Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front
In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximat...
Gespeichert in:
| Veröffentlicht in: | Evolutionary computation Jg. 25; H. 2; S. 309 - 349 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.06.2017
|
| Schlagworte: | |
| ISSN: | 1530-9304 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems. |
|---|---|
| AbstractList | In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems. |
| Author | Ruiz, Ana B Luque, Mariano Saborido, Rubén |
| Author_xml | – sequence: 1 givenname: Rubén surname: Saborido fullname: Saborido, Rubén email: ruben.saborido-infantes@polymtl.ca organization: Polytechnique Montréal Researchers in Software Engineering, École Polytechnique de Montréal, Canada ruben.saborido-infantes@polymtl.ca – sequence: 2 givenname: Ana B surname: Ruiz fullname: Ruiz, Ana B email: abruiz@uma.es organization: Universidad de Málaga, Department of Applied Economics (Mathematics), Calle Ejido 6, 29071 Málaga, Spain abruiz@uma.es – sequence: 3 givenname: Mariano surname: Luque fullname: Luque, Mariano email: mluque@uma.es organization: Universidad de Málaga, Department of Applied Economics (Mathematics), Calle Ejido 6, 29071 Málaga, Spain mluque@uma.es |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26855136$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kEtLw0AUhQdR7EN3rmWWbqLzTnQXSluFSgUfXYZJ5sZOmWRqMinWX2_Uujpwzse9hzNCx7WvAaELSq4pVexm-jZZZjojhMbyCA2p5CS65UQM0KhtN73NGaGnaMBUIiXlaoh2c-dz7fAqfZ5F8_QOpzWe7rzrgvW1bvY4de--sWFdYVvjx871fr6BItgd4OU22Mp-6R8WB4_T7bbxn7bSAXBYA16tvQP8pBvow1-4_zRrfB3O0EmpXQvnBx2j19n0ZXIfLZbzh0m6iAoh4hBxUebMxMbIQokSOMlpCQnQGGTCpZFSmljmKhfcsIQkBTCTUAG64EYrDYqN0dXf3b7YRwdtyCrbFuCcrsF3bUYTppSkgtIevTygXV6BybZNX7fZZ_9bsW9jZ2yS |
| CitedBy_id | crossref_primary_10_1109_TEVC_2018_2865590 crossref_primary_10_1007_s13748_017_0116_6 crossref_primary_10_1016_j_asoc_2017_08_036 crossref_primary_10_1016_j_infrared_2023_105053 crossref_primary_10_1007_s10489_023_04596_3 crossref_primary_10_1109_TEVC_2019_2909636 crossref_primary_10_1109_ACCESS_2020_3022866 crossref_primary_10_1109_ACCESS_2021_3070071 crossref_primary_10_1109_ACCESS_2021_3101899 crossref_primary_10_1007_s11227_018_2668_z crossref_primary_10_1016_j_asoc_2023_110162 crossref_primary_10_1109_TEVC_2017_2707980 crossref_primary_10_3390_math12233733 crossref_primary_10_1007_s10489_020_01969_w crossref_primary_10_3390_math8112072 crossref_primary_10_1007_s11831_016_9187_y crossref_primary_10_1016_j_ins_2020_02_056 crossref_primary_10_1016_j_engappai_2025_111631 crossref_primary_10_1016_j_swevo_2021_100843 crossref_primary_10_1109_TEVC_2019_2922419 crossref_primary_10_1109_TEVC_2018_2865931 crossref_primary_10_3390_sym16081062 crossref_primary_10_1109_TCYB_2018_2819360 crossref_primary_10_1016_j_asoc_2017_09_025 crossref_primary_10_1016_j_eswa_2023_122720 crossref_primary_10_1016_j_swevo_2017_01_002 crossref_primary_10_1016_j_ins_2021_12_103 crossref_primary_10_1016_j_swevo_2020_100644 crossref_primary_10_1109_TEVC_2016_2608507 crossref_primary_10_1007_s10489_018_1263_6 crossref_primary_10_1016_j_ins_2021_05_080 crossref_primary_10_1109_TCYB_2018_2872803 crossref_primary_10_1155_2019_7436712 crossref_primary_10_1016_j_ins_2021_06_068 crossref_primary_10_1016_j_ins_2019_05_083 crossref_primary_10_1016_j_asoc_2023_110295 crossref_primary_10_1109_TEVC_2019_2899030 crossref_primary_10_1007_s00607_024_01272_3 crossref_primary_10_3233_KES_200039 crossref_primary_10_3390_app15094700 crossref_primary_10_1007_s12065_024_00929_4 crossref_primary_10_1109_ACCESS_2019_2962906 crossref_primary_10_3390_sym15081481 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1162/EVCO_a_00175 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1530-9304 |
| EndPage | 349 |
| ExternalDocumentID | 26855136 |
| Genre | Journal Article |
| GroupedDBID | --- .4S .DC 0R~ 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX AAYOK ABAZT ABDBF ABJNI ACM ACUHS ADL ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CCLIF CGR COF CS3 CUY CVF DU5 EAP EAS EBC EBD EBS ECM ECS EDO EIF EJD EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF LHSKQ MCG MINIK NPM O9- OCL P2P PK0 RMI SV3 TUS W7O ZWS 7X8 ABVLG AEFXT AEJOY |
| ID | FETCH-LOGICAL-c447t-34fb2d7dd5c64fe30b1fe8e17e5835d555d75b6b43d2808ce2d814eac3da6ae62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406004500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jul 10 17:29:09 EDT 2025 Thu Apr 03 07:02:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Pareto optimal solutions Achievement scalarizing function Evolutionary algorithm Multiobjective optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-34fb2d7dd5c64fe30b1fe8e17e5835d555d75b6b43d2808ce2d814eac3da6ae62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://hdl.handle.net/10630/34098 |
| PMID | 26855136 |
| PQID | 1826651411 |
| PQPubID | 23479 |
| PageCount | 41 |
| ParticipantIDs | proquest_miscellaneous_1826651411 pubmed_primary_26855136 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-01 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Evolutionary computation |
| PublicationTitleAlternate | Evol Comput |
| PublicationYear | 2017 |
| SSID | ssj0013201 |
| Score | 2.3164759 |
| Snippet | In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 309 |
| SubjectTerms | Algorithms Biological Evolution Models, Biological |
| Title | Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26855136 https://www.proquest.com/docview/1826651411 |
| Volume | 25 |
| WOSCitedRecordID | wos000406004500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcoADhbKVTUbiGhE7tpNyQVHVwoW2Ekt7i7wFimhS2lDB32NnEb0gIXHxKZYjezzzNDN-D4ALFBvQzTBxTHCiZoilw10knFYQKy6IG1OucrEJv9cLRqPWoEy4zcu2yson5o5apdLmyC8tDmYmuiN0PX13rGqUra6WEhqroOYZKGNbuvzRchXBRVWzO8OXnad2P-K2i8unvwPKPLB06__9pW2wVUJKGBY2sANWdNIA9UquAZa3twE2l7gHd8GiYPuHw_C-69yEVzBMYGdRGiKffcHw7dkslr1M4DiB-TvdVLwW7hH2jaOZlC84YZbC0DKTf44N-tXQIEo4tKq7cGAVdNPiY7NS13Il7IHHbuehfeuUIgyOJMTPHI_EAitfKSoZibXnChTrQCNfUwPeFKVU-VQwQTyFAzeQGqsAEePOPcUZ1wzvg7UkTfQhgJpzJBmVLRQIgpEU1FgKogJpixulaoLzap8jY-S2csETnX7Mo5-dboKD4rCiacHGEWEWWJEadvSH2cdgA9uwnGdRTkAtNldcn4J1ucjG89lZbj1m7A3uvgFH29NL |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+WASF-GA%3A+An+Evolutionary+Algorithm+in+Multiobjective+Optimization+to+Approximate+the+Whole+Pareto+Optimal+Front&rft.jtitle=Evolutionary+computation&rft.au=Saborido%2C+Rub%C3%A9n&rft.au=Ruiz%2C+Ana+B&rft.au=Luque%2C+Mariano&rft.date=2017-06-01&rft.eissn=1530-9304&rft.volume=25&rft.issue=2&rft.spage=309&rft_id=info:doi/10.1162%2FEVCO_a_00175&rft_id=info%3Apmid%2F26855136&rft_id=info%3Apmid%2F26855136&rft.externalDocID=26855136 |