Hybridized Methods for Quantum Simulation in the Interaction Picture

Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Quantum (Vienna, Austria) Ročník 6; s. 780
Hlavní autori: Rajput, Abhishek, Roggero, Alessandro, Wiebe, Nathan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Quantum Science Open Community 17.08.2022
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Predmet:
ISSN:2521-327X, 2521-327X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as log 2 ⁡ Λ in the electric cutoff Λ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter λ used to impose an energy cost on time-evolution into an unphysical subspace.
AbstractList Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as log2⁡Λ in the electric cutoff Λ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter λ used to impose an energy cost on time-evolution into an unphysical subspace.
Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as log 2 ⁡ Λ in the electric cutoff Λ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter λ used to impose an energy cost on time-evolution into an unphysical subspace.
Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as $\log^2 \Lambda$ in the electric cutoff $\Lambda$ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $\lambda$ used to impose an energy cost on time-evolution into an unphysical subspace.
ArticleNumber 780
Author Roggero, Alessandro
Rajput, Abhishek
Wiebe, Nathan
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Rajput
  fullname: Rajput, Abhishek
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA
– sequence: 2
  givenname: Alessandro
  surname: Roggero
  fullname: Roggero, Alessandro
  organization: InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195, USA, Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy
– sequence: 3
  givenname: Nathan
  surname: Wiebe
  fullname: Wiebe, Nathan
  organization: Department of Physics, University of Washington, Seattle, WA 98195, USA, Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada, Pacific Northwest National Laboratory, Richland, WA 99354, USA
BackLink https://www.osti.gov/servlets/purl/2281549$$D View this record in Osti.gov
BookMark eNp1kUtLAzEUhYMoWLU_wN3gfjTvm1lKfbSgqKjgLqR52JR2opl0UX-9Y6sggqt7OXzncLnnAO22qfUIHRN8Silj5Oy9ppjSGquaQA0K76ABFZTUjMLL7q99Hw27bo4xpgqkVHyALsbraY4ufnhX3foyS66rQsrVw8q0ZbWsHuNytTAlpraKbVVmvpq0xWdjN9J9tGWV_RHaC2bR-eH3PETPV5dPo3F9c3c9GZ3f1JZzKDVrggKigpTABTOEU7CcGIynU98ASMOoEkYGjIXyrrFequBEMK4xwAQYdogm21yXzFy_5bg0ea2TiXojpPyqTS7RLrzGXjEOsiGBeA7cTUEqLKltWHBECNVnnWyzUlei7mws3s5saltvi6ZUEcGbHoItZHPquuyD7rnNN0o2caEJ1psC9Lv-KkBjpQnovoDeSf44f8793_MJTyWIvQ
CitedBy_id crossref_primary_10_3390_e25020234
crossref_primary_10_1038_s43588_022_00374_2
crossref_primary_10_1103_PRXQuantum_5_010345
crossref_primary_10_1103_PRXQuantum_4_030323
crossref_primary_10_1038_s41534_023_00706_8
crossref_primary_10_1103_PhysRevD_111_043038
crossref_primary_10_3390_app13010539
crossref_primary_10_1103_kw39_yxq5
crossref_primary_10_1103_PhysRevA_107_032414
