Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution

This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 28; no. 6; pp. 3034 - 3047
Main Authors: Yang Xu, Zebin Wu, Chanussot, Jocelyn, Zhihui Wei
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t - product)-based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and the LR-HSI is built using t - product, which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, alternating direction method of multipliers is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-ofthe-art HSI super-resolution methods.
AbstractList This paper presents a hypserspectral image (HSI) super-resolution method which fuses a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t-product) based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and LR-HSI is built using t-product which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, Alternating Direction Method of Multipliers (ADMM) is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-of-the-art HSI super-resolution methods.This paper presents a hypserspectral image (HSI) super-resolution method which fuses a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t-product) based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and LR-HSI is built using t-product which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, Alternating Direction Method of Multipliers (ADMM) is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-of-the-art HSI super-resolution methods.
This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor–tensor product ([Formula Omitted])-based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and the LR-HSI is built using [Formula Omitted], which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, alternating direction method of multipliers is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-of-the-art HSI super-resolution methods.
This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t - product)-based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and the LR-HSI is built using t - product, which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, alternating direction method of multipliers is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-ofthe-art HSI super-resolution methods.
This paper presents a hypserspectral image (HSI) super-resolution method which fuses a low-resolution hyperspectral image (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t-product) based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and LR-HSI is built using t-product which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, Alternating Direction Method of Multipliers (ADMM) is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-of-the-art HSI super-resolution methods.
Author Chanussot, Jocelyn
Yang Xu
Zhihui Wei
Zebin Wu
Author_xml – sequence: 1
  surname: Yang Xu
  fullname: Yang Xu
  email: xuyangth90@njust.edu.cn
  organization: Sch. of Comput. Sci. & Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China
– sequence: 2
  surname: Zebin Wu
  fullname: Zebin Wu
  email: zebin.wu@gmail.com
  organization: Sch. of Comput. Sci. & Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China
– sequence: 3
  givenname: Jocelyn
  surname: Chanussot
  fullname: Chanussot, Jocelyn
  email: jocelyn@hi.is
  organization: GIPSA-Lab., Univ. Grenoble Alpes, Grenoble, France
– sequence: 4
  surname: Zhihui Wei
  fullname: Zhihui Wei
  email: gswei@njust.edu.cn
  organization: Sch. of Comput. Sci. & Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30668472$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02307490$$DView record in HAL
BookMark eNp9kc1r3DAQxUVJyVdzLxSKIZfm4K1GkiXrGELbXVjakGzPQpbHjYPXciW7kP--Mt7kkENOEqPfm9G8d0aOet8jIR-BrgCo_rrb3K4YBb1ipeYFp-_IKWgBOaWCHaU7LVSuQOgTchbjI6UgCpDH5IRTKUuh2CnZ_fR9553tsls7uodsh330IbsfbIiY3eEQMGI_2rH1fdakl_XTgCEO6MaQRJu9_YPZ_ZRq-R1G300z-IG8b2wX8eJwnpPf37_tbtb59tePzc31NndCqDHnHCVWoLllgFA7VlhZN7WVyBm6tFHZVBXUqkxfhQJZUzaF1koqVtUFKODn5Grp-2A7M4R2b8OT8bY16-utmWuUcaqEpv9m9svCDsH_nTCOZt9Gh11ne_RTNAyUFlwyTRN6-Qp99FPo0yaGMUjeJhuLRH0-UFO1x_pl_rO3CZAL4IKPMWBjXLsYmaxrOwPUzCGaFKKZQzSHEJOQvhI-935D8mmRtIj4gpcSyrQT_w-hpKUB
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_LGRS_2019_2930645
crossref_primary_10_1109_TIP_2024_3468905
crossref_primary_10_1016_j_inffus_2025_103166
crossref_primary_10_1109_TGRS_2020_2983063
crossref_primary_10_1080_01431161_2023_2229491
crossref_primary_10_1109_TGRS_2020_3004478
crossref_primary_10_1109_TNNLS_2024_3386809
crossref_primary_10_1109_TGRS_2023_3335418
crossref_primary_10_1016_j_optlastec_2025_112923
crossref_primary_10_1016_j_sigpro_2021_108060
crossref_primary_10_1109_TIP_2025_3555069
crossref_primary_10_1109_TKDE_2023_3332784
crossref_primary_10_1109_JSTARS_2022_3190935
crossref_primary_10_1109_JSTSP_2022_3180896
crossref_primary_10_1109_TGRS_2020_3047363
crossref_primary_10_1137_19M1297026
crossref_primary_10_1109_JSTARS_2020_3012566
crossref_primary_10_1016_j_apm_2023_02_012
crossref_primary_10_1016_j_jvcir_2021_103136
crossref_primary_10_1016_j_neucom_2021_01_130
crossref_primary_10_3390_rs14184520
crossref_primary_10_1109_TGRS_2023_3318001
crossref_primary_10_1109_JSTARS_2020_3002885
crossref_primary_10_1109_JSTARS_2021_3076170
crossref_primary_10_1109_TCI_2024_3408095
crossref_primary_10_1109_ACCESS_2020_2996303
crossref_primary_10_1145_3714471
crossref_primary_10_1109_JSEN_2023_3337526
crossref_primary_10_1109_TGRS_2021_3114197
crossref_primary_10_1109_ACCESS_2020_2982494
crossref_primary_10_1007_s10489_021_02732_5
crossref_primary_10_1016_j_infrared_2024_105347
crossref_primary_10_1016_j_patcog_2021_108280
crossref_primary_10_1109_TGRS_2021_3064708
crossref_primary_10_1109_TGRS_2023_3267890
crossref_primary_10_1109_MGRS_2021_3075491
crossref_primary_10_1109_TGRS_2019_2947032
crossref_primary_10_1109_JSTARS_2021_3083495
crossref_primary_10_1109_JSTARS_2020_2990457
crossref_primary_10_1109_TGRS_2020_2987530
crossref_primary_10_3390_rs11222618
crossref_primary_10_1109_JSTARS_2021_3108233
crossref_primary_10_1109_TGRS_2022_3215902
crossref_primary_10_1109_TIP_2019_2916734
crossref_primary_10_1109_JSTARS_2022_3167646
crossref_primary_10_1109_TGRS_2021_3135028
crossref_primary_10_1007_s11042_020_09952_w
crossref_primary_10_1109_JSTARS_2025_3593668
crossref_primary_10_1109_TGRS_2019_2926069
crossref_primary_10_1109_TGRS_2020_2973370
crossref_primary_10_1109_LGRS_2023_3309331
