A Usability Study of Low-Cost Wireless Brain-Computer Interface for Cursor Control Using Online Linear Model
Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective meas...
Uloženo v:
| Vydáno v: | IEEE transactions on human-machine systems Ročník 50; číslo 4; s. 287 - 297 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2291, 2168-2305 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a 2-D EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics with a low-cost wireless EEG headset. In this article, we evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post-BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI. |
|---|---|
| AbstractList | Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a 2-D EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics with a low-cost wireless EEG headset. In this article, we evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post-BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI. Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a two-dimensional EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics (IBK) with a low-cost wireless EEG headset. We evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post- BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram (EOG) on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI. Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a two-dimensional EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics (IBK) with a low-cost wireless EEG headset. We evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post- BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram (EOG) on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI.Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use. To fill this gap, we conducted a two-dimensional EEG-based cursor control experiment among 28 healthy participants. The computer cursor velocity was controlled by the imagery of hand movement using a paradigm presented in the literature named imagined body kinematics (IBK) with a low-cost wireless EEG headset. We evaluated the usability of the platform for different objective and subjective measures while we investigated the extent to which the training phase may influence the ultimate BCI outcome. We conducted pre- and post- BCI experiment interview questionnaires to evaluate the usability. Analyzing the questionnaires and the testing phase outcome shows a positive correlation between the individuals' ability of visualization and their level of mental controllability of the cursor. Despite individual differences, analyzing training data shows the significance of electrooculogram (EOG) on the predictability of the linear model. The results of this work may provide useful insights towards designing a personalized user-centered assistive BCI. |
| Author | Borhani, Soheil Zhao, Xiaopeng Esterwood, Connor Abiri, Reza Jiang, Yang Kilmarx, Justin |
| Author_xml | – sequence: 1 givenname: Reza orcidid: 0000-0001-8975-8210 surname: Abiri fullname: Abiri, Reza email: reza.abiri@ucsf.edu organization: Department of Neurology, University of California, San Francisco, San Francisco, CA, USA – sequence: 2 givenname: Soheil orcidid: 0000-0002-4887-1417 surname: Borhani fullname: Borhani, Soheil email: sborhani@vols.utk.edu organization: Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA – sequence: 3 givenname: Justin surname: Kilmarx fullname: Kilmarx, Justin email: jkilmarx@vols.utk.edu organization: Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA – sequence: 4 givenname: Connor surname: Esterwood fullname: Esterwood, Connor email: cesterwo@vols.utk.edu organization: College Communication and Information, University of Tennessee, Knoxville, TN, USA – sequence: 5 givenname: Yang surname: Jiang fullname: Jiang, Yang email: yjiang@uky.edu organization: Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA – sequence: 6 givenname: Xiaopeng orcidid: 0000-0003-1207-5379 surname: Zhao fullname: Zhao, Xiaopeng email: xzhao9@utk.edu organization: Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33777542$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UdFqHCEUHUpKk6b5gFIoQl_6Mlt1dHReCsnSNoENeUhCH8XRO6nB1a3OtOzf12E3S5uHitwres65R87r6ijEAFX1luAFIbj7dHd5fbugmOIF7WQjmXxRnVDSypo2mB89nWlHjquznB9xWZJyzuWr6rhphBCc0ZPKn6P7rHvn3bhFt-NktygOaBV_18uYR_TdJfCQM7pI2oVyt95MIyR0FUodtAE0xISWU8pzi2FM0RdBFx7QTfAuAFqVohO6jhb8m-rloH2Gs30_re6_frlbXtarm29Xy_NVbRgTY02txUQyDQPVA9a91WAF2KEvm_c9CGZaagZsgA_McsuNNKYjgnImbW9Ic1p93ulupn4N1kDxpb3aJLfWaauidurfl-B-qIf4S4muw4TKIvBxL5DizwnyqNYuG_BeB4hTVpTjlmNBSFugH55BH-OUQvmeoowyzrjArKDe_-3oYOUpiAIgO4BJMecEwwFCsJrzVnPeas5b7fMuHPGMY9yoRzfHoJ3_L_PdjukA4DCpw10jW9r8Adequi4 |
| CODEN | ITHSA6 |
| CitedBy_id | crossref_primary_10_3389_fnhum_2024_1430086 crossref_primary_10_1109_ACCESS_2021_3072195 crossref_primary_10_3390_info15110702 crossref_primary_10_3390_jpm13010046 crossref_primary_10_1016_j_bspc_2023_105326 crossref_primary_10_3390_app14135649 crossref_primary_10_3390_s22155631 crossref_primary_10_3390_s24185875 crossref_primary_10_1109_TNSRE_2024_3410870 crossref_primary_10_1007_s11051_025_06305_2 crossref_primary_10_3390_app151810215 crossref_primary_10_3389_fnhum_2024_1429130 crossref_primary_10_1007_s11571_022_09808_z crossref_primary_10_1109_THMS_2022_3176212 crossref_primary_10_1109_COMST_2024_3396847 crossref_primary_10_3390_act11060161 crossref_primary_10_1038_s41598_023_40446_5 crossref_primary_10_3389_fnagi_2022_780817 crossref_primary_10_1080_21681163_2022_2072398 crossref_primary_10_1109_ACCESS_2024_3472909 crossref_primary_10_1109_JBHI_2023_3244277 crossref_primary_10_3390_s21144754 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_7717_peerj_cs_2394 crossref_primary_10_1016_j_bbe_2024_07_004 |
| Cites_doi | 10.20982/tqmp.06.1.p031 10.1088/1741-2560/8/3/036010 10.1088/1741-2560/6/4/046005 10.1016/j.procs.2015.12.140 10.1109/IEMBS.2009.5334606 10.1016/j.clinph.2010.02.157 10.1115/DSCC2017-5128 10.1371/journal.pone.0176674 10.2316/P.2012.764-071 10.1088/1741-2560/8/3/036007 10.1109/JBHI.2019.2892379 10.1016/j.clinph.2010.01.034 10.1109/TNSRE.2014.2375879 10.1088/1741-2560/12/4/046021 10.3389/fnins.2010.00055 10.1016/j.eswa.2016.08.007 10.1016/j.bspc.2014.07.009 10.1109/TNSRE.2006.875578 10.1155/2014/159486 10.1109/TBME.2010.2055564 10.1109/IranianCEE.2017.7985231 10.1007/s41315-018-0049-7 10.1371/journal.pone.0102504 10.1371/journal.pone.0130019 10.1111/j.1469-8986.2010.01015.x 10.1186/1475-925X-9-64 10.1371/journal.pone.0112392 10.1016/0013-4694(94)90135-X 10.1109/EMBC.2012.6347460 10.1007/978-3-642-02091-9 10.1109/TBME.2014.2377023 10.1007/s10115-017-1053-1 10.1109/TBME.2004.827072 10.1073/pnas.0403504101 10.1038/nature04970 10.1109/TBME.2011.2167718 10.1186/1743-0003-6-14 10.1016/j.jneumeth.2003.10.009 10.1088/1741-2560/7/3/036007 10.1115/DSCC2015-9855 10.1016/j.jneumeth.2012.06.022 10.1186/1743-0003-7-34 10.1016/j.ijpsycho.2013.10.004 10.1109/TNSRE.2011.2121919 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
| DOI | 10.1109/THMS.2020.2983848 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-2305 |
| EndPage | 297 |
| ExternalDocumentID | PMC7990128 33777542 10_1109_THMS_2020_2983848 9093862 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Institutes of Health grantid: AG028383; UL1TR000117 funderid: 10.13039/100000002 – fundername: NeuroNET – fundername: NCATS NIH HHS grantid: UL1 TR000117 – fundername: NIA NIH HHS grantid: P30 AG028383 – fundername: NIA NIH HHS grantid: P30 AG072946 – fundername: NIA NIH HHS grantid: R56 AG060608 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 7X8 5PM |
| ID | FETCH-LOGICAL-c447t-2dd0184aef2af0abdaed7edfbdfb5bbe74c62cf0ce5f4d5d5c8cc9172548dbc13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552802100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2291 |
| IngestDate | Tue Sep 30 16:40:26 EDT 2025 Sun Nov 09 12:52:20 EST 2025 Mon Jun 30 03:05:12 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Nov 18 22:18:17 EST 2025 Sat Nov 29 04:18:26 EST 2025 Wed Aug 27 02:30:45 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Confounding variables Imagined Body Kinematics Brain-Computer Interface Usability EEG Cursor control |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-2dd0184aef2af0abdaed7edfbdfb5bbe74c62cf0ce5f4d5d5c8cc9172548dbc13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reza Abiri and Soheil Borhani are equally contributing co-first authors. |
| ORCID | 0000-0001-8975-8210 0000-0002-4887-1417 0000-0003-1207-5379 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7990128 |
| PMID | 33777542 |
| PQID | 2424545704 |
| PQPubID | 85416 |
| PageCount | 11 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990128 crossref_citationtrail_10_1109_THMS_2020_2983848 proquest_journals_2424545704 pubmed_primary_33777542 crossref_primary_10_1109_THMS_2020_2983848 proquest_miscellaneous_2506507116 ieee_primary_9093862 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on human-machine systems |
| PublicationTitleAbbrev | THMS |
| PublicationTitleAlternate | IEEE Trans Hum Mach Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref15 mcfarland (ref50) 2002; 113 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 úbeda (ref44) 2016 ref51 ref46 ref45 ref48 ref47 ref41 borhani (ref40) 2017 graimann (ref38) 2010 ref8 abiri (ref9) 2018; 16 ref3 ref6 ref5 ref35 ref34 ref37 ref36 plass-oude bos (ref23) 2011 ref31 abiri (ref4) 2015 ref30 ref33 ref32 ref2 ref1 ref39 abiri (ref49) 2016 ref24 ref26 ref25 borhani (ref42) 2018 ref20 ref22 ref21 ref28 ref27 ref29 saffo (ref43) 2018 abiri (ref7) 2017 |
| References_xml | – ident: ref53 doi: 10.20982/tqmp.06.1.p031 – ident: ref3 doi: 10.1088/1741-2560/8/3/036010 – ident: ref32 doi: 10.1088/1741-2560/6/4/046005 – year: 2016 ident: ref49 article-title: Planar control of a quadcopter using a zero-training brain machine interface platform publication-title: Annual Biomedical Engineering Society Meeting – ident: ref34 doi: 10.1016/j.procs.2015.12.140 – ident: ref13 doi: 10.1109/IEMBS.2009.5334606 – ident: ref6 doi: 10.1016/j.clinph.2010.02.157 – ident: ref41 doi: 10.1115/DSCC2017-5128 – ident: ref20 doi: 10.1371/journal.pone.0176674 – ident: ref36 doi: 10.2316/P.2012.764-071 – ident: ref16 doi: 10.1088/1741-2560/8/3/036007 – ident: ref15 doi: 10.1109/JBHI.2019.2892379 – ident: ref25 doi: 10.1016/j.clinph.2010.01.034 – ident: ref55 doi: 10.1109/TNSRE.2014.2375879 – year: 2018 ident: ref42 article-title: Clash of minds: A BCI car racing game in simulated virtual reality environment publication-title: Annual Biomedical Engineering Society Meeting – year: 2017 ident: ref40 article-title: A transfer learning approach towards zero-training BCI for EEG-based two dimensional cursor control publication-title: Soc Neurosci – ident: ref8 doi: 10.1088/1741-2560/12/4/046021 – ident: ref56 doi: 10.3389/fnins.2010.00055 – ident: ref17 doi: 10.1016/j.eswa.2016.08.007 – ident: ref33 doi: 10.1016/j.bspc.2014.07.009 – ident: ref27 doi: 10.1109/TNSRE.2006.875578 – ident: ref19 doi: 10.1155/2014/159486 – ident: ref29 doi: 10.1109/TBME.2010.2055564 – ident: ref46 doi: 10.1109/IranianCEE.2017.7985231 – ident: ref5 doi: 10.1007/s41315-018-0049-7 – ident: ref11 doi: 10.1109/TNSRE.2014.2375879 – ident: ref48 doi: 10.1371/journal.pone.0102504 – ident: ref47 doi: 10.1371/journal.pone.0130019 – ident: ref51 doi: 10.1111/j.1469-8986.2010.01015.x – ident: ref18 doi: 10.1186/1475-925X-9-64 – ident: ref21 doi: 10.1371/journal.pone.0112392 – ident: ref26 doi: 10.1016/0013-4694(94)90135-X – year: 2015 ident: ref4 article-title: EEG-based control of a unidimensional computer cursor using imagined body kinematics publication-title: Annual Biomedical Engineering Society Meeting – ident: ref14 doi: 10.1109/EMBC.2012.6347460 – year: 2010 ident: ref38 publication-title: Brain-Computer Interfaces Revolutionizing Human-Computer Interaction doi: 10.1007/978-3-642-02091-9 – ident: ref10 doi: 10.1109/TBME.2014.2377023 – ident: ref54 doi: 10.1007/s10115-017-1053-1 – ident: ref37 doi: 10.1109/TBME.2004.827072 – ident: ref1 doi: 10.1073/pnas.0403504101 – ident: ref12 doi: 10.1038/nature04970 – year: 2018 ident: ref43 article-title: Convolutional neural networks for a cursor control brain computer interface publication-title: Annual Biomedical Engineering Society Meeting – ident: ref30 doi: 10.1109/TBME.2011.2167718 – ident: ref31 doi: 10.1186/1743-0003-6-14 – ident: ref52 doi: 10.1016/j.jneumeth.2003.10.009 – year: 2017 ident: ref7 article-title: A brain-machine interface for a sequence movement control of a robotic arm publication-title: Soc Neurosci – volume: 16 year: 2018 ident: ref9 article-title: A comprehensive review of EEG-based brain-computer interface paradigms publication-title: J Neural Eng – start-page: 252 year: 2016 ident: ref44 article-title: Evaluating decoding performance of upper limb imagined trajectories during center-out reaching tasks publication-title: Proc IEEE Int Conf Syst Man Cybern – ident: ref2 doi: 10.1088/1741-2560/7/3/036007 – ident: ref45 doi: 10.1186/1475-925X-9-64 – ident: ref39 doi: 10.1115/DSCC2015-9855 – ident: ref28 doi: 10.1016/j.jneumeth.2012.06.022 – start-page: 48 year: 2011 ident: ref23 article-title: User experience evaluation in BCI: mind the gap! – ident: ref22 doi: 10.1186/1743-0003-7-34 – ident: ref35 doi: 10.1016/j.ijpsycho.2013.10.004 – volume: 113 start-page: 767 year: 2002 ident: ref50 article-title: Brain-computer interfaces for communication and control publication-title: Commun ACM – ident: ref24 doi: 10.1109/TNSRE.2011.2121919 |
