Hybridized Methods for Quantum Simulation in the Interaction Picture
Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive co...
Uložené v:
| Vydané v: | Quantum (Vienna, Austria) Ročník 6; s. 780 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Quantum Science Open Community
17.08.2022
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| Predmet: | |
| ISSN: | 2521-327X, 2521-327X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as
log
2
Λ
in the electric cutoff
Λ
for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter
λ
used to impose an energy cost on time-evolution into an unphysical subspace. |
|---|---|
| AbstractList | Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as log2Λ in the electric cutoff Λ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter λ used to impose an energy cost on time-evolution into an unphysical subspace. Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as log 2 Λ in the electric cutoff Λ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter λ used to impose an energy cost on time-evolution into an unphysical subspace. Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular, the interaction picture simulation has been found to provide substantial asymptotic advantages for some Hamiltonians, but incurs prohibitive constant factors and is incompatible with methods like qubitization. We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations over known algorithms. These approaches show asymptotic improvements over the individual methods that comprise them and further make interaction picture simulation methods practical in the near term. Physical applications of these hybridized methods yield a gate complexity scaling as $\log^2 \Lambda$ in the electric cutoff $\Lambda$ for the Schwinger Model and independent of the electron density for collective neutrino oscillations, outperforming the scaling for all current algorithms with these parameters. For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $\lambda$ used to impose an energy cost on time-evolution into an unphysical subspace. |
| ArticleNumber | 780 |
| Author | Roggero, Alessandro Rajput, Abhishek Wiebe, Nathan |
| Author_xml | – sequence: 1 givenname: Abhishek surname: Rajput fullname: Rajput, Abhishek organization: Department of Physics, University of Washington, Seattle, WA 98195, USA – sequence: 2 givenname: Alessandro surname: Roggero fullname: Roggero, Alessandro organization: InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195, USA, Dipartimento di Fisica, University of Trento, via Sommarive 14, I–38123, Povo, Trento, Italy – sequence: 3 givenname: Nathan surname: Wiebe fullname: Wiebe, Nathan organization: Department of Physics, University of Washington, Seattle, WA 98195, USA, Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada, Pacific Northwest National Laboratory, Richland, WA 99354, USA |
| BackLink | https://www.osti.gov/servlets/purl/2281549$$D View this record in Osti.gov |
| BookMark | eNp1kUtLAzEUhYMoWLU_wN3gfjTvm1lKfbSgqKjgLqR52JR2opl0UX-9Y6sggqt7OXzncLnnAO22qfUIHRN8Silj5Oy9ppjSGquaQA0K76ABFZTUjMLL7q99Hw27bo4xpgqkVHyALsbraY4ufnhX3foyS66rQsrVw8q0ZbWsHuNytTAlpraKbVVmvpq0xWdjN9J9tGWV_RHaC2bR-eH3PETPV5dPo3F9c3c9GZ3f1JZzKDVrggKigpTABTOEU7CcGIynU98ASMOoEkYGjIXyrrFequBEMK4xwAQYdogm21yXzFy_5bg0ea2TiXojpPyqTS7RLrzGXjEOsiGBeA7cTUEqLKltWHBECNVnnWyzUlei7mws3s5saltvi6ZUEcGbHoItZHPquuyD7rnNN0o2caEJ1psC9Lv-KkBjpQnovoDeSf44f8793_MJTyWIvQ |