crossref_primary_10_1016_j_isprsjprs_2019_09_008
crossref_primary_10_1109_TIP_2021_3058590
crossref_primary_10_1109_LSP_2022_3159149
crossref_primary_10_1109_JAS_2023_123681
crossref_primary_10_1109_TCI_2020_2996075
crossref_primary_10_1109_JSTARS_2025_3569410
crossref_primary_10_1109_TGRS_2020_3007921
crossref_primary_10_1016_j_inffus_2022_08_032
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1109_TGRS_2025_3544253
crossref_primary_10_3390_rs13163196
crossref_primary_10_1109_JSTARS_2022_3140211
crossref_primary_10_3390_rs11151822
crossref_primary_10_1109_TGRS_2024_3385316
crossref_primary_10_1007_s11431_021_1978_6
crossref_primary_10_3390_s24041049
crossref_primary_10_1109_LGRS_2022_3207548
crossref_primary_10_3390_rs15123066
crossref_primary_10_1109_JSTARS_2021_3075727
crossref_primary_10_1109_TCSVT_2019_2946723
crossref_primary_10_1109_JSTARS_2022_3176969
crossref_primary_10_1109_TGRS_2022_3205966
crossref_primary_10_1016_j_neucom_2021_03_010
crossref_primary_10_1109_TGRS_2022_3143156
crossref_primary_10_1109_ACCESS_2020_3027708
crossref_primary_10_1109_TGRS_2024_3463745
crossref_primary_10_1109_TGRS_2022_3207230
crossref_primary_10_1109_TNSE_2022_3227317
crossref_primary_10_1016_j_knosys_2022_110170
crossref_primary_10_1109_TGRS_2020_3049014
crossref_primary_10_1109_JSTARS_2024_3414936
crossref_primary_10_1109_TGRS_2022_3228313
crossref_primary_10_1109_JSEN_2021_3105324
crossref_primary_10_1109_LGRS_2020_3034631
crossref_primary_10_1016_j_inffus_2023_101907
crossref_primary_10_1109_JSTARS_2021_3099242
crossref_primary_10_1109_TGRS_2020_3039534
crossref_primary_10_1109_JSTARS_2023_3312523
crossref_primary_10_1109_TIP_2022_3201478
crossref_primary_10_3390_electronics13234850
crossref_primary_10_3390_rs11192220
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1109_TGRS_2023_3335975
crossref_primary_10_1109_TGRS_2024_3423422
crossref_primary_10_1016_j_sigpro_2023_108942
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_3390_rs13061101
crossref_primary_10_3390_rs14164034
crossref_primary_10_3390_rs17050800
crossref_primary_10_1109_TGRS_2023_3315970
crossref_primary_10_1109_TGRS_2022_3173532
crossref_primary_10_1109_TGRS_2024_3389016
crossref_primary_10_1109_TGRS_2020_2993631
crossref_primary_10_3390_rs15133225
crossref_primary_10_3390_s24020327
crossref_primary_10_1109_TGRS_2019_2944989
crossref_primary_10_1109_TGRS_2020_2964617
crossref_primary_10_1109_TGRS_2021_3055516
crossref_primary_10_1016_j_neucom_2025_130777
crossref_primary_10_1145_3477396
crossref_primary_10_3390_rs15194847
crossref_primary_10_1016_j_inffus_2020_08_013
crossref_primary_10_1109_TIP_2023_3326687
crossref_primary_10_1109_TSP_2019_2922157
crossref_primary_10_1109_TGRS_2020_2992788
crossref_primary_10_1109_TGRS_2022_3232705
crossref_primary_10_1016_j_inffus_2023_102148
crossref_primary_10_1109_TGRS_2020_2994968
crossref_primary_10_1109_TNNLS_2023_3278928
crossref_primary_10_1109_TNNLS_2019_2920857
crossref_primary_10_1109_TGRS_2019_2948042
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_1109_TNNLS_2022_3189994
crossref_primary_10_1109_TGRS_2023_3323480
crossref_primary_10_1109_JSTARS_2024_3471899
crossref_primary_10_1109_TGRS_2023_3277486
crossref_primary_10_1109_JSTARS_2021_3058158
crossref_primary_10_1109_TIP_2022_3176220
crossref_primary_10_1016_j_sigpro_2021_108033
crossref_primary_10_1016_j_eswa_2025_128278
crossref_primary_10_1109_TPAMI_2024_3475249
crossref_primary_10_1080_01431161_2024_2339202
crossref_primary_10_1109_TGRS_2024_3385448
crossref_primary_10_1109_JSTARS_2020_2980576
crossref_primary_10_1016_j_chemolab_2020_104097
crossref_primary_10_1109_TGRS_2022_3217061
crossref_primary_10_3390_ijgi9040242
crossref_primary_10_1016_j_inffus_2020_11_001
crossref_primary_10_1016_j_isprsjprs_2022_04_001
crossref_primary_10_1109_JSTARS_2020_3043521
crossref_primary_10_1109_TGRS_2022_3169216
crossref_primary_10_1109_TGRS_2023_3284481
crossref_primary_10_1109_TIP_2023_3299197
crossref_primary_10_3934_ipi_2024045
crossref_primary_10_1109_TIP_2021_3104177
crossref_primary_10_1016_j_inffus_2025_103261
crossref_primary_10_1109_TGRS_2025_3563847
crossref_primary_10_3934_naco_2025012
crossref_primary_10_1109_MGRS_2021_3064051
crossref_primary_10_1109_TGRS_2022_3176266
crossref_primary_10_1109_TSP_2020_3025728
crossref_primary_10_1109_TGRS_2021_3091157
crossref_primary_10_1109_TGRS_2024_3360456
crossref_primary_10_1016_j_inffus_2024_102803
crossref_primary_10_1109_TGRS_2023_3244992
crossref_primary_10_1109_LGRS_2019_2949893
crossref_primary_10_1109_TGRS_2023_3300043
crossref_primary_10_1109_TGRS_2025_3563454
crossref_primary_10_3390_rs14092142
crossref_primary_10_1016_j_infrared_2022_104232
crossref_primary_10_1109_TGRS_2024_3361553
crossref_primary_10_1016_j_geoen_2024_212912
crossref_primary_10_1109_TGRS_2022_3204049
crossref_primary_10_1109_TGRS_2020_2994238
crossref_primary_10_1109_TGRS_2021_3093903
crossref_primary_10_1109_TGRS_2023_3260030
crossref_primary_10_1109_TGRS_2021_3124240
Cites_doi 10.1561/2200000016
10.1109/JSTARS.2013.2292824
10.1109/TIP.2016.2579259
10.1109/TIP.2016.2579262
10.1016/j.laa.2010.09.020
10.1109/LGRS.2014.2376034
10.1109/CVPR.2016.187
10.1109/TGRS.2008.916211
10.1109/TIP.2016.2542360
10.1109/TSP.2016.2602800
10.1109/TGRS.2017.2783902
10.1109/TIP.2017.2753658
10.1109/TGRS.2007.912448
10.1109/MSP.2017.2749125
10.1109/TGRS.2016.2623626
10.1109/TGRS.2017.2786718
10.1109/TGRS.2014.2375320
10.1109/TIP.2017.2762595
10.1109/ICCV.2015.409
10.1109/TGRS.2017.2766094
10.1109/TIP.2017.2662206
10.1016/S1566-2535(01)00036-7
10.1109/TGRS.2014.2381272
10.1109/TGRS.2011.2161320
10.1109/MSP.2013.2279731
10.1109/TGRS.2013.2253612
10.1137/110841229
10.1137/110837711
10.1016/j.neucom.2017.05.024
10.1109/TIP.2018.2836307
10.1109/CVPR.2016.567
10.1109/TGRS.2007.904923
10.1109/CVPR.2017.411
10.1109/TSP.2017.2690524
10.1109/JSTARS.2017.2655112
10.1109/LSP.2018.2789405
10.1109/CVPR.2015.7298986
10.1109/MGRS.2016.2637824
10.1109/TGRS.2014.2361734
10.1109/TNNLS.2018.2798162
10.1109/JSTSP.2015.2407855
10.1109/TIP.2013.2257813
10.1109/TIP.2017.2772836
10.1109/TIP.2018.2817047
10.1109/TGRS.2017.2702596
10.1109/TSP.2013.2285514
10.1109/TCYB.2016.2531179
10.1109/TIP.2016.2601268
10.1109/TSP.2017.2688965
10.1109/ICASSP.2014.6854186
10.1109/TIP.2017.2713099
10.1109/JSTARS.2018.2794888
10.1109/MGRS.2015.2440094
10.1109/TIP.2014.2305840
10.1109/TGRS.2016.2601622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
DOI 10.1109/TIP.2019.2893530
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3047
ExternalDocumentID oai:HAL:hal-02307490v1
30668472
10_1109_TIP_2019_2893530
8618436
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2017M611814; 2015M570450; 2018T110502
  funderid: 10.13039/501100002858
– fundername: Jiangsu Province Postdoctoral Science Foundation
  grantid: 1701148B
  funderid: 10.13039/100012493
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20170858; BK20180018; BK20150792
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61701238; 61772274; 61471199; 91538108; 11431015; 61501241; 61671243
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30917015104
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
ID FETCH-LOGICAL-c447t-33e6eb193a21e1dc25a6dfda6e32ec8938fbb1d7884715e2f8f5997672bd51713
IEDL.DBID RIE
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464920200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Tue Oct 14 20:51:51 EDT 2025
Sun Sep 28 04:44:38 EDT 2025
Mon Jun 30 10:14:40 EDT 2025
Wed Feb 19 02:09:32 EST 2025
Tue Nov 18 22:35:35 EST 2025
Sat Nov 29 03:21:09 EST 2025
Wed Aug 27 02:47:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-33e6eb193a21e1dc25a6dfda6e32ec8938fbb1d7884715e2f8f5997672bd51713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7162-0202
0000-0002-5499-3728
0000-0003-3514-9705
0000-0003-4817-2875
0000-0002-4841-6051
PMID 30668472
PQID 2210041455
PQPubID 85429
PageCount 14
ParticipantIDs proquest_miscellaneous_2179436290
pubmed_primary_30668472
ieee_primary_8618436
hal_primary_oai_HAL_hal_02307490v1
crossref_citationtrail_10_1109_TIP_2019_2893530
crossref_primary_10_1109_TIP_2019_2893530
proquest_journals_2210041455
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref59
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
carper (ref9) 1990; 56
ref17
ref16
ref19
aiazzi (ref7) 2012
wei (ref15) 2014
ref18
jiang (ref56) 2017
ref51
ref50
ref46
ref45
ref42
ref41
ref44
ref43
ref49
ref8
jiang (ref62) 2018
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
dian (ref48) 0
ref2
ref1
ref39
ref38
zhang (ref57) 2015
ref24
ref23
ref26
ref25
ref20
ref63
ref22
chang (ref47) 2017
ref21
ref28
ref27
ref29
ref60
ref61
ranchin (ref64) 2000; 66
References_xml – ident: ref63
  doi: 10.1561/2200000016
– year: 2017
  ident: ref47
  publication-title: Weighted low-rank tensor recovery for hyperspectral image restoration
– ident: ref43
  doi: 10.1109/JSTARS.2013.2292824
– ident: ref61
  doi: 10.1109/TIP.2016.2579259
– ident: ref59
  doi: 10.1109/TIP.2016.2579262
– ident: ref49
  doi: 10.1016/j.laa.2010.09.020
– ident: ref30
  doi: 10.1109/LGRS.2014.2376034
– ident: ref58
  doi: 10.1109/CVPR.2016.187
– ident: ref11
  doi: 10.1109/TGRS.2008.916211
– ident: ref33
  doi: 10.1109/TIP.2016.2542360
– ident: ref36
  doi: 10.1109/TSP.2016.2602800
– ident: ref20
  doi: 10.1109/TGRS.2017.2783902
– ident: ref23
  doi: 10.1109/TIP.2017.2753658
– ident: ref8
  doi: 10.1109/TGRS.2007.912448
– ident: ref17
  doi: 10.1109/MSP.2017.2749125
– ident: ref41
  doi: 10.1109/TGRS.2016.2623626
– ident: ref55
  doi: 10.1109/TGRS.2017.2786718
– ident: ref16
  doi: 10.1109/TGRS.2014.2375320
– ident: ref51
  doi: 10.1109/TIP.2017.2762595
– ident: ref42
  doi: 10.1109/ICCV.2015.409
– start-page: 3326
  year: 2018
  ident: ref62
  article-title: Efficient multi-dimensional tensor sparse coding using t-linear combination
  publication-title: Proc AAAI
– ident: ref2
  doi: 10.1109/TGRS.2017.2766094
– ident: ref24
  doi: 10.1109/TIP.2017.2662206
– ident: ref10
  doi: 10.1016/S1566-2535(01)00036-7
– ident: ref14
  doi: 10.1109/TGRS.2014.2381272
– ident: ref40
  doi: 10.1109/TGRS.2011.2161320
– ident: ref39
  doi: 10.1109/MSP.2013.2279731
– ident: ref34
  doi: 10.1109/TGRS.2013.2253612
– ident: ref50
  doi: 10.1137/110841229
– ident: ref53
  doi: 10.1137/110837711
– ident: ref26
  doi: 10.1016/j.neucom.2017.05.024
– ident: ref46
  doi: 10.1109/TIP.2018.2836307
– ident: ref52
  doi: 10.1109/CVPR.2016.567
– ident: ref4
  doi: 10.1109/TGRS.2007.904923
– volume: 56
  start-page: 459
  year: 1990
  ident: ref9
  article-title: The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data
  publication-title: Photogramm Eng Remote Sens
– ident: ref45
  doi: 10.1109/CVPR.2017.411
– volume: 66
  start-page: 49
  year: 2000
  ident: ref64
  article-title: Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation
  publication-title: Photogramm Eng Remote Sens
– ident: ref44
  doi: 10.1109/TSP.2017.2690524
– ident: ref27
  doi: 10.1109/JSTARS.2017.2655112
– ident: ref37
  doi: 10.1109/LSP.2018.2789405
– ident: ref35
  doi: 10.1109/CVPR.2015.7298986
– ident: ref5
  doi: 10.1109/MGRS.2016.2637824
– year: 0
  ident: ref48
  article-title: Learning a low tensor-train rank representation for hyperspectral image super-resolution
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref6
  doi: 10.1109/TGRS.2014.2361734
– ident: ref29
  doi: 10.1109/TNNLS.2018.2798162
– ident: ref12
  doi: 10.1109/JSTSP.2015.2407855
– ident: ref60
  doi: 10.1109/TIP.2013.2257813
– ident: ref21
  doi: 10.1109/TIP.2017.2772836
– ident: ref18
  doi: 10.1109/TIP.2018.2817047
– ident: ref22
  doi: 10.1109/TGRS.2017.2702596
– year: 2017
  ident: ref56
  publication-title: Efficient two-dimensional sparse coding using tensor-linear combination
– ident: ref38
  doi: 10.1109/TSP.2013.2285514
– ident: ref31
  doi: 10.1109/TCYB.2016.2531179
– year: 2015
  ident: ref57
  publication-title: Denoising and completion of 3d data via multidimensional dictionary learning
– ident: ref32
  doi: 10.1109/TIP.2016.2601268
– ident: ref1
  doi: 10.1109/TSP.2017.2688965
– ident: ref13
  doi: 10.1109/ICASSP.2014.6854186
– start-page: 1577
  year: 2014
  ident: ref15
  article-title: Fusion of multispectral and hyperspectral images based on sparse representation
  publication-title: Proc 22nd Eur Signal Process Conf (EUSIPCO)
– ident: ref25
  doi: 10.1109/TIP.2017.2713099
– start-page: 533
  year: 2012
  ident: ref7
  article-title: 25 years of pansharpening: A critical review and new developments
  publication-title: Signal and Image Processing for Remote sensing
– ident: ref28
  doi: 10.1109/JSTARS.2018.2794888
– ident: ref3
  doi: 10.1109/MGRS.2015.2440094
– ident: ref54
  doi: 10.1109/TIP.2014.2305840
– ident: ref19
  doi: 10.1109/TGRS.2016.2601622
SSID ssj0014516
Score 2.6538498
Snippet This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image...
This paper presents a hypserspectral image (HSI) super-resolution method which fuses a low-resolution hyperspectral image (LR-HSI) with a high-resolution...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3034
SubjectTerms Dictionaries
Engineering Sciences
Fuses
High resolution
Hyperspectral image
Hyperspectral imaging
Image resolution
Mathematical analysis
nonlocal patch tensor
Optimization
Representations
Signal and Image processing
Signal resolution
Sparse matrices
Spatial resolution
super-resolution
tensor dictionary learning
tensor sparse coding
Tensors
Title Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution
URI https://ieeexplore.ieee.org/document/8618436
https://www.ncbi.nlm.nih.gov/pubmed/30668472
https://www.proquest.com/docview/2210041455
https://www.proquest.com/docview/2179436290
https://hal.science/hal-02307490
Volume 28
WOSCitedRecordID wos000464920200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6yoYf20KRJH26ToJZeCnV2LcuSdQwhYQNhWZot7M3Y8pgUWjvsI7-_M7LW5NAWejO2_EAz0sznmfkG4HNeaYuunMSoVBqrStk4x8zFTcJVjmQRNHoS11szm-XLpZ3vwdehFgYRffIZnvOhj-XXndvyr7Jx7ruT6BGMjNF9rdYQMeCGsz6ymZnYkNu_C0lO7HhxM-ccLntO4CLNON_5iQka3XMCpO-s8ncn0xub64P_-8xDeBmcSnHRa8Er2MP2CA6CgynC8l0fwYsn7IPHsJh1rTdlYk778b1YEKLtVuLugbAuim8-RTZUJrWCfFsxJczal2au6KabX7QVibstnYs5CNCr8Gv4fn21uJzGoclC7JQymzhNUdN-bdNSJpjUTmalrpu61JhKdDRheVNVSU1ImcxYhrLJm8ySD2NkVWcJQdw3sN92Lb4DkSI5M6Wx5BQ1Kk-ayimHiTF16ZhixkQw3s174QIDOTfC-Fl4JDKxBUmqYEkVQVIRfBnueOjZN_4x9hOJchjGtNnTi9uCzzHOMspOHpMIjllew6ggqghOdpIvwhpeF1Iymx4TuUfwcbhMq49DKmWL3ZbGeII9LS29_m2vMcOzCYxpmjT5_s_v_ADP-fP7tLMT2N-stngKz9zj5sd6dUYqvszPvIr_Bqg89W0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61BQk4UGh5hBYwiAsS6W4SJ46PFaLaFctqRYPUm5U4E7VSSap99Pcz43ijHqASt8hxXh7bM19m5huAT3mVabTlOEQpk1BWUoc5pjZsIs5yJI2QoSNxnan5PL-40Isd-DLkwiCiCz7DEz50vvy6sxv-VTbKXXWSbBcecOUsn601-Ay45KzzbaYqVGT4b52SYz0qpguO4tInBC-SlCOe7yih3UsOgXS1Vf5tZjp1c7b_fy_6DJ56s1Kc9vPgOexgewD73sQUfgGvDuDJHf7BQyjmXeuUmVjQjnwpCsK03VKc3xDaRfHTBcn63KRWkHUrJoRa--TMJV00_U2bkTjfUFvIboB-Er-AX2ffiq-T0JdZCK2Uah0mCWa0Y-ukjCOMahunZVY3dZlhEqOlAcubqopqwsqkyFKMm7xJNVkxKq7qNCKQ-xL22q7F1yASJHOmVJrMokbmUVNZaTFSqi4tk8yoAEbbcTfWc5BzKYxr47DIWBuSlGFJGS-pAD4PV9z0_Bv39P1Iohy6MXH25HRmuI2RlpJ6fBsFcMjyGnp5UQVwvJW88at4ZeKY-fSYyj2AD8NpWn_sVClb7DbUx1HsZbGmx7_qZ8xwb4JjGQ1a_Obvz3wPjybFj5mZTeffj-Axf0ofhHYMe-vlBt_CQ3u7vlot37mJ_gfLgPfO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlocal+Patch+Tensor+Sparse+Representation+for+Hyperspectral+Image+Super-Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Xu%2C+Yang&rft.au=Wu%2C+Zebin&rft.au=Chanussot%2C+Jocelyn&rft.au=Wei%2C+Zhihui&rft.date=2019-06-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1057-7149&rft.volume=28&rft.issue=6&rft.spage=3034&rft.epage=3047&rft_id=info:doi/10.1109%2FTIP.2019.2893530&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02307490v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon