Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front

In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary computation Jg. 25; H. 2; S. 309 - 349
Hauptverfasser: Saborido, Rubén, Ruiz, Ana B, Luque, Mariano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.06.2017
Schlagworte:
ISSN:1530-9304
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
AbstractList In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing function genetic algorithm), which falls within the aggregation-based evolutionary algorithms. The main purpose of Global WASF-GA is to approximate the whole Pareto optimal front. Its fitness function is defined by an achievement scalarizing function (ASF) based on the Tchebychev distance, in which two reference points are considered (both utopian and nadir objective vectors) and the weight vector used is taken from a set of weight vectors whose inverses are well-distributed. At each iteration, all individuals are classified into different fronts. Each front is formed by the solutions with the lowest values of the ASF for the different weight vectors in the set, using the utopian vector and the nadir vector as reference points simultaneously. Varying the weight vector in the ASF while considering the utopian and the nadir vectors at the same time enables the algorithm to obtain a final set of nondominated solutions that approximate the whole Pareto optimal front. We compared Global WASF-GA to MOEA/D (different versions) and NSGA-II in two-, three-, and five-objective problems. The computational results obtained permit us to conclude that Global WASF-GA gets better performance, regarding the hypervolume metric and the epsilon indicator, than the other two algorithms in many cases, especially in three- and five-objective problems.
Author Ruiz, Ana B
Luque, Mariano
Saborido, Rubén
Author_xml – sequence: 1
  givenname: Rubén
  surname: Saborido
  fullname: Saborido, Rubén
  email: ruben.saborido-infantes@polymtl.ca
  organization: Polytechnique Montréal Researchers in Software Engineering, École Polytechnique de Montréal, Canada ruben.saborido-infantes@polymtl.ca
– sequence: 2
  givenname: Ana B
  surname: Ruiz
  fullname: Ruiz, Ana B
  email: abruiz@uma.es
  organization: Universidad de Málaga, Department of Applied Economics (Mathematics), Calle Ejido 6, 29071 Málaga, Spain abruiz@uma.es
– sequence: 3
  givenname: Mariano
  surname: Luque
  fullname: Luque, Mariano
  email: mluque@uma.es
  organization: Universidad de Málaga, Department of Applied Economics (Mathematics), Calle Ejido 6, 29071 Málaga, Spain mluque@uma.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26855136$$D View this record in MEDLINE/PubMed
BookMark eNo1kEtLw0AUhQdR7EN3rmWWbqLzTnQXSluFSgUfXYZJ5sZOmWRqMinWX2_Uujpwzse9hzNCx7WvAaELSq4pVexm-jZZZjojhMbyCA2p5CS65UQM0KhtN73NGaGnaMBUIiXlaoh2c-dz7fAqfZ5F8_QOpzWe7rzrgvW1bvY4de--sWFdYVvjx871fr6BItgd4OU22Mp-6R8WB4_T7bbxn7bSAXBYA16tvQP8pBvow1-4_zRrfB3O0EmpXQvnBx2j19n0ZXIfLZbzh0m6iAoh4hBxUebMxMbIQokSOMlpCQnQGGTCpZFSmljmKhfcsIQkBTCTUAG64EYrDYqN0dXf3b7YRwdtyCrbFuCcrsF3bUYTppSkgtIevTygXV6BybZNX7fZZ_9bsW9jZ2yS
CitedBy_id crossref_primary_10_1109_TEVC_2018_2865590
crossref_primary_10_1007_s13748_017_0116_6
crossref_primary_10_1016_j_asoc_2017_08_036
crossref_primary_10_1016_j_infrared_2023_105053
crossref_primary_10_1007_s10489_023_04596_3
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1109_ACCESS_2020_3022866
crossref_primary_10_1109_ACCESS_2021_3070071
crossref_primary_10_1109_ACCESS_2021_3101899
crossref_primary_10_1007_s11227_018_2668_z
crossref_primary_10_1016_j_asoc_2023_110162
crossref_primary_10_1109_TEVC_2017_2707980
crossref_primary_10_3390_math12233733
crossref_primary_10_1007_s10489_020_01969_w
crossref_primary_10_3390_math8112072
crossref_primary_10_1007_s11831_016_9187_y
crossref_primary_10_1016_j_ins_2020_02_056
crossref_primary_10_1016_j_engappai_2025_111631
crossref_primary_10_1016_j_swevo_2021_100843
crossref_primary_10_1109_TEVC_2019_2922419
crossref_primary_10_1109_TEVC_2018_2865931
crossref_primary_10_3390_sym16081062
crossref_primary_10_1109_TCYB_2018_2819360
crossref_primary_10_1016_j_asoc_2017_09_025
crossref_primary_10_1016_j_eswa_2023_122720
crossref_primary_10_1016_j_swevo_2017_01_002
crossref_primary_10_1016_j_ins_2021_12_103
crossref_primary_10_1016_j_swevo_2020_100644
crossref_primary_10_1109_TEVC_2016_2608507
crossref_primary_10_1007_s10489_018_1263_6
crossref_primary_10_1016_j_ins_2021_05_080
crossref_primary_10_1109_TCYB_2018_2872803
crossref_primary_10_1155_2019_7436712
crossref_primary_10_1016_j_ins_2021_06_068
crossref_primary_10_1016_j_ins_2019_05_083
crossref_primary_10_1016_j_asoc_2023_110295
crossref_primary_10_1109_TEVC_2019_2899030
crossref_primary_10_1007_s00607_024_01272_3
crossref_primary_10_3233_KES_200039
crossref_primary_10_3390_app15094700
crossref_primary_10_1007_s12065_024_00929_4
crossref_primary_10_1109_ACCESS_2019_2962906
crossref_primary_10_3390_sym15081481
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/EVCO_a_00175
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
EndPage 349
ExternalDocumentID 26855136
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
AAYOK
ABAZT
ABDBF
ABJNI
ACM
ACUHS
ADL
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
CGR
COF
CS3
CUY
CVF
DU5
EAP
EAS
EBC
EBD
EBS
ECM
ECS
EDO
EIF
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
W7O
ZWS
7X8
ABVLG
AEFXT
AEJOY
ID FETCH-LOGICAL-c447t-34fb2d7dd5c64fe30b1fe8e17e5835d555d75b6b43d2808ce2d814eac3da6ae62
IEDL.DBID 7X8
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406004500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 17:29:09 EDT 2025
Thu Apr 03 07:02:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Pareto optimal solutions
Achievement scalarizing function
Evolutionary algorithm
Multiobjective optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-34fb2d7dd5c64fe30b1fe8e17e5835d555d75b6b43d2808ce2d814eac3da6ae62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hdl.handle.net/10630/34098
PMID 26855136
PQID 1826651411
PQPubID 23479
PageCount 41
ParticipantIDs proquest_miscellaneous_1826651411
pubmed_primary_26855136
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2017
SSID ssj0013201
Score 2.3164759
Snippet In this article, we propose a new evolutionary algorithm for multiobjective optimization called Global WASF-GA ( global weighting achievement scalarizing...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 309
SubjectTerms Algorithms
Biological Evolution
Models, Biological
Title Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front
URI https://www.ncbi.nlm.nih.gov/pubmed/26855136
https://www.proquest.com/docview/1826651411
Volume 25
WOSCitedRecordID wos000406004500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcoADhbKVTUbiGhE7tpNyQVHVwoW2Ekt7i7wFimhS2lDB32NnEb0gIXHxKZYjezzzNDN-D4ALFBvQzTBxTHCiZoilw10knFYQKy6IG1OucrEJv9cLRqPWoEy4zcu2yson5o5apdLmyC8tDmYmuiN0PX13rGqUra6WEhqroOYZKGNbuvzRchXBRVWzO8OXnad2P-K2i8unvwPKPLB06__9pW2wVUJKGBY2sANWdNIA9UquAZa3twE2l7gHd8GiYPuHw_C-69yEVzBMYGdRGiKffcHw7dkslr1M4DiB-TvdVLwW7hH2jaOZlC84YZbC0DKTf44N-tXQIEo4tKq7cGAVdNPiY7NS13Il7IHHbuehfeuUIgyOJMTPHI_EAitfKSoZibXnChTrQCNfUwPeFKVU-VQwQTyFAzeQGqsAEePOPcUZ1wzvg7UkTfQhgJpzJBmVLRQIgpEU1FgKogJpixulaoLzap8jY-S2csETnX7Mo5-dboKD4rCiacHGEWEWWJEadvSH2cdgA9uwnGdRTkAtNldcn4J1ucjG89lZbj1m7A3uvgFH29NL
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+WASF-GA%3A+An+Evolutionary+Algorithm+in+Multiobjective+Optimization+to+Approximate+the+Whole+Pareto+Optimal+Front&rft.jtitle=Evolutionary+computation&rft.au=Saborido%2C+Rub%C3%A9n&rft.au=Ruiz%2C+Ana+B&rft.au=Luque%2C+Mariano&rft.date=2017-06-01&rft.eissn=1530-9304&rft.volume=25&rft.issue=2&rft.spage=309&rft_id=info:doi/10.1162%2FEVCO_a_00175&rft_id=info%3Apmid%2F26855136&rft_id=info%3Apmid%2F26855136&rft.externalDocID=26855136