| SSID | ssj0000825558 |
| Score | 2.4672751 |
| Snippet | Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 287 |
| SubjectTerms | Accuracy Body kinematics Brain modeling Brain-computer interface (BCI) Confounding (Statistics) confounding variables Controllability cursor control electroencephalogram (EEG) Electroencephalography Evaluation Headphones Human-computer interface Imagery imagined body kinematics Kinematics Low cost Questionnaires Stability Training Usability User interfaces |
| Title | A Usability Study of Low-Cost Wireless Brain-Computer Interface for Cursor Control Using Online Linear Model |
| URI | https://ieeexplore.ieee.org/document/9093862 https://www.ncbi.nlm.nih.gov/pubmed/33777542 https://www.proquest.com/docview/2424545704 https://www.proquest.com/docview/2506507116 https://pubmed.ncbi.nlm.nih.gov/PMC7990128 |
| Volume | 50 |
| WOSCitedRecordID | wos000552802100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000825558 issn: 2168-2291 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS90wFD6o-DAfNp263U0lA59k0TT9kfRRL4oPKoI_uG8lTVImXNrh7d3wv985aW-5DhkMCi00DSlfTnu-nJPvABxmOanIVZrbUqccPWLNSxslnGJ22kjlVKgS8Xilbm70ZJLfrsD3YS-M9z4kn_ljugyxfNfYOS2VneRIvzV9cFeVyrq9WsN6ClGdNJTjlFGG4Ms86oOYkchP7i-v75AMSnEscx1rqvaz9BsKdVXecjH_zpRc-vVcfPi_QW_C-97FZKfdnNiCFV9_hI0l4cFtmJ6yh05bt31hlEr4wpqKXTW_-biZtYxSYqf4CWRnVECCLyo_sLB8WBnrGbq6bDxHZx1PXbI7C8kHrJMuZUhx0YQYVVqb7sDDxfn9-JL3dRe4ReBaLp0TSPyMr6SphCmd8U55V5V4pGXpVWIzaSthfVolLnWp1dYi7UOuqR0iHe_CWt3U_jMwomsx6eOgZ5E4jT2ZLHaxKctMJEpkIxALGArbi5JTbYxpEciJyAtCriDkih65ERwNj_zsFDn-1XibEBka9mCMYG-BddHb7KygjTLoTyqRjODbcButjUIopvbNHNuk5NKqKMKRf-qmxtB3HCuSE8TO1atJMzQgJe_Xd-qnH0HRW1F0Uuovb4_2K7yjd-rSDvdgrX2e-31Yt7_ap9nzARrDRB8EY_gDQF4How |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFL2UbrD1YV_d2nTdpsGextTK8ofkxy6sZCwNg6Wjb0aWZFYIdmmcjf773is7Jh1lMAgkYEXIHMm-R_fqHIAPWU4qcpXmttQpx4hY89JGCaecnTZSORVcIn5O1WymLy7y71vwaTgL470PxWf-iH6GXL5r7Iq2yo5zpN-aHrgP0iSRojutNeyoENlJgyGnjDKEX-ZRn8aMRH48n5z9QDooxZHMdazJ72fjRRScVe4LMv-uldx4-Zw-_b9hP4MnfZDJTrpZ8Ry2fP0CdjakB3dhccLOO3Xd9oZRMeENayo2bf7wcbNsGRXFLvAhyD6ThQRfez-wsIFYGesZBrtsvMJwHb-6cncWyg9YJ17KkOTiImLktbZ4CeenX-bjCe-dF7hF6FounRNI_YyvpKmEKZ3xTnlXlfhJy9KrxGbSVsL6tEpc6lKrrUXih2xTO8Q6fgXbdVP7fWBE2GJSyMHYInEaezJZ7GJTlplIlMhGINYwFLaXJSd3jEUR6InIC0KuIOSKHrkRfBz-ctVpcvyr8S4hMjTswRjB4Rrrol-1y4KOymBEqUQygvfDZVxvlEQxtW9W2CaloFZFEY58r5saQ99xrEhQEDtXdybN0IC0vO9eqS9_BU1vRflJqQ_uH-07eDSZn02L6dfZt9fwmO6vK0I8hO32euXfwEP7u71cXr8NS-IW2UkKAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Usability+Study+of+Low-cost+Wireless+Brain-Computer+Interface+for+Cursor+Control+Using+Online+Linear+Model&rft.jtitle=IEEE+transactions+on+human-machine+systems&rft.au=Abiri%2C+Reza&rft.au=Borhani%2C+Soheil&rft.au=Kilmarx%2C+Justin&rft.au=Esterwood%2C+Connor&rft.date=2020-08-01&rft.issn=2168-2291&rft.volume=50&rft.issue=4&rft.spage=287&rft_id=info:doi/10.1109%2Fthms.2020.2983848&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2291&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2291&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2291&client=summon |