Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution

This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 28; číslo 6; s. 3034 - 3047
Hlavní autoři: Yang Xu, Zebin Wu, Chanussot, Jocelyn, Zhihui Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a hypserspectral image (HSI) super-resolution method, which fuses a low-resolution HSI (LR-HSI) with a high-resolution multispectral image (HR-MSI) to get high-resolution HSI (HR-HSI). The proposed method first extracts the nonlocal similar patches to form a nonlocal patch tensor (NPT). A novel tensor-tensor product (t - product)-based tensor sparse representation is proposed to model the extracted NPTs. Through the tensor sparse representation, both the spectral and spatial similarities between the nonlocal similar patches are well preserved. Then, the relationship between the HR-HSI and the LR-HSI is built using t - product, which allows us to design a unified objective function to incorporate the nonlocal similarity, tensor dictionary learning, and tensor sparse coding together. Finally, alternating direction method of multipliers is used to solve the optimization problem. Experimental results on three data sets and one real data set demonstrate that the proposed method substantially outperforms the existing state-ofthe-art HSI super-resolution methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2019.2893530