| CitedBy_id | crossref_primary_10_3390_e25020234 crossref_primary_10_1038_s43588_022_00374_2 crossref_primary_10_1103_PRXQuantum_5_010345 crossref_primary_10_1103_PRXQuantum_4_030323 crossref_primary_10_1038_s41534_023_00706_8 crossref_primary_10_1103_PhysRevD_111_043038 crossref_primary_10_3390_app13010539 crossref_primary_10_1103_kw39_yxq5 crossref_primary_10_1103_PhysRevA_107_032414 crossref_primary_10_1088_0256_307X_41_7_070301 crossref_primary_10_1103_PhysRevD_107_023007 crossref_primary_10_1002_wcms_70020 crossref_primary_10_1007_s00220_025_05314_5 crossref_primary_10_1103_PRXQuantum_5_020330 crossref_primary_10_1088_2058_9565_addf75 crossref_primary_10_1103_PRXQuantum_4_020323 crossref_primary_10_1103_PRXQuantum_5_040320 crossref_primary_10_22331_q_2025_04_01_1682 crossref_primary_10_1103_PRXQuantum_5_037001 crossref_primary_10_1103_PRXQuantum_5_040316 crossref_primary_10_1103_PhysRevResearch_6_013106 crossref_primary_10_1103_PhysRevD_111_094505 |
| Cites_doi | 10.1137/080734479 10.1017/9781108499996 10.48550/arXiv.2105.12767 10.22331/q-2020-04-20-254 10.1126/science.273.5278.1073 10.1103/PhysRevD.13.1043 10.1007/s11128-021-03348-x 10.1073/pnas.1619152114 10.1007/s10773-017-3389-4 10.1145/2591796.2591854 10.1103/PhysRevD.11.395 10.1017/CBO9780511976667 10.26421/qic12.11-12 10.1103/PhysRevC.101.065805 10.48550/ARXIV.QUANT-PH/0504050 10.1103/PhysRevD.104.103016 10.1007/s00023-021-01111-7 10.1088/0305-4470/15/10/028 10.1088/0034-4885/75/2/022001 10.1103/PhysRevD.101.074038 10.1126/science.1217069 10.1103/PhysRevA.92.062318 10.1103/PhysRev.128.2425 10.1103/PhysRevLett.97.241101 10.48550/arXiv.quant-ph/0302079 10.48550/ARXIV.1805.00675 10.1103/PhysRevA.103.042419 10.1016/0003-4916(75)90212-2 10.1038/nature18318 10.1038/s41534-018-0071-5 10.1103/PhysRevD.84.065008 10.1103/PhysRevA.99.042301 10.1103/PhysRevX.6.011023 10.1145/3313276.3316366 10.1103/PhysRevA.87.022328 10.1146/annurev.nucl.012809.104524 10.1103/PhysRevD.104.123023 10.1103/prxquantum.2.040203 10.1007/s00220-006-0150-x 10.48550/arXiv.2003.02831 10.1103/physrevlett.106.170501 10.1126/science.1113479 10.1103/PhysRevA.99.042314 10.1103/PhysRevA.98.032331 10.1103/physrevlett.123.070503 10.1103/physrevx.6.041067 10.1088/1751-8113/43/6/065203 10.1103/physrevx.8.041015 10.1017/CBO9781139644167 10.1007/jhep11(2013)158 10.1103/PhysRevD.100.083001 10.1017/CBO9781139020411 10.1103/PhysRevX.11.011020 10.1103/PhysRevLett.120.110501 10.1103/PhysRevX.3.041018 10.48550/arXiv.quant-ph/0410184 10.22331/q-2022-08-04-773 10.1145/780542.780552 10.22331/q-2019-10-07-190 10.24033/bsmf.90 10.1016/j.nuclphysb.2016.02.012 10.22331/q-2020-08-10-306 10.1103/PhysRevLett.121.010501 10.48550/arXiv.1709.02705 10.1103/PhysRevLett.118.010501 10.1103/prxquantum.1.020312 10.1016/0370-2693(92)91887-F 10.1103/PhysRevD.104.063009 10.1007/BF02650179 10.22331/q-2019-07-12-163 |
| ContentType | Journal Article |
| CorporateAuthor | Univ. of Washington, Seattle, WA (United States) Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) – name: Univ. of Washington, Seattle, WA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI DOA |
| DOI | 10.22331/q-2022-08-17-780 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2521-327X |
| ExternalDocumentID | oai_doaj_org_article_0e8347691f1e474db768062c93fd1558 2281549 10_22331_q_2022_08_17_780 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OIOZB OTOTI |
| ID | FETCH-LOGICAL-c447t-39f8718f667453a1427c41a00bbe9776a3285a6f0058ed9ce68fd5fad9a7357a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2521-327X |
| IngestDate | Fri Oct 03 12:46:35 EDT 2025 Mon Feb 26 05:26:01 EST 2024 Tue Nov 18 22:00:53 EST 2025 Sat Nov 29 03:16:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-39f8718f667453a1427c41a00bbe9776a3285a6f0058ed9ce68fd5fad9a7357a3 |
| Notes | PNNL-SA-179363 AC05-76RL01830; SC0020970; SC0012704 USDOE Office of Science (SC), Nuclear Physics (NP) |
| OpenAccessLink | https://doaj.org/article/0e8347691f1e474db768062c93fd1558 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0e8347691f1e474db768062c93fd1558 osti_scitechconnect_2281549 crossref_citationtrail_10_22331_q_2022_08_17_780 crossref_primary_10_22331_q_2022_08_17_780 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-17 |
| PublicationDateYYYYMMDD | 2022-08-17 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Quantum (Vienna, Austria) |
| PublicationYear | 2022 |
| Publisher | Quantum Science Open Community Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| Publisher_xml | – name: Quantum Science Open Community – name: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften |
| References | 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 0 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
| References_xml | – ident: 67 doi: 10.1137/080734479 – ident: 29 doi: 10.1017/9781108499996 – ident: 21 doi: 10.48550/arXiv.2105.12767 – ident: 23 doi: 10.22331/q-2020-04-20-254 – ident: 1 doi: 10.1126/science.273.5278.1073 – ident: 41 doi: 10.1103/PhysRevD.13.1043 – ident: 57 doi: 10.1007/s11128-021-03348-x – ident: 3 doi: 10.1073/pnas.1619152114 – ident: 43 doi: 10.1007/s10773-017-3389-4 – ident: 18 doi: 10.1145/2591796.2591854 – ident: 40 doi: 10.1103/PhysRevD.11.395 – ident: 31 doi: 10.1017/CBO9780511976667 – ident: 17 doi: 10.26421/qic12.11-12 – ident: 52 doi: 10.1103/PhysRevC.101.065805 – ident: 60 doi: 10.48550/ARXIV.QUANT-PH/0504050 – ident: 54 doi: 10.1103/PhysRevD.104.103016 – ident: 69 doi: 10.1007/s00023-021-01111-7 – ident: 63 doi: 10.1088/0305-4470/15/10/028 – ident: 68 doi: 10.1088/0034-4885/75/2/022001 – ident: 5 doi: 10.1103/PhysRevD.101.074038 – ident: 4 doi: 10.1126/science.1217069 – ident: 32 doi: 10.1103/PhysRevA.92.062318 – ident: 33 doi: 10.1103/PhysRev.128.2425 – ident: 49 doi: 10.1103/PhysRevLett.97.241101 – ident: 66 doi: 10.48550/arXiv.quant-ph/0302079 – ident: 20 doi: 10.48550/ARXIV.1805.00675 – ident: 16 doi: 10.1103/PhysRevA.103.042419 – ident: 34 doi: 10.1016/0003-4916(75)90212-2 – ident: 38 doi: 10.1038/nature18318 – ident: 13 doi: 10.1038/s41534-018-0071-5 – ident: 58 doi: 10.1103/PhysRevD.84.065008 – ident: 65 doi: 10.1103/PhysRevA.99.042301 – ident: 36 doi: 10.1103/PhysRevX.6.011023 – ident: 12 doi: 10.1145/3313276.3316366 – ident: 45 doi: 10.1103/PhysRevA.87.022328 – ident: 50 doi: 10.1146/annurev.nucl.012809.104524 – ident: 55 doi: 10.1103/PhysRevD.104.123023 – ident: 15 doi: 10.1103/prxquantum.2.040203 – ident: 6 doi: 10.1007/s00220-006-0150-x – ident: 27 doi: 10.48550/arXiv.2003.02831 – ident: 8 doi: 10.1103/physrevlett.106.170501 – ident: 2 doi: 10.1126/science.1113479 – ident: 19 doi: 10.1103/PhysRevA.99.042314 – ident: 39 doi: 10.1103/PhysRevA.98.032331 – ident: 22 doi: 10.1103/physrevlett.123.070503 – ident: 26 doi: 10.1103/physrevx.6.041067 – ident: 7 doi: 10.1088/1751-8113/43/6/065203 – ident: 24 doi: 10.1103/physrevx.8.041015 – ident: 30 doi: 10.1017/CBO9781139644167 – ident: 35 doi: 10.1007/jhep11(2013)158 – ident: 53 doi: 10.1103/PhysRevD.100.083001 – ident: 62 doi: 10.1017/CBO9781139020411 – ident: 9 doi: 10.1103/PhysRevX.11.011020 – ident: 59 doi: 10.1103/PhysRevLett.120.110501 – ident: 37 doi: 10.1103/PhysRevX.3.041018 – ident: 46 doi: 10.48550/arXiv.quant-ph/0410184 – ident: 44 doi: 10.22331/q-2022-08-04-773 – ident: 64 doi: 10.1145/780542.780552 – ident: 28 doi: 10.22331/q-2019-10-07-190 – ident: 25 doi: 10.24033/bsmf.90 – ident: 51 doi: 10.1016/j.nuclphysb.2016.02.012 – ident: 47 doi: 10.22331/q-2020-08-10-306 – ident: 14 doi: 10.1103/PhysRevLett.121.010501 – ident: 61 doi: 10.48550/arXiv.1709.02705 – ident: 10 doi: 10.1103/PhysRevLett.118.010501 – ident: 42 doi: 10.1103/prxquantum.1.020312 – ident: 48 doi: 10.1016/0370-2693(92)91887-F – ident: 56 doi: 10.1103/PhysRevD.104.063009 – ident: 0 doi: 10.1007/BF02650179 – ident: 11 doi: 10.22331/q-2019-07-12-163 |
| SSID | ssj0002876684 |
| Score | 2.4522555 |
| Snippet | Conventional methods of quantum simulation involve trade-offs that limit their applicability to specific contexts where their use is optimal. In particular,... |
| SourceID | doaj osti crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 780 |
| SubjectTerms | MATHEMATICS AND COMPUTING quantum algorithms quantum computing quantum simulation |
| Title | Hybridized Methods for Quantum Simulation in the Interaction Picture |
| URI | https://www.osti.gov/servlets/purl/2281549 https://doaj.org/article/0e8347691f1e474db768062c93fd1558 |
| Volume | 6 |
| WOSCitedRecordID | wos000844554100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2521-327X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876684 issn: 2521-327X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2521-327X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876684 issn: 2521-327X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryIouL6IgdPQtmkSZP06Gvx4rKigreQ5gEVd9V1V9CDv91JWtee9CKUtpSUhG8SZiaP70PoiObWCWVEFiyRGefMZcpVPsuNDeCvHak8T2ITcjhU9_flqCP1FfeENfTADXB94hXjUpQ0UM8ldxXEx0TktmTBgS9Mx3yJLDvJ1EOaMpJCKN4sY4IHZLT_Ah0CEq_IZiozGWkgO44o8fXD4wnGVce_DNbRWhsY4pOmQRtoyU820fnlezxRVX94h6-S1vMrhigTX88BkPkY39TjVn4L1xMMsRxOM3zNYQU8qtP6wBa6G1zcnl1mre5BZjmXs4yVAdIYFYSQvGCG8lxaTg0hVeUhXBOG5aowIkRJQO9K64UKrgjGlUayQhq2jZYnTxO_g7DjYAhFi8pYBokGvCoY0cqqysFFSQ-RbxC0bUnBozbFo4bkIOGmX3TETROlqdSAWw8dL355bhgxfit8GpFdFIxk1ukDmFi3JtZ_mbiH9qJdNMQEkdjWxh1AdgY1qsgvt_sfVeyh1Z_esY-WZ9O5P0Ar9m1Wv04PU9-C-9XnxRfxCtBi |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybridized+Methods+for+Quantum+Simulation+in+the+Interaction+Picture&rft.jtitle=Quantum+%28Vienna%2C+Austria%29&rft.au=Rajput%2C+Abhishek&rft.au=Roggero%2C+Alessandro&rft.au=Wiebe%2C+Nathan&rft.date=2022-08-17&rft.issn=2521-327X&rft.eissn=2521-327X&rft.volume=6&rft.spage=780&rft_id=info:doi/10.22331%2Fq-2022-08-17-780&rft.externalDBID=n%2Fa&rft.externalDocID=10_22331_q_2022_08_17_780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2521-327X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2521-327X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2521-327X&client=summon |