crossref_primary_10_1088_0256_307X_41_7_070301
crossref_primary_10_1103_PhysRevD_107_023007
crossref_primary_10_1002_wcms_70020
crossref_primary_10_1007_s00220_025_05314_5
crossref_primary_10_1103_PRXQuantum_5_020330
crossref_primary_10_1088_2058_9565_addf75
crossref_primary_10_1103_PRXQuantum_4_020323
crossref_primary_10_1103_PRXQuantum_5_040320
crossref_primary_10_22331_q_2025_04_01_1682
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1103_PRXQuantum_5_040316
crossref_primary_10_1103_PhysRevResearch_6_013106
crossref_primary_10_1103_PhysRevD_111_094505
Cites_doi 10.1137/080734479
10.1017/9781108499996
10.48550/arXiv.2105.12767
10.22331/q-2020-04-20-254
10.1126/science.273.5278.1073
10.1103/PhysRevD.13.1043
10.1007/s11128-021-03348-x
10.1073/pnas.1619152114
10.1007/s10773-017-3389-4
10.1145/2591796.2591854
10.1103/PhysRevD.11.395
10.1017/CBO9780511976667
10.26421/qic12.11-12
10.1103/PhysRevC.101.065805
10.48550/ARXIV.QUANT-PH/0504050
10.1103/PhysRevD.104.103016
10.1007/s00023-021-01111-7
10.1088/0305-4470/15/10/028
10.1088/0034-4885/75/2/022001
10.1103/PhysRevD.101.074038
10.1126/science.1217069
10.1103/PhysRevA.92.062318
10.1103/PhysRev.128.2425
10.1103/PhysRevLett.97.241101
10.48550/arXiv.quant-ph/0302079
10.48550/ARXIV.1805.00675
10.1103/PhysRevA.103.042419
10.1016/0003-4916(75)90212-2
10.1038/nature18318
10.1038/s41534-018-0071-5
10.1103/PhysRevD.84.065008
10.1103/PhysRevA.99.042301
10.1103/PhysRevX.6.011023
10.1145/3313276.3316366
10.1103/PhysRevA.87.022328
10.1146/annurev.nucl.012809.104524
10.1103/PhysRevD.104.123023
10.1103/prxquantum.2.040203
10.1007/s00220-006-0150-x
10.48550/arXiv.2003.02831
10.1103/physrevlett.106.170501
10.1126/science.1113479
10.1103/PhysRevA.99.042314
10.1103/PhysRevA.98.032331
10.1103/physrevlett.123.070503
10.1103/physrevx.6.041067
10.1088/1751-8113/43/6/065203
10.1103/physrevx.8.041015
10.1017/CBO9781139644167
10.1007/jhep11(2013)158
10.1103/PhysRevD.100.083001
10.1017/CBO9781139020411
10.1103/PhysRevX.11.011020
10.1103/PhysRevLett.120.110501
10.1103/PhysRevX.3.041018
10.48550/arXiv.quant-ph/0410184
10.22331/q-2022-08-04-773
10.1145/780542.780552
10.22331/q-2019-10-07-190
10.24033/bsmf.90
10.1016/j.nuclphysb.2016.02.012
10.22331/q-2020-08-10-306
10.1103/PhysRevLett.121.010501
10.48550/arXiv.1709.02705
10.1103/PhysRevLett.118.010501
10.1103/prxquantum.1.020312
10.1016/0370-2693(92)91887-F
10.1103/PhysRevD.104.063009
10.1007/BF02650179
10.22331/q-2019-07-12-163
ContentType Journal Article
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
– name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.22331/q-2022-08-17-780
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2521-327X
ExternalDocumentID oai_doaj_org_article_0e8347691f1e474db768062c93fd1558
2281549
10_22331_q_2022_08_17_780
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OIOZB
OTOTI
ID FETCH-LOGICAL-c447t-39f8718f667453a1427c41a00bbe9776a3285a6f0058ed9ce68fd5fad9a7357a3
IEDL.DBID DOA
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2521-327X
IngestDate Fri Oct 03 12:46:35 EDT 2025
Mon Feb 26 05:26:01 EST 2024
Tue Nov 18 22:00:53 EST 2025
Sat Nov 29 03:16:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-39f8718f667453a1427c41a00bbe9776a3285a6f0058ed9ce68fd5fad9a7357a3
Notes PNNL-SA-179363
AC05-76RL01830; SC0020970; SC0012704
USDOE Office of Science (SC), Nuclear Physics (NP)
OpenAccessLink https://doaj.org/article/0e8347691f1e474db768062c93fd1558
ParticipantIDs doaj_primary_oai_doaj_org_article_0e8347691f1e474db768062c93fd1558
osti_scitechconnect_2281549
crossref_citationtrail_10_22331_q_2022_08_17_780
crossref_primary_10_22331_q_2022_08_17_780
PublicationCentury 2000
PublicationDate 2022-08-17
PublicationDateYYYYMMDD 2022-08-17
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Quantum (Vienna, Austria)
PublicationYear 2022
Publisher Quantum Science Open Community
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Publisher_xml – name: Quantum Science Open Community
– name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
References 44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
0
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 67
  doi: 10.1137/080734479
– ident: 29
  doi: 10.1017/9781108499996
– ident: 21
  doi: 10.48550/arXiv.2105.12767
– ident: 23
  doi: 10.22331/q-2020-04-20-254
– ident: 1
  doi: 10.1126/science.273.5278.1073
– ident: 41
  doi: 10.1103/PhysRevD.13.1043
– ident: 57
  doi: 10.1007/s11128-021-03348-x
– ident: 3
  doi: 10.1073/pnas.1619152114
– ident: 43
  doi: 10.1007/s10773-017-3389-4
– ident: 18
  doi: 10.1145/2591796.2591854
– ident: 40
  doi: 10.1103/PhysRevD.11.395
– ident: 31
  doi: 10.1017/CBO9780511976667
– ident: 17
  doi: 10.26421/qic12.11-12
– ident: 52
  doi: 10.1103/PhysRevC.101.065805
– ident: 60
  doi: 10.48550/ARXIV.QUANT-PH/0504050
– ident: 54
  doi: 10.1103/PhysRevD.104.103016
– ident: 69
  doi: 10.1007/s00023-021-01111-7
– ident: 63
  doi: 10.1088/0305-4470/15/10/028
– ident: 68
  doi: 10.1088/0034-4885/75/2/022001
– ident: 5
  doi: 10.1103/PhysRevD.101.074038
– ident: 4
  doi: 10.1126/science.1217069
– ident: 32
  doi: 10.1103/PhysRevA.92.062318
– ident: 33
  doi: 10.1103/PhysRev.128.2425
– ident: 49
  doi: 10.1103/PhysRevLett.97.241101
– ident: 66
  doi: 10.48550/arXiv.quant-ph/0302079
– ident: 20
  doi: 10.48550/ARXIV.1805.00675
– ident: 16
  doi: 10.1103/PhysRevA.103.042419
– ident: 34
  doi: 10.1016/0003-4916(75)90212-2
– ident: 38
  doi: 10.1038/nature18318
– ident: 13
  doi: 10.1038/s41534-018-0071-5
– ident: 58
  doi: 10.1103/PhysRevD.84.065008
– ident: 65
  doi: 10.1103/PhysRevA.99.042301
– ident: 36
  doi: 10.1103/PhysRevX.6.011023
– ident: 12
  doi: 10.1145/3313276.3316366
– ident: 45
  doi: 10.1103/PhysRevA.87.022328
– ident: 50
  doi: 10.1146/annurev.nucl.012809.104524
– ident: 55
  doi: 10.1103/PhysRevD.104.123023
– ident: 15
  doi: 10.1103/prxquantum.2.040203
– ident: 6
  doi: 10.1007/s00220-006-0150-x
– ident: 27
  doi: 10.48550/arXiv.2003.02831
– ident: 8
  doi: 10.1103/physrevlett.106.170501
– ident: 2
  doi: 10.1126/science.1113479
– ident: 19
  doi: 10.1103/PhysRevA.99.042314
– ident: 39
  doi: 10.1103/PhysRevA.98.032331
– ident: 22
  doi: 10.1103/physrevlett.123.070503
– ident: 26
  doi: 10.1103/physrevx.6.041067
– ident: 7
  doi: 10.1088/1751-8113/43/6/065203
– ident: 24
  doi: 10.1103/physrevx.8.041015
– ident: 30
  doi: 10.1017/CBO9781139644167
– ident: 35
  doi: 10.1007/jhep11(2013)158
– ident: 53
  doi: 10.1103/PhysRevD.100.083001
– ident: 62
  doi: 10.1017/CBO9781139020411
– ident: 9
  doi: 10.1103/PhysRevX.11.011020
– ident: 59
  doi: 10.1103/PhysRevLett.120.110501
– ident: 37
  doi: 10.1103/PhysRevX.3.041018
– ident: 46
  doi: 10.48550/arXiv.quant-ph/0410184
– ident: 44
  doi: 10.22331/q-2022-08-04-773
– ident: 64
  doi: 10.1145/780542.780552
– ident: 28
  doi: 10.22331/q-2019-10-07-190
– ident: 25
  doi: 10.24033/bsmf.90
– ident: 51
  doi: 10.1016/j.nuclphysb.2016.02.012
– ident: 47
  doi: 10.22331/q-2020-08-10-306
– ident: 14
  doi: 10.1103/PhysRevLett.121.010501
– ident: 61
  doi: 10.48550/arXiv.1709.02705
– ident: 10
  doi: 10.1103/PhysRevLett.118.010501
– ident: 42
  doi: 10.1103/prxquantum.1.020312
– ident: 48
  doi: 10.1016/0370-2693(92)91887-F
– ident: 56
  doi: 10.1103/PhysRevD.104.063009
– ident: 0
  doi: 10.1007/BF02650179
– ident: 11
  doi: 10.22331/q-2019-07-12-163
SSID ssj0002876684
Score 2.4522555
Snippet Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular,...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 780
SubjectTerms MATHEMATICS AND COMPUTING
quantum algorithms
quantum computing
quantum simulation
Title Hybridized Methods for Quantum Simulation in the Interaction Picture
URI https://www.osti.gov/servlets/purl/2281549
https://doaj.org/article/0e8347691f1e474db768062c93fd1558
Volume 6
WOSCitedRecordID wos000844554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2521-327X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002876684
  issn: 2521-327X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgdPQtmkSZP06Gvx4rKigreQ5gEVd9V1V9CDv91JWtee9CKUtpSUhG8SZiaP70PoiObWCWVEFiyRGefMZcpVPsuNDeCvHak8T2ITcjhU9_flqCP1FfeENfTADXB94hXjUpQ0UM8ldxXEx0TktmTBgS9Mx3yJLDvJ1EOaMpJCKN4sY4IHZLT_Ah0CEq_IZiozGWkgO44o8fXD4wnGVce_DNbRWhsY4pOmQRtoyU820fnlezxRVX94h6-S1vMrhigTX88BkPkY39TjVn4L1xMMsRxOM3zNYQU8qtP6wBa6G1zcnl1mre5BZjmXs4yVAdIYFYSQvGCG8lxaTg0hVeUhXBOG5aowIkRJQO9K64UKrgjGlUayQhq2jZYnTxO_g7DjYAhFi8pYBokGvCoY0cqqysFFSQ-RbxC0bUnBozbFo4bkIOGmX3TETROlqdSAWw8dL355bhgxfit8GpFdFIxk1ukDmFi3JtZ_mbiH9qJdNMQEkdjWxh1AdgY1qsgvt_sfVeyh1Z_esY-WZ9O5P0Ar9m1Wv04PU9-C-9XnxRfxCtBi
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridized+Methods+for+Quantum+Simulation+in+the+Interaction+Picture&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Rajput%2C+Abhishek&rft.au=Roggero%2C+Alessandro&rft.au=Wiebe%2C+Nathan&rft.date=2022-08-17&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=6&rft.spage=780&rft_id=info:doi/10.22331%2Fq-2022-08-17-780&rft.externalDBID=n%2Fa&rft.externalDocID=10_22331_q_2022_08_17_780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon