Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution

This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 28; no. 6; pp. 3034 - 3047
Main Authors: Yang Xu, Zebin Wu, Chanussot, Jocelyn, Zhihui Wei
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t - product)-based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and the LR-HSI is built using t - product, which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, alternating direction method of multipliers is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-ofthe-art HSI super-resolution methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2019.2893530