Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope
Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-p...
Uložené v:
| Vydané v: | IEEE transactions on biomedical engineering Ročník 66; číslo 8; s. 2306 - 2318 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. Results: The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). Conclusion: The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. Significance: This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care. |
|---|---|
| AbstractList | Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. Results: The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). Conclusion: The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. Significance: This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care. In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.GOALIn this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts.METHODSWe developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts.The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy).RESULTSThe proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy).The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams.CONCLUSIONThe results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams.This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.SIGNIFICANCEThis would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care. In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care. |
| Author | Venegas, Gino Asiedu, Mercy Nyamewaa Ramanujam, Nimmi Mueller, Jenna L. Sapiro, Guillermo Lam, Christopher T. Schmitt, John W. Simhal, Anish Chaudhary, Usamah |
| Author_xml | – sequence: 1 givenname: Mercy Nyamewaa orcidid: 0000-0002-0230-5022 surname: Asiedu fullname: Asiedu, Mercy Nyamewaa email: mercy.asiedu@duke.edu organization: Duke University, Durham, NC, USA – sequence: 2 givenname: Anish surname: Simhal fullname: Simhal, Anish organization: Duke University – sequence: 3 givenname: Usamah orcidid: 0000-0001-7442-2351 surname: Chaudhary fullname: Chaudhary, Usamah organization: Duke University – sequence: 4 givenname: Jenna L. orcidid: 0000-0001-5198-8491 surname: Mueller fullname: Mueller, Jenna L. organization: Duke University – sequence: 5 givenname: Christopher T. surname: Lam fullname: Lam, Christopher T. organization: Duke University – sequence: 6 givenname: John W. surname: Schmitt fullname: Schmitt, John W. organization: Duke Medical Center – sequence: 7 givenname: Gino surname: Venegas fullname: Venegas, Gino organization: La Liga Contra El Cancer – sequence: 8 givenname: Guillermo surname: Sapiro fullname: Sapiro, Guillermo organization: Duke University – sequence: 9 givenname: Nimmi surname: Ramanujam fullname: Ramanujam, Nimmi organization: Duke University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30575526$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk9v1DAQxS1URLeFD4CQkCUuHMhiO3FiXyotafkjLaKHIo6W40xalyQOtrMI8eVxtNsKeuBkjeb3nmbG7wQdjW4EhJ5TsqaUyLdX7z5frBmhYs2EqBgRj9CKci4yxnN6hFYktTLJZHGMTkK4TWUhivIJOs4Jrzhn5Qr9Pocd9G4aYIzYdXjTXztv480QcOc83szRDTpCi88hgonWjQtVg99Zo3t86SGr9WjAB_wtybDGW_czq12Ib_Cls2PMXJcID0tpvkPEtesnF4yb4Cl63Ok-wLPDe4q-vr-4qj9m2y8fPtWbbWaKoooZa6gEXVFDK902hDOdAxMSONBGQMty6DSlTcOgynMtZdmWrOGibTtW6qrQ-Sk62_tOczNAa9KqXvdq8nbQ_pdy2qp_O6O9Uddup0ouaMlIMnh9MPDuxwwhqsEGA32vR3BzUIxyKUVeVCyhrx6gt272Y1pPMVZSIRgTVaJe_j3R_Sh3_5KAag8Y70Lw0Cljo17Onwa0vaJELQlQSwLUkgB1SEBS0gfKO_P_aV7sNRYA7nnBBeGlzP8A3_-8zw |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_3390_diagnostics13061103 crossref_primary_10_7759_cureus_81212 crossref_primary_10_1016_j_bspc_2025_107946 crossref_primary_10_3390_diagnostics13091596 crossref_primary_10_1016_j_bspc_2022_104235 crossref_primary_10_1186_s12916_020_01613_x crossref_primary_10_3389_fonc_2022_851367 crossref_primary_10_1080_09540091_2022_2085665 crossref_primary_10_3390_diagnostics13182884 crossref_primary_10_1038_s41598_020_70490_4 crossref_primary_10_3390_bioengineering11050468 crossref_primary_10_2478_ausi_2023_0019 crossref_primary_10_3390_diagnostics12112771 crossref_primary_10_1109_JBHI_2021_3094311 crossref_primary_10_1186_s13104_022_06250_6 crossref_primary_10_1200_GO_24_00146 crossref_primary_10_17116_onkolog20241304166 crossref_primary_10_2196_16467 crossref_primary_10_1109_TBME_2024_3379898 crossref_primary_10_1117_1_JBO_29_5_052918 crossref_primary_10_3390_diagnostics13193085 crossref_primary_10_1038_s41523_021_00290_0 crossref_primary_10_32604_cmc_2022_025339 crossref_primary_10_3233_JIFS_220511 crossref_primary_10_3390_ai5040144 crossref_primary_10_1016_j_patcog_2024_111201 crossref_primary_10_1002_ijgo_15179 crossref_primary_10_1016_j_bspc_2021_103163 crossref_primary_10_1109_JTEHM_2020_2970694 crossref_primary_10_1016_j_compmedimag_2022_102052 crossref_primary_10_3389_fonc_2022_952847 crossref_primary_10_1117_1_JBO_28_8_080902 crossref_primary_10_3390_diagnostics11040716 crossref_primary_10_1016_j_bspc_2021_102700 crossref_primary_10_1016_j_bspc_2024_106948 crossref_primary_10_3390_bios12100786 crossref_primary_10_1080_17434440_2024_2407549 crossref_primary_10_1136_ijgc_2023_004397 crossref_primary_10_1016_j_gofs_2022_02_075 crossref_primary_10_3390_jcm13041061 crossref_primary_10_1142_S1793545825440018 crossref_primary_10_1038_s41598_020_72219_9 crossref_primary_10_1089_tmr_2021_0024 crossref_primary_10_3389_fmed_2023_1060451 crossref_primary_10_1002_ima_22386 crossref_primary_10_1109_JBHI_2021_3064366 crossref_primary_10_3390_s22155489 crossref_primary_10_1016_j_cmpb_2025_108976 crossref_primary_10_1002_jbio_202400114 crossref_primary_10_1038_s41598_020_68252_3 crossref_primary_10_3390_diagnostics13101763 crossref_primary_10_1007_s40944_025_01013_0 |
| Cites_doi | 10.1109/EURCON.2003.1248032 10.1007/978-3-319-46723-8_14 10.1109/IEMBS.2011.6090930 10.1016/0031-3203(91)90143-S 10.1159/000341546 10.1097/LGT.0000000000000306 10.1002/ijc.11245 10.1016/j.compmedimag.2008.12.002 10.1371/journal.pone.0177782 10.1038/s41591-018-0107-6 10.1200/JGO.2016.006577 10.1109/TSMC.1979.4310076 10.1111/1471-0528.15326 10.1117/1.3079810 10.1258/td.2009.090085 10.1016/j.ijgo.2009.11.025 10.1109/TKDE.2005.50 10.1007/s00428-012-1242-y 10.1371/journal.pone.0013711 10.1117/12.594658 10.1016/j.media.2018.06.005 10.1016/j.jbi.2008.08.010 10.1097/LGT.0b013e318287d329 10.1142/9789812776655 10.1117/12.708889 10.1117/12.653089 10.1016/j.ejogrb.2014.03.006 10.1002/mp.12147 10.1097/IGC.0000000000000084 10.1117/12.597075 10.1002/cncr.25065 10.1109/TMI.2018.2842767 10.1109/TMI.2008.2007823 10.1109/TSMC.1973.4309314 10.1371/journal.pone.0135869 10.1109/FUZZY.2005.1452388 10.1371/journal.pone.0170631 10.1158/1055-9965.EPI-09-1282 10.1016/S0031-3203(99)00123-5 10.1109/IST.2011.5962218 10.1109/JBHI.2018.2853987 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1109/TBME.2018.2887208 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2318 |
| ExternalDocumentID | PMC6581620 30575526 10_1109_TBME_2018_2887208 8580569 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Science Foundation grantid: NSF-CCF-13-18168 funderid: 10.13039/100000001 – fundername: Allen Institute for Brain Sciences – fundername: Office of Naval Research grantid: N000141210839 funderid: 10.13039/100000006 – fundername: National Institute of Health Academic-Industrial Partnerships grantid: 1R01CA193380 – fundername: National Institute of Health Quick Trials grantid: 1R01CA195500 – fundername: U.S. National Geospatial Intelligence Agency grantid: HM0177-13-1; HM04761610001 – fundername: U.S. Army Research Office grantid: W911NF-16-1-0088 – fundername: National Geospatial-Intelligence Agency grantid: HM04761610001 funderid: 10.13039/100000266 – fundername: NCI NIH HHS grantid: R01 CA195500 – fundername: NCI NIH HHS grantid: R01 CA193380 – fundername: NCI NIH HHS grantid: R01 CA239268 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c447t-2b19ea71c17adb052a3e289e5e1b8ed23efa11bb2e733a996d62b58ddf26a74a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476773700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Sep 30 16:59:05 EDT 2025 Sat Sep 27 16:33:44 EDT 2025 Mon Jun 30 08:36:02 EDT 2025 Thu Apr 03 07:01:59 EDT 2025 Tue Nov 18 22:18:30 EST 2025 Sat Nov 29 05:34:22 EST 2025 Wed Aug 27 02:30:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-2b19ea71c17adb052a3e289e5e1b8ed23efa11bb2e733a996d62b58ddf26a74a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7442-2351 0000-0001-5198-8491 0000-0002-0230-5022 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/8580569 |
| PMID | 30575526 |
| PQID | 2261882287 |
| PQPubID | 85474 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2159983472 pubmed_primary_30575526 crossref_citationtrail_10_1109_TBME_2018_2887208 ieee_primary_8580569 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581620 proquest_journals_2261882287 crossref_primary_10_1109_TBME_2018_2887208 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 sellors (ref4) 2003 ref56 ref12 ref59 ref15 ref58 ref14 mehlhorn (ref26) 2012; 32 ref53 meyer (ref22) 1987; 12 srinivasan (ref23) 0 ref52 ref55 ref11 ref54 ref10 kaur (ref44) 2012; 3 ref17 ref16 park (ref19) 2008; 13 sherigar (ref29) 2010; 11 ref18 (ref2) 2016 gonzalez (ref43) 2008 (ref46) 2012 ref51 schölkopf (ref49) 2002 ref45 ref47 ref41 (ref50) 0 ref8 kecman (ref48) 2001 ref7 ref9 ref3 ref5 qiao (ref34) 2015; 41 ref40 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref25 ref20 ref21 (ref6) 2013 arthur (ref42) 0 ref28 ref27 ronneberger (ref35) 2015; 9351 |
| References_xml | – year: 0 ident: ref50 – ident: ref45 doi: 10.1109/EURCON.2003.1248032 – start-page: 1027 year: 0 ident: ref42 article-title: k-means plus plus: The advantages of careful seeding publication-title: Proc 18th Annu ACM-SIAM Symp Discrete Algorithms – ident: ref13 doi: 10.1007/978-3-319-46723-8_14 – ident: ref51 doi: 10.1109/IEMBS.2011.6090930 – ident: ref41 doi: 10.1016/0031-3203(91)90143-S – ident: ref53 doi: 10.1159/000341546 – ident: ref12 doi: 10.1097/LGT.0000000000000306 – start-page: xxii year: 2008 ident: ref43 publication-title: Digital Image Processing – ident: ref58 doi: 10.1002/ijc.11245 – ident: ref54 doi: 10.1016/j.compmedimag.2008.12.002 – ident: ref9 doi: 10.1371/journal.pone.0177782 – ident: ref59 doi: 10.1038/s41591-018-0107-6 – ident: ref5 doi: 10.1200/JGO.2016.006577 – start-page: 832 year: 0 ident: ref23 article-title: Classification of cervix lesions using filter bank-based texture models publication-title: Proc 19th IEEE Int Symp Computer-Based Med Syst – volume: 13 year: 2008 ident: ref19 article-title: Automated image analysis of digital colposcopy for the detection of cervical neoplasia publication-title: J Biomed Opt – year: 2013 ident: ref6 article-title: WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention publication-title: World Health Organization – ident: ref38 doi: 10.1109/TSMC.1979.4310076 – ident: ref10 doi: 10.1111/1471-0528.15326 – ident: ref28 doi: 10.1117/1.3079810 – ident: ref56 doi: 10.1258/td.2009.090085 – ident: ref57 doi: 10.1016/j.ijgo.2009.11.025 – year: 2003 ident: ref4 article-title: Colposcopy and treatment of cervical intraepithelial neoplasia: a beginner's manual – ident: ref36 doi: 10.1109/TKDE.2005.50 – volume: 9351 start-page: 234 year: 2015 ident: ref35 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Med Image Comput Comput -Assisted Intervention – ident: ref7 doi: 10.1007/s00428-012-1242-y – ident: ref31 doi: 10.1371/journal.pone.0013711 – year: 2016 ident: ref2 – ident: ref25 doi: 10.1117/12.594658 – ident: ref15 doi: 10.1016/j.media.2018.06.005 – ident: ref39 doi: 10.1016/j.jbi.2008.08.010 – ident: ref3 doi: 10.1097/LGT.0b013e318287d329 – ident: ref47 doi: 10.1142/9789812776655 – ident: ref52 doi: 10.1117/12.708889 – ident: ref21 doi: 10.1117/12.653089 – volume: 41 start-page: 1313 year: 2015 ident: ref34 article-title: Accuracy of visual inspection with acetic acid and with Lugol's iodine for cervical cancer screening: Meta-analysis publication-title: Journal of Obstetrics & Gynaecology – ident: ref32 doi: 10.1016/j.ejogrb.2014.03.006 – ident: ref18 doi: 10.1109/IEMBS.2011.6090930 – ident: ref14 doi: 10.1002/mp.12147 – start-page: xviii year: 2002 ident: ref49 publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond (Adaptive Computation and Machine Learning) – volume: 12 start-page: 23 year: 1987 ident: ref22 article-title: Automatic screening of uterine cervix cancer publication-title: J Micros Spectrosc Electron – year: 2012 ident: ref46 – ident: ref33 doi: 10.1097/IGC.0000000000000084 – volume: 11 start-page: 323 year: 2010 ident: ref29 article-title: Cervical cancer screening by visual inspection with acetic acid-interobserver variability between nurse and physician publication-title: Asian Pacific J Cancer Prevention – ident: ref27 doi: 10.1117/12.597075 – ident: ref1 doi: 10.1002/cncr.25065 – ident: ref16 doi: 10.1109/TMI.2018.2842767 – ident: ref20 doi: 10.1109/TMI.2008.2007823 – ident: ref37 doi: 10.1109/TSMC.1973.4309314 – ident: ref11 doi: 10.1371/journal.pone.0135869 – ident: ref55 doi: 10.1109/FUZZY.2005.1452388 – ident: ref30 doi: 10.1371/journal.pone.0170631 – ident: ref8 doi: 10.1158/1055-9965.EPI-09-1282 – volume: 32 start-page: 5221 year: 2012 ident: ref26 article-title: Computer-Assisted diagnosis (CAD) in colposcopy: Evaluation of a pilot study publication-title: Anticancer Res – volume: 3 start-page: 30 year: 2012 ident: ref44 article-title: Comparison between YCbCr color space and CIELab color space for skin color segmentation publication-title: Int J Appl Inf Syst – ident: ref24 doi: 10.1016/S0031-3203(99)00123-5 – ident: ref40 doi: 10.1109/IST.2011.5962218 – ident: ref17 doi: 10.1109/JBHI.2018.2853987 – start-page: xxxii year: 2001 ident: ref48 publication-title: Learning and Soft Computing Support Vector Machines Neural Networks and Fuzzy Logic Models (Complex Adaptive Systems) |
| SSID | ssj0014846 |
| Score | 2.583541 |
| Snippet | Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods... In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2306 |
| SubjectTerms | Acetic acid Algorithms Automation Benign Cervix Cervix Uteri - diagnostic imaging Color Colposcopes colposcopy Computer-aided detection and diagnosis Diagnosis Early Detection of Cancer - instrumentation Early Detection of Cancer - methods Feature extraction Female global health Handheld computers Humans image acquisition Image Interpretation, Computer-Assisted - instrumentation Image Interpretation, Computer-Assisted - methods Inspection Iodine Lugol's iodine Machine Learning Pathology Phase shift keying Physicians Point-of-Care Systems Precancerous Conditions - diagnostic imaging predictive models segmentation Sensitivity Support vector machines Uterine Cervical Neoplasms - diagnostic imaging |
| Title | Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope |
| URI | https://ieeexplore.ieee.org/document/8580569 https://www.ncbi.nlm.nih.gov/pubmed/30575526 https://www.proquest.com/docview/2261882287 https://www.proquest.com/docview/2159983472 https://pubmed.ncbi.nlm.nih.gov/PMC6581620 |
| Volume | 66 |
| WOSCitedRecordID | wos000476773700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJw4NECDZTKSJxQ3caOE9vHZWnFgVZ7KGJvkRM77UpLXGWz5cCfZ5yk0RZVSNwSZeIkmhnPN5kXwMdU2kyjmaI2cYIKlXKqC53RQusyrSqpmbLdsAl5caHmcz3bgqOxFsY51yWfueNw2MXyrS_X4VfZiUoV2mu9DdtSyr5Wa4wYCNUX5cQMFZhrMUQwWaxPLj-fn4YkLnXMUaV4mCS5YYO6oSoP4cu_0yQ37M7Z8_974xfwbMCXZNILxEvYcvUuPN3oOrgLj8-HePoe_N7IGSK-IpPllW8W7fXPFUEwSybr1iOidZZ8cW2Xs1UHqmm3v-BTZo2j0yA2zYr8wNuIId_8Lzr1q_aIzPyibqmvaChxCqe4X7Rk6pc3viuFeQXfz04vp1_pMI6BlkLIlvKCaWckK5k0tohTbhKH7ppLHSuUszxxlWGsKLiTSWLQj7IZL1JlbcUzI4VJXsNO7Wu3D0SGRn-iqtAUWsGMLAR6UbbCRZQyTqsI4jsG5eXQqzyMzFjmnc8S6zzwNA88zQeeRvBpvOWmb9TxL-K9wKuRcGBTBAd3UpAPqrzKEZ8ydEPQs4zgw3gZlTBEVkzt_BppEBRqlQjJI3jTC824dhIQccqzCOQ9cRoJQoPv-1fqxXXX6BvRIct4_Pbht30HT_CbdJ-NeAA7bbN27-FRedsuVs0h6shcHXY68gcv7A6W |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgngceLQ8AgWMxAk1bew4sX1cllZF7K72sIjeIid26EpLXG2ycODPM07SaIsqJG6JMnESzYznm8wL4H0iTKrQTIUmtjzkMmGhylUa5koVSVkKRaVph02I2Uyen6v5DhwOtTDW2jb5zB75wzaWb1yx8b_KjmUi0V6rW3A74ZzRrlpriBlw2ZXlRBRVmCnexzBppI4XH6cnPo1LHjFUKuZnSW5ZoXasyk0I8-9EyS3Lc_ro_975MTzsESYZdSLxBHZstQcPtvoO7sHdaR9R34ffW1lDxJVktPru1svm4kdNEM6S0aZxiGmtIZ9s02ZtVZ5q3O4w-JT52oZjLzjrmnzD24gmE_crHLu6OSRzt6ya0JWhL3Lyp7hjNGTsVpeuLYZ5Cl9PTxbjs7AfyBAWnIsmZDlVVgtaUKFNHiVMxxYdNptYmktrWGxLTWmeMyviWKMnZVKWJ9KYkqVacB0_g93KVfYFEOFb_fGyRGNoONUi5-hHmRIXkVJbJQOIrhiUFX23cj80Y5W1XkukMs_TzPM063kawIfhlsuuVce_iPc9rwbCnk0BHFxJQdYrc50hQqXoiKBvGcC74TKqoY-t6Mq6DdIgLFQy5oIF8LwTmmHt2GPihKUBiGviNBD4Ft_Xr1TLi7bVN-JDmrLo5c1v-xbunS2mk2zyefblFdzH71NdbuIB7DbrjX0Nd4qfzbJev2k15Q_7bBD1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Algorithms+for+Automated+Detection+of+Cervical+Pre-Cancers+With+a+Low-Cost%2C+Point-of-Care%2C+Pocket+Colposcope&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Asiedu%2C+Mercy+Nyamewaa&rft.au=Simhal%2C+Anish&rft.au=Chaudhary%2C+Usamah&rft.au=Mueller%2C+Jenna+L&rft.date=2019-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=8&rft.spage=2306&rft_id=info:doi/10.1109%2FTBME.2018.2887208&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |