1016/j.jsr.2009.05.003 10.1016/j.ins.2009.08.025 10.5539/mas.v7n10p11 10.1016/S0893-6080(05)80023-1 10.1177/0361198106195000104 10.1016/j.aap.2005.01.004 10.1016/j.aap.2011.05.016 10.1016/j.aap.2013.03.025 10.1016/j.aap.2012.09.006 10.1016/j.aap.2008.09.009 10.1016/j.aap.2016.02.011 10.1016/j.aap.2015.05.018 10.1016/j.aap.2010.12.026 10.1023/A:1010933404324 10.1016/j.eswa.2017.09.025 10.1214/aos/1013203451 10.3141/2024-11 10.1016/j.eswa.2009.02.039 10.1016/j.aap.2005.06.024 10.1016/j.aap.2017.08.008 10.1016/j.eswa.2013.05.027 10.1016/j.aap.2007.11.002 10.1016/j.amar.2015.11.002 10.3141/1746-02 10.1016/j.aap.2008.12.014 10.1016/j.ssci.2008.06.007 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.aap.2018.10.016 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Welfare & Social Work Public Health |
| EISSN | 1879-2057 |
| EndPage | 238 |
| ExternalDocumentID | 30390518 10_1016_j_aap_2018_10_016 S0001457518308546 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 23M 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABDMP ABFNM ABIVO ABJNI ABLVK ABMAC ABMMH ABMZM ABNUV ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AHRSL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKURH AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEH HMK HMO HMY HVGLF HZ~ IHE J1W JJJVA KOM LCYCR M29 M3W M3Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SPC SPCBC SSB SSG SSH SSO SSS SST SSZ T5K VH1 WUQ XPP ZCG ZGI ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c447t-3e67102bceead5e789babb98a804dfc043e8a96c6c45b37a528afb61246ce6bb3 |
| ISICitedReferencesCount | 213 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453338600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-4575 1879-2057 |
| IngestDate | Wed Oct 01 13:50:59 EDT 2025 Wed Feb 19 02:33:26 EST 2025 Tue Nov 18 22:23:38 EST 2025 Sat Nov 29 04:10:20 EST 2025 Fri Feb 23 02:33:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Severity classification Crash injury severity Random Forests Adaptive Boosting Stacking model Gradient Boosting Decision Tree |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c447t-3e67102bceead5e789babb98a804dfc043e8a96c6c45b37a528afb61246ce6bb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2334-4124 |
| PMID | 30390518 |
| PQID | 2129530907 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2129530907 pubmed_primary_30390518 crossref_primary_10_1016_j_aap_2018_10_016 crossref_citationtrail_10_1016_j_aap_2018_10_016 elsevier_sciencedirect_doi_10_1016_j_aap_2018_10_016 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Accident analysis and prevention |
| PublicationTitleAlternate | Accid Anal Prev |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Abdelwahab, Abdel-Aty (bib0005) 2001; 1746 Chen, Wang, Henk (bib0050) 2009; 36 Hauer (bib0090) 1997 Xu, Wong, Choi (bib0165) 2014; 3–4 Hauer, Ng, Lovell (bib0095) 1988; 1185 Li, Liu, Wang, Xu (bib0105) 2012; 45 Ye, Pendyala, Washington, Konduri, Oh (bib0170) 2009; 47 Abellán, López, Oña (bib0010) 2013; 40 Menahem, Rokach, Elovici (bib0130) 2009; 179 Bifet, Frank, Holmes, Pfahringer (bib0035) 2010; 13 American Association of state Highway and Transportation Officials (bib0015) 2010 Mauro, Luca, Acqua (bib0125) 2013; 7 Dong, Huang, Zheng (bib0070) 2015; 82 Ma, Kockelman (bib0110) 2006; 1950 Ye, Pendyala, Shankar, Konduri (bib0175) 2013; 57 Barua, El-Basyouny, Islam (bib0030) 2016; 9 Wolpert (bib0160) 1992; 5 Zeng, Huang (bib0180) 2014; 73 Anderson (bib0020) 2009; 41 Harb, Yan, Radwan, Su (bib0085) 2009; 41 Das, Abdel-Aty, Pande (bib0060) 2009; 40 Pei, Wong, Sze (bib0140) 2011; 43 Breiman (bib0045) 2001; 45 Schaffer (bib0145) 1994; vol. 89 Delen, Sharda, Bessonov (bib0065) 2006; 38 Freund, Schapire (bib0075) 1996 Chen, Zhang, Qian, Tarefder, Tian (bib0055) 2016; 90 Mahalel (bib0120) 1986; 1068 Oña, López, Abellán (bib0135) 2013; 50 Wang, Quddus, Ison (bib0155) 2011; 43 Tang, Liu, Zhang, Ke, Zou (bib0150) 2018; 91 Barua, El-Basyouny, Islam (bib0025) 2014; 3 Bijleveld (bib0040) 2005; 37 Friedman (bib0080) 2001; 29 Iranitalab, Khattak (bib0100) 2017; 108 Ma, Kockelman, Damien (bib0115) 2008; 40 Zhang, Xie (bib0185) 2007 Breiman (10.1016/j.aap.2018.10.016_bib0045) 2001; 45 Abdelwahab (10.1016/j.aap.2018.10.016_bib0005) 2001; 1746 Hauer (10.1016/j.aap.2018.10.016_bib0090) 1997 Mahalel (10.1016/j.aap.2018.10.016_bib0120) 1986; 1068 Mauro (10.1016/j.aap.2018.10.016_bib0125) 2013; 7 Ye (10.1016/j.aap.2018.10.016_bib0175) 2013; 57 Anderson (10.1016/j.aap.2018.10.016_bib0020) 2009; 41 Schaffer (10.1016/j.aap.2018.10.016_bib0145) 1994; vol. 89 American Association of state Highway and Transportation Officials (10.1016/j.aap.2018.10.016_bib0015) 2010 Wang (10.1016/j.aap.2018.10.016_bib0155) 2011; 43 Menahem (10.1016/j.aap.2018.10.016_bib0130) 2009; 179 Freund (10.1016/j.aap.2018.10.016_bib0075) 1996 Pei (10.1016/j.aap.2018.10.016_bib0140) 2011; 43 Chen (10.1016/j.aap.2018.10.016_bib0055) 2016; 90 Harb (10.1016/j.aap.2018.10.016_bib0085) 2009; 41 Iranitalab (10.1016/j.aap.2018.10.016_bib0100) 2017; 108 Li (10.1016/j.aap.2018.10.016_bib0105) 2012; 45 Das (10.1016/j.aap.2018.10.016_bib0060) 2009; 40 Dong (10.1016/j.aap.2018.10.016_bib0070) 2015; 82 Friedman (10.1016/j.aap.2018.10.016_bib0080) 2001; 29 Delen (10.1016/j.aap.2018.10.016_bib0065) 2006; 38 Wolpert (10.1016/j.aap.2018.10.016_bib0160) 1992; 5 Ye (10.1016/j.aap.2018.10.016_bib0170) 2009; 47 Barua (10.1016/j.aap.2018.10.016_bib0025) 2014; 3 Barua (10.1016/j.aap.2018.10.016_bib0030) 2016; 9 Tang (10.1016/j.aap.2018.10.016_bib0150) 2018; 91 Chen (10.1016/j.aap.2018.10.016_bib0050) 2009; 36 Ma (10.1016/j.aap.2018.10.016_bib0110) 2006; 1950 Hauer (10.1016/j.aap.2018.10.016_bib0095) 1988; 1185 Zeng (10.1016/j.aap.2018.10.016_bib0180) 2014; 73 Zhang (10.1016/j.aap.2018.10.016_bib0185) 2007 Abellán (10.1016/j.aap.2018.10.016_bib0010) 2013; 40 Ma (10.1016/j.aap.2018.10.016_bib0115) 2008; 40 Bifet (10.1016/j.aap.2018.10.016_bib0035) 2010; 13 Bijleveld (10.1016/j.aap.2018.10.016_bib0040) 2005; 37 Oña (10.1016/j.aap.2018.10.016_bib0135) 2013; 50 Xu (10.1016/j.aap.2018.10.016_bib0165) 2014; 3–4 |
| References_xml | – year: 2010 ident: bib0015 article-title: Highway Safety Manual – volume: 41 start-page: 359 year: 2009 end-page: 364 ident: bib0020 article-title: Kernel density estimation and k-means clustering to profile road accident hotspots publication-title: Accid. Anal. Prev. – year: 1997 ident: bib0090 article-title: Observational Before–After Studies in Road Safety – volume: 91 start-page: 452 year: 2018 end-page: 463 ident: bib0150 article-title: Lane-changes prediction based on adaptive fuzzy neural network publication-title: Expert Syst. Appl. – volume: 43 start-page: 1979 year: 2011 end-page: 1990 ident: bib0155 article-title: Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model publication-title: Accid. Anal. Prev. – volume: 3–4 start-page: 1 year: 2014 end-page: 10 ident: bib0165 article-title: A two-stage bivariate logistic-Tobit model for the safety analysis of signalized intersections publication-title: Anal. Methods Accid. Res. – volume: 73 start-page: 351 year: 2014 end-page: 358 ident: bib0180 article-title: A stable and optimized neural network model for crash injury severity prediction publication-title: Accid. Anal. Prev. – volume: 40 start-page: 317 year: 2009 end-page: 327 ident: bib0060 article-title: Using conditional inference forests to identify the factors affecting crash severity on arterial corridors publication-title: J. Saf. Res. – volume: 108 start-page: 27 year: 2017 end-page: 36 ident: bib0100 article-title: Comparison of four statistical and machine learning methods for crash severity prediction publication-title: Accid. Anal. Prev. – start-page: 148 year: 1996 end-page: 156 ident: bib0075 article-title: Experiments with a new boosting algorithm publication-title: Proceedings of the 13th International Conference on Machine Learning – volume: 38 start-page: 434 year: 2006 end-page: 444 ident: bib0065 article-title: Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks publication-title: Accid. Anal. Prev. – start-page: 92 year: 2007 end-page: 99 ident: bib0185 article-title: Forecasting of short-term freeway volume with v-support vector machines publication-title: Transp. Res. Record – volume: 179 start-page: 4097 year: 2009 end-page: 4122 ident: bib0130 article-title: Troika – an improved stacking schema for classification tasks publication-title: Inf. Sci. (Ny) – volume: 57 start-page: 140 year: 2013 end-page: 149 ident: bib0175 article-title: A simultaneous equations model of crash frequency by severity level for freeway sections publication-title: Accid. Anal. Prev. – volume: 1746 start-page: 6 year: 2001 end-page: 13 ident: bib0005 article-title: Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections publication-title: Transp. Res. Rec. – volume: 9 start-page: 1 year: 2016 end-page: 15 ident: bib0030 article-title: Multivariate random parameters collision count data models with spatial heterogeneity publication-title: Anal. Methods Accid. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0045 article-title: Random forests publication-title: Mach. Learn. – volume: 43 start-page: 1160 year: 2011 end-page: 1166 ident: bib0140 article-title: A joint-probability approach to crash prediction models publication-title: Accid. Anal. Prev. – volume: 1950 start-page: 24 year: 2006 end-page: 34 ident: bib0110 article-title: Bayesian multivariate Poisson regression for models of injury count, by severity publication-title: Transp. Res. Rec. – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0080 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 36 start-page: 10976 year: 2009 end-page: 10986 ident: bib0050 article-title: Construct support vector machine ensemble to detect traffic incident publication-title: Expert Syst. Appl. – volume: 13 start-page: 225 year: 2010 end-page: 240 ident: bib0035 article-title: Accurate ensembles for data streams: combining restricted hoeffding trees using stacking publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 443 year: 2009 end-page: 452 ident: bib0170 article-title: A simultaneous equations model of crash frequency by collision type for rural intersections publication-title: Saf. Sci. – volume: vol. 89 year: 1994 ident: bib0145 article-title: Cross-validation, stacking and Bi-level stacking: meta-methods for classification learning publication-title: Selecting Models from Data. Lecture Notes in Statistics – volume: 40 start-page: 6047 year: 2013 end-page: 6054 ident: bib0010 article-title: Analysis of traffic accident severity using decision rules via decision trees publication-title: Expert Syst. Appl. – volume: 45 start-page: 478 year: 2012 end-page: 486 ident: bib0105 article-title: Using support vector machine models for crash injury severity analysis publication-title: Accid. Anal. Prev. – volume: 82 start-page: 192 year: 2015 end-page: 198 ident: bib0070 article-title: Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects publication-title: Accid. Anal. Prev. – volume: 50 start-page: 1151 year: 2013 end-page: 1160 ident: bib0135 article-title: Extracting decision rules from police accident reports through decision trees publication-title: Accid. Anal. Prev. – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: bib0160 article-title: Stacked generalization publication-title: Neural Netw. – volume: 41 start-page: 98 year: 2009 end-page: 107 ident: bib0085 article-title: Exploring precrash maneuvers using classification trees and random forests publication-title: Accid. Anal. Prev. – volume: 40 start-page: 964 year: 2008 end-page: 975 ident: bib0115 article-title: A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods publication-title: Accid. Anal. Prev. – volume: 1068 start-page: 85 year: 1986 end-page: 89 ident: bib0120 article-title: A note on accident risk publication-title: Transp. Res. Rec. – volume: 37 start-page: 591 year: 2005 end-page: 600 ident: bib0040 article-title: The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes publication-title: Accid. Anal. Prev. – volume: 90 start-page: 128 year: 2016 end-page: 139 ident: bib0055 article-title: Investigating driver injury severity patterns in rollover crashes using support vector machine models publication-title: Accid. Anal. Prev. – volume: 3 start-page: 28 year: 2014 end-page: 43 ident: bib0025 article-title: A full Bayesian multivariate count data model of collision severity with spatial correlation publication-title: Anal. Methods Accid. Res. – volume: 1185 start-page: 48 year: 1988 end-page: 61 ident: bib0095 article-title: Estimation of safety at signalized intersections publication-title: Transp. Res. Rec. – volume: 7 start-page: 11 year: 2013 end-page: 19 ident: bib0125 article-title: Using a K-means clustering algorithm to examine patterns of vehicle crashes in before-after analysis publication-title: Mod. Appl. Sci. – volume: 73 start-page: 351 year: 2014 ident: 10.1016/j.aap.2018.10.016_bib0180 article-title: A stable and optimized neural network model for crash injury severity prediction publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2014.09.006 – volume: 45 start-page: 478 issue: 2 year: 2012 ident: 10.1016/j.aap.2018.10.016_bib0105 article-title: Using support vector machine models for crash injury severity analysis publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.08.016 – volume: 3 start-page: 28 year: 2014 ident: 10.1016/j.aap.2018.10.016_bib0025 article-title: A full Bayesian multivariate count data model of collision severity with spatial correlation publication-title: Anal. Methods Accid. Res. doi: 10.1016/j.amar.2014.09.001 – volume: 40 start-page: 317 issue: 4 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0060 article-title: Using conditional inference forests to identify the factors affecting crash severity on arterial corridors publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2009.05.003 – volume: 1068 start-page: 85 year: 1986 ident: 10.1016/j.aap.2018.10.016_bib0120 article-title: A note on accident risk publication-title: Transp. Res. Rec. – volume: 179 start-page: 4097 issue: 24 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0130 article-title: Troika – an improved stacking schema for classification tasks publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2009.08.025 – volume: 7 start-page: 11 issue: 10 year: 2013 ident: 10.1016/j.aap.2018.10.016_bib0125 article-title: Using a K-means clustering algorithm to examine patterns of vehicle crashes in before-after analysis publication-title: Mod. Appl. Sci. doi: 10.5539/mas.v7n10p11 – year: 2010 ident: 10.1016/j.aap.2018.10.016_bib0015 – volume: vol. 89 year: 1994 ident: 10.1016/j.aap.2018.10.016_bib0145 article-title: Cross-validation, stacking and Bi-level stacking: meta-methods for classification learning – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.aap.2018.10.016_bib0160 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 1950 start-page: 24 year: 2006 ident: 10.1016/j.aap.2018.10.016_bib0110 article-title: Bayesian multivariate Poisson regression for models of injury count, by severity publication-title: Transp. Res. Rec. doi: 10.1177/0361198106195000104 – volume: 37 start-page: 591 issue: 4 year: 2005 ident: 10.1016/j.aap.2018.10.016_bib0040 article-title: The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.01.004 – volume: 43 start-page: 1979 issue: 6 year: 2011 ident: 10.1016/j.aap.2018.10.016_bib0155 article-title: Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2011.05.016 – volume: 57 start-page: 140 year: 2013 ident: 10.1016/j.aap.2018.10.016_bib0175 article-title: A simultaneous equations model of crash frequency by severity level for freeway sections publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2013.03.025 – volume: 50 start-page: 1151 issue: 2 year: 2013 ident: 10.1016/j.aap.2018.10.016_bib0135 article-title: Extracting decision rules from police accident reports through decision trees publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2012.09.006 – volume: 41 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0085 article-title: Exploring precrash maneuvers using classification trees and random forests publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2008.09.009 – volume: 90 start-page: 128 year: 2016 ident: 10.1016/j.aap.2018.10.016_bib0055 article-title: Investigating driver injury severity patterns in rollover crashes using support vector machine models publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.02.011 – volume: 82 start-page: 192 year: 2015 ident: 10.1016/j.aap.2018.10.016_bib0070 article-title: Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2015.05.018 – volume: 43 start-page: 1160 issue: 3 year: 2011 ident: 10.1016/j.aap.2018.10.016_bib0140 article-title: A joint-probability approach to crash prediction models publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2010.12.026 – year: 1997 ident: 10.1016/j.aap.2018.10.016_bib0090 – volume: 13 start-page: 225 issue: 13 year: 2010 ident: 10.1016/j.aap.2018.10.016_bib0035 article-title: Accurate ensembles for data streams: combining restricted hoeffding trees using stacking publication-title: J. Mach. Learn. Res. – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.aap.2018.10.016_bib0045 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 91 start-page: 452 year: 2018 ident: 10.1016/j.aap.2018.10.016_bib0150 article-title: Lane-changes prediction based on adaptive fuzzy neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.025 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.aap.2018.10.016_bib0080 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – start-page: 92 year: 2007 ident: 10.1016/j.aap.2018.10.016_bib0185 article-title: Forecasting of short-term freeway volume with v-support vector machines publication-title: Transp. Res. Record doi: 10.3141/2024-11 – volume: 36 start-page: 10976 issue: 8 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0050 article-title: Construct support vector machine ensemble to detect traffic incident publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.039 – volume: 38 start-page: 434 issue: 3 year: 2006 ident: 10.1016/j.aap.2018.10.016_bib0065 article-title: Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2005.06.024 – volume: 108 start-page: 27 year: 2017 ident: 10.1016/j.aap.2018.10.016_bib0100 article-title: Comparison of four statistical and machine learning methods for crash severity prediction publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2017.08.008 – volume: 1185 start-page: 48 year: 1988 ident: 10.1016/j.aap.2018.10.016_bib0095 article-title: Estimation of safety at signalized intersections publication-title: Transp. Res. Rec. – volume: 40 start-page: 6047 issue: 15 year: 2013 ident: 10.1016/j.aap.2018.10.016_bib0010 article-title: Analysis of traffic accident severity using decision rules via decision trees publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.05.027 – volume: 3–4 start-page: 1 year: 2014 ident: 10.1016/j.aap.2018.10.016_bib0165 article-title: A two-stage bivariate logistic-Tobit model for the safety analysis of signalized intersections publication-title: Anal. Methods Accid. Res. – volume: 40 start-page: 964 issue: 3 year: 2008 ident: 10.1016/j.aap.2018.10.016_bib0115 article-title: A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.11.002 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.aap.2018.10.016_bib0030 article-title: Multivariate random parameters collision count data models with spatial heterogeneity publication-title: Anal. Methods Accid. Res. doi: 10.1016/j.amar.2015.11.002 – volume: 1746 start-page: 6 year: 2001 ident: 10.1016/j.aap.2018.10.016_bib0005 article-title: Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections publication-title: Transp. Res. Rec. doi: 10.3141/1746-02 – volume: 41 start-page: 359 issue: 3 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0020 article-title: Kernel density estimation and k-means clustering to profile road accident hotspots publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2008.12.014 – start-page: 148 year: 1996 ident: 10.1016/j.aap.2018.10.016_bib0075 article-title: Experiments with a new boosting algorithm publication-title: Proceedings of the 13th International Conference on Machine Learning – volume: 47 start-page: 443 issue: 3 year: 2009 ident: 10.1016/j.aap.2018.10.016_bib0170 article-title: A simultaneous equations model of crash frequency by collision type for rural intersections publication-title: Saf. Sci. doi: 10.1016/j.ssci.2008.06.007 |
| SSID | ssj0007875 |
| Score | 2.6261854 |
| Snippet | •A two-layer Stacking model is proposed to predict crash injury severity.•The fist layer combines three classification methods: RF, AdaBoost and GBDT.•The... Crash injury severity analysis is useful for traffic management agency to further understand severity of crashes. A two-layer Stacking framework is proposed in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 226 |
| SubjectTerms | Accidents, Traffic - classification Accidents, Traffic - statistics & numerical data Adaptive Boosting Built Environment - statistics & numerical data Crash injury severity Decision Trees Gradient Boosting Decision Tree Humans Injury Severity Score Logistic Models Neural Networks (Computer) Random Forests Severity classification Stacking model Support Vector Machine Wounds and Injuries - classification Wounds and Injuries - epidemiology |
| Title | Crash injury severity analysis using a two-layer Stacking framework |
| URI | https://dx.doi.org/10.1016/j.aap.2018.10.016 https://www.ncbi.nlm.nih.gov/pubmed/30390518 https://www.proquest.com/docview/2129530907 |
| Volume | 122 |
| WOSCitedRecordID | wos000453338600024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2057 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007875 issn: 0001-4575 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbYxgMSQjBuhTEZCfFAlSptnNh-rKqhgdCExIC-RceuI1qqdGpTGP-e41syhjYBEi9RayV25PPl-PPxuRDyghlA0VZpIgwvEgaCJQrlnsxkpU2RVkY6b_dP7_jJiZhO5ftg0924cgK8rsX5uTz7r6LGNhS2DZ39C3G3nWID_kah4xXFjtc_EvxkDRtrxljgbPVx3TO2PF0fYvKRrTMOQL_5vkqWgITb8k391TlURketi4x1rLWtO9p0PYTUAsFRstv6B99eO3Ln5zNvmzsYHkM46d_WPyCsnO5ed1LyZa5CNvBgjLDxT78YI9oomc4lyWtd3KfmvkLKwHhFKxAQo9Qnp241sQ9Rjrp0VFxYlkc-CcxvGt8bHxYDAJt9dCgG1ldveCm7tluvP7j9oDtnypBosmKH7I14LlEX7o3fHE3ftis4KjFf-SK8dzwNd36Blwa6is9ctV9xvOX0LrkTNhx07IFyj9ww9T657a211Aeh7ZMDH6VNP5tlBWtDX9LYgGi4TyYOU9RjikZM0YgI6jBFgbaYohFTtMXUA_Lx9dHp5DgJ1TcSzRhvkswUln0qZFEwyw0XUoFSUoBI2azSKcuMAFnoQrNcZRzykYBKIWFmBX7lSmUPyW69qs1jQlmVIdHOM5urkA25UcpgRzpV9k-WD3skjXNY6pCa3lZIWZbRB3FR4rSXdtptE7b0yKv2kTOfl-W6m1kUTBmIpSeMJaLouseeRyGWqHTtSRrUZrXdlMj3ZJ6lMuU98shLt30L5IQ255148m-DPiW3ug_rgOw26615Rm7qb818sz4kO3wqDgNefwJps7Ap |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crash+injury+severity+analysis+using+a+two-layer+Stacking+framework&rft.jtitle=Accident+analysis+and+prevention&rft.au=Tang%2C+Jinjun&rft.au=Liang%2C+Jian&rft.au=Han%2C+Chunyang&rft.au=Li%2C+Zhibin&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0001-4575&rft.eissn=1879-2057&rft.volume=122&rft.spage=226&rft.epage=238&rft_id=info:doi/10.1016%2Fj.aap.2018.10.016&rft.externalDocID=S0001457518308546 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4575&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4575&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4575&client=summon |