Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope

Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on biomedical engineering Ročník 66; číslo 8; s. 2306 - 2318
Hlavní autori: Asiedu, Mercy Nyamewaa, Simhal, Anish, Chaudhary, Usamah, Mueller, Jenna L., Lam, Christopher T., Schmitt, John W., Venegas, Gino, Sapiro, Guillermo, Ramanujam, Nimmi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. Results: The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). Conclusion: The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. Significance: This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.
AbstractList Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. Methods: We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. Results: The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). Conclusion: The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. Significance: This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.
In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.GOALIn this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts.METHODSWe developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts.The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy).RESULTSThe proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy).The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams.CONCLUSIONThe results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams.This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.SIGNIFICANCEThis would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.
In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance. We developed algorithms to pre-process pathology-labeled cervigrams and extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol's iodine, and a combination of the two contrasts. The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively, when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, and 63% accuracy). The results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol's iodine images may provide unbiased automation of cervigrams. This would enable automated, expert-level diagnosis of cervical pre-cancer at the point of care.
Author Venegas, Gino
Asiedu, Mercy Nyamewaa
Ramanujam, Nimmi
Mueller, Jenna L.
Sapiro, Guillermo
Lam, Christopher T.
Schmitt, John W.
Simhal, Anish
Chaudhary, Usamah
Author_xml – sequence: 1
  givenname: Mercy Nyamewaa
  orcidid: 0000-0002-0230-5022
  surname: Asiedu
  fullname: Asiedu, Mercy Nyamewaa
  email: mercy.asiedu@duke.edu
  organization: Duke University, Durham, NC, USA
– sequence: 2
  givenname: Anish
  surname: Simhal
  fullname: Simhal, Anish
  organization: Duke University
– sequence: 3
  givenname: Usamah
  orcidid: 0000-0001-7442-2351
  surname: Chaudhary
  fullname: Chaudhary, Usamah
  organization: Duke University
– sequence: 4
  givenname: Jenna L.
  orcidid: 0000-0001-5198-8491
  surname: Mueller
  fullname: Mueller, Jenna L.
  organization: Duke University
– sequence: 5
  givenname: Christopher T.
  surname: Lam
  fullname: Lam, Christopher T.
  organization: Duke University
– sequence: 6
  givenname: John W.
  surname: Schmitt
  fullname: Schmitt, John W.
  organization: Duke Medical Center
– sequence: 7
  givenname: Gino
  surname: Venegas
  fullname: Venegas, Gino
  organization: La Liga Contra El Cancer
– sequence: 8
  givenname: Guillermo
  surname: Sapiro
  fullname: Sapiro, Guillermo
  organization: Duke University
– sequence: 9
  givenname: Nimmi
  surname: Ramanujam
  fullname: Ramanujam, Nimmi
  organization: Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30575526$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxS1URLeFD4CQkCUuHMhiO3FiXyotafkjLaKHIo6W40xalyQOtrMI8eVxtNsKeuBkjeb3nmbG7wQdjW4EhJ5TsqaUyLdX7z5frBmhYs2EqBgRj9CKci4yxnN6hFYktTLJZHGMTkK4TWUhivIJOs4Jrzhn5Qr9Pocd9G4aYIzYdXjTXztv480QcOc83szRDTpCi88hgonWjQtVg99Zo3t86SGr9WjAB_wtybDGW_czq12Ib_Cls2PMXJcID0tpvkPEtesnF4yb4Cl63Ok-wLPDe4q-vr-4qj9m2y8fPtWbbWaKoooZa6gEXVFDK902hDOdAxMSONBGQMty6DSlTcOgynMtZdmWrOGibTtW6qrQ-Sk62_tOczNAa9KqXvdq8nbQ_pdy2qp_O6O9Uddup0ouaMlIMnh9MPDuxwwhqsEGA32vR3BzUIxyKUVeVCyhrx6gt272Y1pPMVZSIRgTVaJe_j3R_Sh3_5KAag8Y70Lw0Cljo17Onwa0vaJELQlQSwLUkgB1SEBS0gfKO_P_aV7sNRYA7nnBBeGlzP8A3_-8zw
CODEN IEBEAX
CitedBy_id crossref_primary_10_3390_diagnostics13061103
crossref_primary_10_7759_cureus_81212
crossref_primary_10_1016_j_bspc_2025_107946
crossref_primary_10_3390_diagnostics13091596
crossref_primary_10_1016_j_bspc_2022_104235
crossref_primary_10_1186_s12916_020_01613_x
crossref_primary_10_3389_fonc_2022_851367
crossref_primary_10_1080_09540091_2022_2085665
crossref_primary_10_3390_diagnostics13182884
crossref_primary_10_1038_s41598_020_70490_4
crossref_primary_10_3390_bioengineering11050468
crossref_primary_10_2478_ausi_2023_0019
crossref_primary_10_3390_diagnostics12112771
crossref_primary_10_1109_JBHI_2021_3094311
crossref_primary_10_1186_s13104_022_06250_6
crossref_primary_10_1200_GO_24_00146
crossref_primary_10_17116_onkolog20241304166
crossref_primary_10_2196_16467
crossref_primary_10_1109_TBME_2024_3379898
crossref_primary_10_1117_1_JBO_29_5_052918
crossref_primary_10_3390_diagnostics13193085
crossref_primary_10_1038_s41523_021_00290_0
crossref_primary_10_32604_cmc_2022_025339
crossref_primary_10_3233_JIFS_220511
crossref_primary_10_3390_ai5040144
crossref_primary_10_1016_j_patcog_2024_111201
crossref_primary_10_1002_ijgo_15179
crossref_primary_10_1016_j_bspc_2021_103163
crossref_primary_10_1109_JTEHM_2020_2970694
crossref_primary_10_1016_j_compmedimag_2022_102052
crossref_primary_10_3389_fonc_2022_952847
crossref_primary_10_1117_1_JBO_28_8_080902
crossref_primary_10_3390_diagnostics11040716
crossref_primary_10_1016_j_bspc_2021_102700
crossref_primary_10_1016_j_bspc_2024_106948
crossref_primary_10_3390_bios12100786
crossref_primary_10_1080_17434440_2024_2407549
crossref_primary_10_1136_ijgc_2023_004397
crossref_primary_10_1016_j_gofs_2022_02_075
crossref_primary_10_3390_jcm13041061
crossref_primary_10_1142_S1793545825440018
crossref_primary_10_1038_s41598_020_72219_9
crossref_primary_10_1089_tmr_2021_0024
crossref_primary_10_3389_fmed_2023_1060451
crossref_primary_10_1002_ima_22386
crossref_primary_10_1109_JBHI_2021_3064366
crossref_primary_10_3390_s22155489
crossref_primary_10_1016_j_cmpb_2025_108976
crossref_primary_10_1002_jbio_202400114
crossref_primary_10_1038_s41598_020_68252_3
crossref_primary_10_3390_diagnostics13101763
crossref_primary_10_1007_s40944_025_01013_0
Cites_doi 10.1109/EURCON.2003.1248032
10.1007/978-3-319-46723-8_14
10.1109/IEMBS.2011.6090930
10.1016/0031-3203(91)90143-S
10.1159/000341546
10.1097/LGT.0000000000000306
10.1002/ijc.11245
10.1016/j.compmedimag.2008.12.002
10.1371/journal.pone.0177782
10.1038/s41591-018-0107-6
10.1200/JGO.2016.006577
10.1109/TSMC.1979.4310076
10.1111/1471-0528.15326
10.1117/1.3079810
10.1258/td.2009.090085
10.1016/j.ijgo.2009.11.025
10.1109/TKDE.2005.50
10.1007/s00428-012-1242-y
10.1371/journal.pone.0013711
10.1117/12.594658
10.1016/j.media.2018.06.005
10.1016/j.jbi.2008.08.010
10.1097/LGT.0b013e318287d329
10.1142/9789812776655
10.1117/12.708889
10.1117/12.653089
10.1016/j.ejogrb.2014.03.006
10.1002/mp.12147
10.1097/IGC.0000000000000084
10.1117/12.597075
10.1002/cncr.25065
10.1109/TMI.2018.2842767
10.1109/TMI.2008.2007823
10.1109/TSMC.1973.4309314
10.1371/journal.pone.0135869
10.1109/FUZZY.2005.1452388
10.1371/journal.pone.0170631
10.1158/1055-9965.EPI-09-1282
10.1016/S0031-3203(99)00123-5
10.1109/IST.2011.5962218
10.1109/JBHI.2018.2853987
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2018.2887208
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2318
ExternalDocumentID PMC6581620
30575526
10_1109_TBME_2018_2887208
8580569
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  grantid: NSF-CCF-13-18168
  funderid: 10.13039/100000001
– fundername: Allen Institute for Brain Sciences
– fundername: Office of Naval Research
  grantid: N000141210839
  funderid: 10.13039/100000006
– fundername: National Institute of Health Academic-Industrial Partnerships
  grantid: 1R01CA193380
– fundername: National Institute of Health Quick Trials
  grantid: 1R01CA195500
– fundername: U.S. National Geospatial Intelligence Agency
  grantid: HM0177-13-1; HM04761610001
– fundername: U.S. Army Research Office
  grantid: W911NF-16-1-0088
– fundername: National Geospatial-Intelligence Agency
  grantid: HM04761610001
  funderid: 10.13039/100000266
– fundername: NCI NIH HHS
  grantid: R01 CA195500
– fundername: NCI NIH HHS
  grantid: R01 CA193380
– fundername: NCI NIH HHS
  grantid: R01 CA239268
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-2b19ea71c17adb052a3e289e5e1b8ed23efa11bb2e733a996d62b58ddf26a74a3
IEDL.DBID RIE
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000476773700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 30 16:59:05 EDT 2025
Sat Sep 27 16:33:44 EDT 2025
Mon Jun 30 08:36:02 EDT 2025
Thu Apr 03 07:01:59 EDT 2025
Tue Nov 18 22:18:30 EST 2025
Sat Nov 29 05:34:22 EST 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-2b19ea71c17adb052a3e289e5e1b8ed23efa11bb2e733a996d62b58ddf26a74a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7442-2351
0000-0001-5198-8491
0000-0002-0230-5022
OpenAccessLink https://ieeexplore.ieee.org/document/8580569
PMID 30575526
PQID 2261882287
PQPubID 85474
PageCount 13
ParticipantIDs proquest_miscellaneous_2159983472
pubmed_primary_30575526
crossref_citationtrail_10_1109_TBME_2018_2887208
ieee_primary_8580569
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6581620
proquest_journals_2261882287
crossref_primary_10_1109_TBME_2018_2887208
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
sellors (ref4) 2003
ref56
ref12
ref59
ref15
ref58
ref14
mehlhorn (ref26) 2012; 32
ref53
meyer (ref22) 1987; 12
srinivasan (ref23) 0
ref52
ref55
ref11
ref54
ref10
kaur (ref44) 2012; 3
ref17
ref16
park (ref19) 2008; 13
sherigar (ref29) 2010; 11
ref18
(ref2) 2016
gonzalez (ref43) 2008
(ref46) 2012
ref51
schölkopf (ref49) 2002
ref45
ref47
ref41
(ref50) 0
ref8
kecman (ref48) 2001
ref7
ref9
ref3
ref5
qiao (ref34) 2015; 41
ref40
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref25
ref20
ref21
(ref6) 2013
arthur (ref42) 0
ref28
ref27
ronneberger (ref35) 2015; 9351
References_xml – year: 0
  ident: ref50
– ident: ref45
  doi: 10.1109/EURCON.2003.1248032
– start-page: 1027
  year: 0
  ident: ref42
  article-title: k-means plus plus: The advantages of careful seeding
  publication-title: Proc 18th Annu ACM-SIAM Symp Discrete Algorithms
– ident: ref13
  doi: 10.1007/978-3-319-46723-8_14
– ident: ref51
  doi: 10.1109/IEMBS.2011.6090930
– ident: ref41
  doi: 10.1016/0031-3203(91)90143-S
– ident: ref53
  doi: 10.1159/000341546
– ident: ref12
  doi: 10.1097/LGT.0000000000000306
– start-page: xxii
  year: 2008
  ident: ref43
  publication-title: Digital Image Processing
– ident: ref58
  doi: 10.1002/ijc.11245
– ident: ref54
  doi: 10.1016/j.compmedimag.2008.12.002
– ident: ref9
  doi: 10.1371/journal.pone.0177782
– ident: ref59
  doi: 10.1038/s41591-018-0107-6
– ident: ref5
  doi: 10.1200/JGO.2016.006577
– start-page: 832
  year: 0
  ident: ref23
  article-title: Classification of cervix lesions using filter bank-based texture models
  publication-title: Proc 19th IEEE Int Symp Computer-Based Med Syst
– volume: 13
  year: 2008
  ident: ref19
  article-title: Automated image analysis of digital colposcopy for the detection of cervical neoplasia
  publication-title: J Biomed Opt
– year: 2013
  ident: ref6
  article-title: WHO guidelines for screening and treatment of precancerous lesions for cervical cancer prevention
  publication-title: World Health Organization
– ident: ref38
  doi: 10.1109/TSMC.1979.4310076
– ident: ref10
  doi: 10.1111/1471-0528.15326
– ident: ref28
  doi: 10.1117/1.3079810
– ident: ref56
  doi: 10.1258/td.2009.090085
– ident: ref57
  doi: 10.1016/j.ijgo.2009.11.025
– year: 2003
  ident: ref4
  article-title: Colposcopy and treatment of cervical intraepithelial neoplasia: a beginner's manual
– ident: ref36
  doi: 10.1109/TKDE.2005.50
– volume: 9351
  start-page: 234
  year: 2015
  ident: ref35
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Med Image Comput Comput -Assisted Intervention
– ident: ref7
  doi: 10.1007/s00428-012-1242-y
– ident: ref31
  doi: 10.1371/journal.pone.0013711
– year: 2016
  ident: ref2
– ident: ref25
  doi: 10.1117/12.594658
– ident: ref15
  doi: 10.1016/j.media.2018.06.005
– ident: ref39
  doi: 10.1016/j.jbi.2008.08.010
– ident: ref3
  doi: 10.1097/LGT.0b013e318287d329
– ident: ref47
  doi: 10.1142/9789812776655
– ident: ref52
  doi: 10.1117/12.708889
– ident: ref21
  doi: 10.1117/12.653089
– volume: 41
  start-page: 1313
  year: 2015
  ident: ref34
  article-title: Accuracy of visual inspection with acetic acid and with Lugol's iodine for cervical cancer screening: Meta-analysis
  publication-title: Journal of Obstetrics & Gynaecology
– ident: ref32
  doi: 10.1016/j.ejogrb.2014.03.006
– ident: ref18
  doi: 10.1109/IEMBS.2011.6090930
– ident: ref14
  doi: 10.1002/mp.12147
– start-page: xviii
  year: 2002
  ident: ref49
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond (Adaptive Computation and Machine Learning)
– volume: 12
  start-page: 23
  year: 1987
  ident: ref22
  article-title: Automatic screening of uterine cervix cancer
  publication-title: J Micros Spectrosc Electron
– year: 2012
  ident: ref46
– ident: ref33
  doi: 10.1097/IGC.0000000000000084
– volume: 11
  start-page: 323
  year: 2010
  ident: ref29
  article-title: Cervical cancer screening by visual inspection with acetic acid-interobserver variability between nurse and physician
  publication-title: Asian Pacific J Cancer Prevention
– ident: ref27
  doi: 10.1117/12.597075
– ident: ref1
  doi: 10.1002/cncr.25065
– ident: ref16
  doi: 10.1109/TMI.2018.2842767
– ident: ref20
  doi: 10.1109/TMI.2008.2007823
– ident: ref37
  doi: 10.1109/TSMC.1973.4309314
– ident: ref11
  doi: 10.1371/journal.pone.0135869
– ident: ref55
  doi: 10.1109/FUZZY.2005.1452388
– ident: ref30
  doi: 10.1371/journal.pone.0170631
– ident: ref8
  doi: 10.1158/1055-9965.EPI-09-1282
– volume: 32
  start-page: 5221
  year: 2012
  ident: ref26
  article-title: Computer-Assisted diagnosis (CAD) in colposcopy: Evaluation of a pilot study
  publication-title: Anticancer Res
– volume: 3
  start-page: 30
  year: 2012
  ident: ref44
  article-title: Comparison between YCbCr color space and CIELab color space for skin color segmentation
  publication-title: Int J Appl Inf Syst
– ident: ref24
  doi: 10.1016/S0031-3203(99)00123-5
– ident: ref40
  doi: 10.1109/IST.2011.5962218
– ident: ref17
  doi: 10.1109/JBHI.2018.2853987
– start-page: xxxii
  year: 2001
  ident: ref48
  publication-title: Learning and Soft Computing Support Vector Machines Neural Networks and Fuzzy Logic Models (Complex Adaptive Systems)
SSID ssj0014846
Score 2.583541
Snippet Goal: In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods...
In this paper, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol's iodine cervigrams and (2) methods for...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2306
SubjectTerms Acetic acid
Algorithms
Automation
Benign
Cervix
Cervix Uteri - diagnostic imaging
Color
Colposcopes
colposcopy
Computer-aided detection and diagnosis
Diagnosis
Early Detection of Cancer - instrumentation
Early Detection of Cancer - methods
Feature extraction
Female
global health
Handheld computers
Humans
image acquisition
Image Interpretation, Computer-Assisted - instrumentation
Image Interpretation, Computer-Assisted - methods
Inspection
Iodine
Lugol's iodine
Machine Learning
Pathology
Phase shift keying
Physicians
Point-of-Care Systems
Precancerous Conditions - diagnostic imaging
predictive models
segmentation
Sensitivity
Support vector machines
Uterine Cervical Neoplasms - diagnostic imaging
Title Development of Algorithms for Automated Detection of Cervical Pre-Cancers With a Low-Cost, Point-of-Care, Pocket Colposcope
URI https://ieeexplore.ieee.org/document/8580569
https://www.ncbi.nlm.nih.gov/pubmed/30575526
https://www.proquest.com/docview/2261882287
https://www.proquest.com/docview/2159983472
https://pubmed.ncbi.nlm.nih.gov/PMC6581620
Volume 66
WOSCitedRecordID wos000476773700018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJw4NECDZTKSJxQ3caOE9vHZWnFgVZ7KGJvkRM77UpLXGWz5cCfZ5yk0RZVSNwSZeIkmhnPN5kXwMdU2kyjmaI2cYIKlXKqC53RQusyrSqpmbLdsAl5caHmcz3bgqOxFsY51yWfueNw2MXyrS_X4VfZiUoV2mu9DdtSyr5Wa4wYCNUX5cQMFZhrMUQwWaxPLj-fn4YkLnXMUaV4mCS5YYO6oSoP4cu_0yQ37M7Z8_974xfwbMCXZNILxEvYcvUuPN3oOrgLj8-HePoe_N7IGSK-IpPllW8W7fXPFUEwSybr1iOidZZ8cW2Xs1UHqmm3v-BTZo2j0yA2zYr8wNuIId_8Lzr1q_aIzPyibqmvaChxCqe4X7Rk6pc3viuFeQXfz04vp1_pMI6BlkLIlvKCaWckK5k0tohTbhKH7ppLHSuUszxxlWGsKLiTSWLQj7IZL1JlbcUzI4VJXsNO7Wu3D0SGRn-iqtAUWsGMLAR6UbbCRZQyTqsI4jsG5eXQqzyMzFjmnc8S6zzwNA88zQeeRvBpvOWmb9TxL-K9wKuRcGBTBAd3UpAPqrzKEZ8ydEPQs4zgw3gZlTBEVkzt_BppEBRqlQjJI3jTC824dhIQccqzCOQ9cRoJQoPv-1fqxXXX6BvRIct4_Pbht30HT_CbdJ-NeAA7bbN27-FRedsuVs0h6shcHXY68gcv7A6W
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgngceLQ8AgWMxAk1bew4sX1cllZF7K72sIjeIid26EpLXG2ycODPM07SaIsqJG6JMnESzYznm8wL4H0iTKrQTIUmtjzkMmGhylUa5koVSVkKRaVph02I2Uyen6v5DhwOtTDW2jb5zB75wzaWb1yx8b_KjmUi0V6rW3A74ZzRrlpriBlw2ZXlRBRVmCnexzBppI4XH6cnPo1LHjFUKuZnSW5ZoXasyk0I8-9EyS3Lc_ro_975MTzsESYZdSLxBHZstQcPtvoO7sHdaR9R34ffW1lDxJVktPru1svm4kdNEM6S0aZxiGmtIZ9s02ZtVZ5q3O4w-JT52oZjLzjrmnzD24gmE_crHLu6OSRzt6ya0JWhL3Lyp7hjNGTsVpeuLYZ5Cl9PTxbjs7AfyBAWnIsmZDlVVgtaUKFNHiVMxxYdNptYmktrWGxLTWmeMyviWKMnZVKWJ9KYkqVacB0_g93KVfYFEOFb_fGyRGNoONUi5-hHmRIXkVJbJQOIrhiUFX23cj80Y5W1XkukMs_TzPM063kawIfhlsuuVce_iPc9rwbCnk0BHFxJQdYrc50hQqXoiKBvGcC74TKqoY-t6Mq6DdIgLFQy5oIF8LwTmmHt2GPihKUBiGviNBD4Ft_Xr1TLi7bVN-JDmrLo5c1v-xbunS2mk2zyefblFdzH71NdbuIB7DbrjX0Nd4qfzbJev2k15Q_7bBD1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Algorithms+for+Automated+Detection+of+Cervical+Pre-Cancers+With+a+Low-Cost%2C+Point-of-Care%2C+Pocket+Colposcope&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Asiedu%2C+Mercy+Nyamewaa&rft.au=Simhal%2C+Anish&rft.au=Chaudhary%2C+Usamah&rft.au=Mueller%2C+Jenna+L&rft.date=2019-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=8&rft.spage=2306&rft_id=info:doi/10.1109%2FTBME.2018.2887208&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon