Continuum Robot With Follow-the-Leader Motion for Endoscopic Third Ventriculostomy and Tumor Biopsy

Background: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. Objective: This paper presents wire-driven multi-section robot with pushpull wire. The robot is tes...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 379 - 390
Main Authors: Gao, Yuanqian, Takagi, Kiyoshi, Kato, Takahisa, Shono, Naoyuki, Hata, Nobuhiko
Format: Journal Article
Language:English
Published: United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. Objective: This paper presents wire-driven multi-section robot with pushpull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues. Methods: A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories. Results: In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30° turn to 1.78 mm at 180° in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm. Conclusion: We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.
AbstractList In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. This paper presents wire-driven multi-section robot with push-pull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues. A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories. In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30 turn to 1.78 mm at 180 in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm. We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.
Background: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. Objective: This paper presents wire-driven multi-section robot with pushpull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues. Methods: A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories. Results: In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30° turn to 1.78 mm at 180° in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm. Conclusion: We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.
In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue.BACKGROUNDIn a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue.This paper presents wire-driven multi-section robot with push-pull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues.OBJECTIVEThis paper presents wire-driven multi-section robot with push-pull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues.A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories.METHODSA wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories.In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30 ° turn to 1.78 mm at 180 ° in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm.RESULTSIn the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30 ° turn to 1.78 mm at 180 ° in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm.We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.CONCLUSIONWe present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.
Background: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to surrounding cerebral tissue. Objective: This paper presents wire-driven multi-section robot with push-pull wire. The robot is tested to attain follow-the-leader (FTL) motion to place surgical instruments through narrow passages while minimizing the trauma to tissues. Methods: A wire-driven continuum robot with six sub-sections was developed and its kinematic model was proposed to achieve FTL motion. An accuracy test to assess the robot's ability to attain FTL motion along a set of elementary curved trajectory was performed. We also used hydrocephalus ventricular model created from human subject data to generate five ETV/ETB trajectories and conducted a study assessing the accuracy of the FTL motion along these clinically desirable trajectories. Results: In the test with elementary curved paths, the maximal deviation of the robot was increased from 0.47 mm at 30[Formula Omitted] turn to 1.78 mm at 180[Formula Omitted] in a simple C-shaped curve. S-shaped FTL motion had lesser deviation ranging from 0.16 to 0.18 mm. In the phantom study, the greatest tip deviation was 1.45 mm, and the greatest path deviation was 1.23 mm. Conclusion: We present the application of a continuum robot with FTL motion to perform a combined ETV/ETB procedure. The validation study using human subject data indicated that the accuracy of FTL motion is relatively high. The study indicated that FTL motion may be useful tool for combined ETV and ETB.
Author Takagi, Kiyoshi
Kato, Takahisa
Hata, Nobuhiko
Shono, Naoyuki
Gao, Yuanqian
Author_xml – sequence: 1
  givenname: Yuanqian
  orcidid: 0000-0001-9160-6750
  surname: Gao
  fullname: Gao, Yuanqian
  email: gaoyuanqian@tju.edu.cn
  organization: National Center for Image Guided TherapyBrigham and Women's Hospital and Harvard Medical School
– sequence: 2
  givenname: Kiyoshi
  surname: Takagi
  fullname: Takagi, Kiyoshi
  email: takagi.kiyoshi@canon.co.jp
  organization: Mechanical Development Department 31Canon, Inc
– sequence: 3
  givenname: Takahisa
  surname: Kato
  fullname: Kato, Takahisa
  email: takato@cusa.canon.com
  organization: National Center for Image Guided TherapyBrigham and Women's Hospital and Harvard Medical School
– sequence: 4
  givenname: Naoyuki
  surname: Shono
  fullname: Shono, Naoyuki
  email: nshono@mbp.nifty.com
  organization: National Center for Image Guided TherapyBrigham and Women's Hospital and Harvard Medical School
– sequence: 5
  givenname: Nobuhiko
  orcidid: 0000-0002-6818-7700
  surname: Hata
  fullname: Hata, Nobuhiko
  email: hata@bwh.harvard.edu
  organization: National Center for Image Guided Therapy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31034405$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEYhYNUbLv6A0SQgDfezJrPyeRGsMtWhS2CrHoZZpKMmzKTbJOMsv_eDLst2guvQsg5b573nEtw5oO3ALzEaIkxku-2VzfrJUFYLonEVHDyBFxgzpuKcIrPwAVCuKkkkewcXKZ0W66sYfUzcE4xoowhfgH0Kvjs_DSN8GvoQoY_XN7B6zAM4XeVd7ba2NbYCG9CdsHDPkS49iYkHfZOw-3ORQO_W5-j09MQUg7jAbbewO00FumVC_t0eA6e9u2Q7IvTuQDfrtfb1adq8-Xj59WHTaUZE7kirO4FNZJQSS3rMKqbmhPa9VRL3hHaU2lqi1vS6d50zDbIGC6o1LVoMCaULsD749z91I3W6BmrHdQ-urGNBxVap_598W6nfoZfSiDZ0JLZArw9DYjhbrIpq9ElbYeh9TZMSRGCRUmQifmvN4-kt2GKvqynCGWcY4oK0gK8_pvoAeU-_yIQR4GOIaVoe6VdbueoC6AbFEZqblrNTau5aXVqujjxI-f98P95Xh09zlr7oG8EwoWX_gGH_rPp
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2025_110224
crossref_primary_10_1109_LRA_2023_3238890
crossref_primary_10_1007_s11548_019_02017_w
crossref_primary_10_1016_j_ijmecsci_2024_109312
crossref_primary_10_1109_RBME_2021_3113395
crossref_primary_10_1109_TMECH_2024_3382984
crossref_primary_10_1002_aisy_202200367
crossref_primary_10_1002_rcs_2340
crossref_primary_10_1126_scirobotics_adt1874
crossref_primary_10_1109_TMECH_2023_3249413
crossref_primary_10_3390_act13070267
crossref_primary_10_1109_TMECH_2020_3040314
crossref_primary_10_1155_2022_7047481
crossref_primary_10_1109_TMECH_2025_3568801
crossref_primary_10_1080_15397734_2025_2553889
crossref_primary_10_1109_LRA_2025_3573623
crossref_primary_10_3389_fmedt_2022_938643
crossref_primary_10_1109_TBME_2021_3077356
crossref_primary_10_1038_s41467_024_48058_x
crossref_primary_10_1007_s43154_020_00042_1
crossref_primary_10_1109_TSMC_2021_3092012
crossref_primary_10_1126_scirobotics_adg6042
crossref_primary_10_3390_act9040142
crossref_primary_10_1109_TASE_2022_3229416
crossref_primary_10_1109_TASE_2025_3570861
crossref_primary_10_1109_TIE_2023_3257374
crossref_primary_10_1109_TASE_2024_3357816
crossref_primary_10_1109_TBME_2022_3158539
crossref_primary_10_1002_aisy_202300614
crossref_primary_10_1177_09544119221135664
crossref_primary_10_1007_s11431_022_2179_9
crossref_primary_10_1109_TMECH_2022_3171259
crossref_primary_10_1109_TMECH_2020_2967748
crossref_primary_10_1109_TRO_2023_3324571
crossref_primary_10_1109_ACCESS_2025_3535677
crossref_primary_10_1109_LRA_2021_3068648
crossref_primary_10_3389_frobt_2022_873446
crossref_primary_10_1016_j_mechmachtheory_2022_104978
crossref_primary_10_32604_cmc_2022_026845
Cites_doi 10.1227/01.NEU.0000223504.29243.0B
10.3171/2011.2.FOCUS10301
10.1016/j.mechatronics.2015.09.001
10.1016/j.asjsur.2012.11.008
10.3171/2014.9.JNS141397
10.1109/TRO.2015.2489500
10.1109/TRO.2011.2165371
10.1109/TRO.2016.2622278
10.1007/s00381-011-1405-1
10.1016/j.wneu.2014.11.013
10.1109/TRO.2011.2171610
10.3171/jns.2006.105.2.271
10.1016/j.robot.2014.05.013
10.1227/NEU.0000000000001177
10.1109/IROS.2011.6094751
10.1155/2013/898753
10.1002/rob.10070
10.1109/TRO.2014.2378431
10.1007/s00381-012-1954-y
10.1109/TRO.2010.2064014
10.1061/(ASCE)0893-1321(1999)12:2(65)
10.1109/TRO.2011.2160469
10.1016/j.wneu.2013.05.011
10.1109/ICRA.2011.5980285
10.1115/1.4007005
10.5772/56025
10.1007/s11548-015-1310-2
10.1007/s10143-011-0370-1
10.1007/s00701-013-1763-4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2019.2913752
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 390
ExternalDocumentID PMC7098325
31034405
10_1109_TBME_2019_2913752
8701513
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: 10.13039/100000070
– fundername: Canon USA, Inc.
– fundername: National Institutes of Health
  grantid: P41EB015898
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: P41 EB015898
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-246f73d92393e4b10686523bf3c95b23f39d6e1a2bcfdb4e80dd5739c67811233
IEDL.DBID RIE
ISICitedReferencesCount 52
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510903800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 30 16:49:22 EDT 2025
Sun Nov 09 11:29:23 EST 2025
Mon Jun 30 08:44:33 EDT 2025
Mon Jul 21 05:59:58 EDT 2025
Sat Nov 29 05:34:23 EST 2025
Tue Nov 18 22:39:01 EST 2025
Wed Aug 27 02:29:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-246f73d92393e4b10686523bf3c95b23f39d6e1a2bcfdb4e80dd5739c67811233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9160-6750
0000-0002-6818-7700
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7098325
PMID 31034405
PQID 2345513012
PQPubID 85474
PageCount 12
ParticipantIDs proquest_journals_2345513012
crossref_primary_10_1109_TBME_2019_2913752
proquest_miscellaneous_2217484473
crossref_citationtrail_10_1109_TBME_2019_2913752
pubmed_primary_31034405
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7098325
ieee_primary_8701513
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref30
ref10
ref2
ref1
ref17
ref16
ref19
ref18
webster iii (ref11) 2011; 27
ref24
ref23
ref26
ref25
ref20
ref22
ref21
degani (ref28) 0
ref27
ref29
swaney (ref12) 2015; 76
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1227/01.NEU.0000223504.29243.0B
– ident: ref4
  doi: 10.3171/2011.2.FOCUS10301
– ident: ref16
  doi: 10.1016/j.mechatronics.2015.09.001
– ident: ref5
  doi: 10.1016/j.asjsur.2012.11.008
– ident: ref8
  doi: 10.3171/2014.9.JNS141397
– ident: ref14
  doi: 10.1109/TRO.2015.2489500
– ident: ref17
  doi: 10.1109/TRO.2011.2165371
– ident: ref15
  doi: 10.1109/TRO.2016.2622278
– ident: ref7
  doi: 10.1007/s00381-011-1405-1
– ident: ref3
  doi: 10.1016/j.wneu.2014.11.013
– ident: ref25
  doi: 10.1109/TRO.2011.2171610
– ident: ref26
  doi: 10.3171/jns.2006.105.2.271
– ident: ref23
  doi: 10.1016/j.robot.2014.05.013
– ident: ref9
  doi: 10.1227/NEU.0000000000001177
– ident: ref29
  doi: 10.1109/IROS.2011.6094751
– ident: ref10
  doi: 10.1155/2013/898753
– ident: ref20
  doi: 10.1002/rob.10070
– ident: ref13
  doi: 10.1109/TRO.2014.2378431
– ident: ref6
  doi: 10.1007/s00381-012-1954-y
– ident: ref24
  doi: 10.1109/TRO.2010.2064014
– volume: 76
  start-page: 145
  year: 2015
  ident: ref12
  article-title: Endonasal skull base tumor removal using concentric tube continuum robots: A phantom study
  publication-title: Journal of neurological surgery Part B Skull base
– ident: ref19
  doi: 10.1061/(ASCE)0893-1321(1999)12:2(65)
– volume: 27
  start-page: 1033
  year: 2011
  ident: ref11
  article-title: Statics and dynamics of continuum robots with general tendon routing and external loading
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2011.2160469
– ident: ref18
  doi: 10.1016/j.wneu.2013.05.011
– ident: ref30
  doi: 10.1109/ICRA.2011.5980285
– start-page: 4167
  year: 0
  ident: ref28
  article-title: Highly articulated robotic probe for minimally invasive surgery
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref27
  doi: 10.1115/1.4007005
– ident: ref22
  doi: 10.5772/56025
– ident: ref21
  doi: 10.1007/s11548-015-1310-2
– ident: ref2
  doi: 10.1007/s10143-011-0370-1
– ident: ref1
  doi: 10.1007/s00701-013-1763-4
SSID ssj0014846
Score 2.5427055
Snippet Background: In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to...
In a combined endoscopic third ventriculostomy (ETV) and endoscopic tumor biopsy (ETB) procedure, an optimal tool trajectory is mandatory to minimize trauma to...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Accuracy
Biopsy
Biopsy - instrumentation
Biopsy - methods
Brain injury
Brain Neoplasms - pathology
Brain Neoplasms - surgery
Continuum robot
Deviation
Endoscopes
endoscopic biopsy
Endoscopy
Endoscopy - instrumentation
follow-the-leader motion
Human motion
Human subjects
Humans
Hydrocephalus
Hydrocephalus - surgery
Male
Medical instruments
Middle Aged
neuroendoscopy
Phantoms, Imaging
Robot dynamics
Robot kinematics
Robotic surgery
Robotic Surgical Procedures - instrumentation
Robots
Surgical instruments
third ventriculostomy
Trajectories
Trajectory
Tumors
Ventricle
Ventriculostomy - methods
Wire
Wires
Title Continuum Robot With Follow-the-Leader Motion for Endoscopic Third Ventriculostomy and Tumor Biopsy
URI https://ieeexplore.ieee.org/document/8701513
https://www.ncbi.nlm.nih.gov/pubmed/31034405
https://www.proquest.com/docview/2345513012
https://www.proquest.com/docview/2217484473
https://pubmed.ncbi.nlm.nih.gov/PMC7098325
Volume 67
WOSCitedRecordID wos000510903800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aIqIPfrRqo7Ws4JOYNtndZLOPVu7wwSsiZ723kP0IF_CScpdU-t-7s8mFqxTBt8BOliUzk5nZ-fgBvOdaaaa4E97UpCHnLkDJSsPCOE2p1MpQ67EBr76Ky8tssZDf9uDj2AtjrfXFZ_YMH30u3zS6w6uycydbzkCxfdgXQvS9WmPGgGd9U04UOwWmkg8ZzDiS5_OL2QSLuOQZlTETCSLYILwW5what2OOPL7Kfa7m3xWTOyZo-vT_Dv8MngyuJvnUy8Zz2LP1ITzeGUB4CA9nQ2r9CDTOqarqrluR741qWvKzapdk6sSk-R06LzHswTjJzMP-EOfrkkltGuxqqTSZL6u1IVd4brxQxGkdq1tS1IbMu5Ujvaia683tC_gxncw_fwkHBIZQcy7akPK0FMxInJNmuYqxn8RFrqpkWiaKspJJk9q4oEqXRnGbRcYkgkmdYgMrZewlHNRNbY-BlMpo52_oQlsXEVItlUiSUtrCJpGlqgwg2jIi18N4ckTJ-JX7MCWSObIxRzbmAxsD-DC-ct3P5vgX8RHyZCQc2BHAyZbb-aC9m5wyjrg3znYH8G5cdnqHyZSitk3naDCWy9xXclu86oVj3HsrXAGIO2IzEuBM77srdbX0s71FJN0_Nnl9_2nfwCOK8b6vGj-Bg3bd2bfwQN-01WZ96tRikZ16tfgDs-YIUg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFbUPfrRWU6uu4JM0bbK7-djHVu6oeHeIxNq3kP0IF-gl5S5R-t-7k-TCtRTBt8BOliUzk5nZ-fgBfOJKKia5Fd5Qhy7nNkCJc81cPwypUFJT02IDXkyi2Sy-vBTft-Bo6IUxxrTFZ-YYH9tcvq5Ug1dlJ1a2rIFiD-BhYHf1u26tIWfA464tx_OtClPB-xym74mT5Gw6wjIucUyFz6IAMWwQYItzhK3bMEgtwsp9zubdmskNIzR-_n_HfwHPemeTnHbS8RK2TLkLOxsjCHfh8bRPru-BwklVRdk0C_KjklVNfhX1nIytoFR_XOsnuh0cJ5m2wD_EertkVOoK-1oKRZJ5sdTkAs-NV4o4r2NxQ7JSk6RZWNKzorpe3byCn-NR8uXc7TEYXMV5VLuUh3nEtMBJaYZLHztKbOwqc6ZEICnLmdCh8TMqVa4lN7GndRAxoUJsYaWM7cN2WZXmDZBcamU9DpUpY2NCqoSMgiAXJjOBZ6jMHfDWjEhVP6AccTKu0jZQ8USKbEyRjWnPRgc-D69cd9M5_kW8hzwZCHt2OHC45nba6-8qpYwj8o213g58HJat5mE6JStN1VgajOZi-5XsFq874Rj2XguXA9EtsRkIcKr37ZWymLfTvSNP2L9scHD_aT_Ak_NkOkknX2ff3sJTitF_W0N-CNv1sjHv4JH6XRer5ftWOf4CVgIKsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuum+Robot+with+Follow-the-Leader+Motion+for+Endoscopic+Third+Ventriculostomy+and+Tumor+Biopsy&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gao%2C+Yuanqian&rft.au=Takagi%2C+Kiyoshi&rft.au=Kato%2C+Takahisa&rft.au=Shono%2C+Naoyuki&rft.date=2020-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=2&rft.spage=379&rft.epage=390&rft_id=info:doi/10.1109%2FTBME.2019.2913752&rft_id=info%3Apmid%2F31034405&rft.externalDocID=PMC7098325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon