Spatially Aware Fusion in 3D Convolutional Autoencoders for Video Anomaly Detection

Surveillance videos are crucial for crime prevention and public safety, yet the challenge of defining abnormal events hinders their effectiveness, limiting the applicability of supervised methods. This paper introduces an unsupervised end-to-end architecture for video anomaly detection that applies...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 104770 - 104784
Main Authors: Niaz, Asim, Ul Amin, Sareer, Soomro, Shafiullah, Zia, Hamza, Nam Choi, Kwang
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Surveillance videos are crucial for crime prevention and public safety, yet the challenge of defining abnormal events hinders their effectiveness, limiting the applicability of supervised methods. This paper introduces an unsupervised end-to-end architecture for video anomaly detection that applies spatial and temporal features to identify anomalies in surveillance footage. The model employs a three-dimensional (3D) convolutional autoencoder, with an encoder-decoder structure that learns spatiotemporal representations and reconstructs the input through the latent space. Skip connections linking the encoder and decoder blocks facilitate the transfer of information across various scales of feature representations, enhancing the reconstruction process and improving the overall performance. The architecture incorporates spatial attention modules that highlight informative regions in the input, enabling improved anomaly detection. Spatial and contextual dependencies are further acquired using 3D convolutional filters. The performance of the proposed model is assessed on four benchmark datasets: UCSD Pedestrian 1, UCSD Pedestrian 2, CUHK Avenue, and ShanghaiTech. Notably, the proposed model achieves frame-based Area Under the Curve (AUC) scores of 94.6% on UCSD Ped 1, 96.7% on UCSD Ped 2, 84.7% on CUHK Avenue, and 74.8% on ShanghaiTech. These results demonstrate the state-of-the-art performance of the proposed approach, highlighting its efficacy in real-world anomaly detection scenarios.
AbstractList Surveillance videos are crucial for crime prevention and public safety, yet the challenge of defining abnormal events hinders their effectiveness, limiting the applicability of supervised methods. This paper introduces an unsupervised end-to-end architecture for video anomaly detection that applies spatial and temporal features to identify anomalies in surveillance footage. The model employs a three-dimensional (3D) convolutional autoencoder, with an encoder-decoder structure that learns spatiotemporal representations and reconstructs the input through the latent space. Skip connections linking the encoder and decoder blocks facilitate the transfer of information across various scales of feature representations, enhancing the reconstruction process and improving the overall performance. The architecture incorporates spatial attention modules that highlight informative regions in the input, enabling improved anomaly detection. Spatial and contextual dependencies are further acquired using 3D convolutional filters. The performance of the proposed model is assessed on four benchmark datasets: UCSD Pedestrian 1, UCSD Pedestrian 2, CUHK Avenue, and ShanghaiTech. Notably, the proposed model achieves frame-based Area Under the Curve (AUC) scores of 94.6% on UCSD Ped 1, 96.7% on UCSD Ped 2, 84.7% on CUHK Avenue, and 74.8% on ShanghaiTech. These results demonstrate the state-of-the-art performance of the proposed approach, highlighting its efficacy in real-world anomaly detection scenarios.
Author Zia, Hamza
Ul Amin, Sareer
Soomro, Shafiullah
Nam Choi, Kwang
Niaz, Asim
Author_xml – sequence: 1
  givenname: Asim
  orcidid: 0000-0003-3905-9774
  surname: Niaz
  fullname: Niaz, Asim
  organization: Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
– sequence: 2
  givenname: Sareer
  surname: Ul Amin
  fullname: Ul Amin, Sareer
  organization: Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
– sequence: 3
  givenname: Shafiullah
  orcidid: 0000-0002-4318-5055
  surname: Soomro
  fullname: Soomro, Shafiullah
  organization: Department of Computer Science and Media Technology, Linnaeus University, Växjö, Sweden
– sequence: 4
  givenname: Hamza
  surname: Zia
  fullname: Zia, Hamza
  organization: Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
– sequence: 5
  givenname: Kwang
  orcidid: 0000-0002-7420-9216
  surname: Nam Choi
  fullname: Nam Choi, Kwang
  email: knchoi@cau.ac.kr
  organization: Department of Computer Science and Engineering, Chung-Ang University, Seoul, South Korea
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-132046$$DView record from Swedish Publication Index (Linnéuniversitetet)
BookMark eNp9kUFv1DAQhSNUJErpL4BDJM5Z7Nhx7GOUbaFSJQ4LvVoTe4y8SuPFdqj670maIhUOzMWjp_c9WfPeFmdTmLAo3lOyo5SoT13fXx0Ou5rUfMc4ayjnr4rzmgpVsYaJsxf7m-IypSNZRi5S054Xh8MJsodxfCy7B4hYXs_Jh6n0U8n2ZR-mX2Gc86LAWHZzDjiZYDGm0oVY3nmLoeymcA8Lv8eMZrW-K147GBNePr8Xxffrq2_9l-r26-ebvrutDOdtrqhzUhkFhslWOGyts8Y0dGCcUlu7gQkD1FJDUA5KkKZVpJaWA605cCIkuyhutlwb4KhP0d9DfNQBvH4SQvyhIWZvRtSEKhyoaYFbxqUdYLDK1RRVYyQQMyxZ1ZaVHvA0D3-l7f1d95Q2TrOmrCZcLP6Pm_8Uw88ZU9bHMMflSkkzIpWqFZerS20uE0NKEZ02PsN6oxzBj5oSvVaotwr1WqF-rnBh2T_snz_9n_qwUR4RXxCCslZw9hsKLqnO
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3500212
crossref_primary_10_1007_s11760_024_03797_8
crossref_primary_10_1016_j_patcog_2025_111759
Cites_doi 10.1109/ACCESS.2024.3404553
10.1007/s11042-020-09406-3
10.1109/TCSVT.2018.2884203
10.1109/WACV.2017.118
10.1109/ICME.2017.8019325
10.1109/ICCV.2019.00179
10.1016/j.patrec.2022.03.004
10.1109/ICCV.2017.45
10.1109/TCSVT.2022.3221622
10.1109/CVPR42600.2020.01438
10.1016/j.patrec.2005.10.010
10.1109/ACCESS.2022.3142247
10.1109/TCSVT.2019.2962229
10.1109/TCDS.2022.3183997
10.1109/TMM.2020.2984093
10.1007/978-3-030-58555-6_20
10.1109/ACCESS.2023.3315739
10.1109/TII.2013.2255616
10.3390/math10091555
10.1109/TCSII.2022.3161049
10.1109/TCSVT.2020.3014889
10.1109/AVSS.2019.8909850
10.1109/ICCV.2013.338
10.1109/tcds.2024.3349705
10.1109/TCSVT.2022.3190539
10.1109/TCSVT.2022.3181452
10.1109/ACCESS.2024.3374383
10.1109/ACCESS.2021.3109102
10.1109/TCDS.2018.2883368
10.1016/j.cviu.2020.102920
10.1109/ICCV.2017.315
10.1109/ACCESS.2024.3380192
10.1109/CVPR.2016.213
10.32604/csse.2023.034805
10.1109/TCSVT.2013.2280061
10.1109/ICCV.2015.510
10.1109/CVPR.2018.00684
10.1109/ACCESS.2021.3126335
10.1109/CVPR.2016.86
10.1109/TCSI.2017.2758379
10.1109/CVPR.2016.70
10.1016/j.neucom.2019.08.044
10.1109/TIFS.2019.2900907
10.1145/3394171.3413887
10.1109/ICCC51575.2020.9345287
10.1109/TIP.2017.2695105
10.1109/TPAMI.2007.70738
10.1109/TCSVT.2019.2929855
10.1007/978-3-319-59081-3_23
10.1109/TII.2019.2938527
10.1007/s10489-022-03613-1
10.1109/TCSVT.2019.2892608
10.1109/TCDS.2018.2866838
10.1109/TIP.2011.2172800
10.1109/TCSII.2022.3161061
10.1109/CVPR.2019.01227
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
DOA
DOI 10.1109/ACCESS.2024.3435144
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SWEPUB Linnéuniversitetet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Linnéuniversitetet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2169-3536
EndPage 104784
ExternalDocumentID oai_doaj_org_article_019eb1c7a4d348dbabd9f21e95c8a0cb
oai_DiVA_org_lnu_132046
10_1109_ACCESS_2024_3435144
10613764
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Information and Communication Technology
  funderid: 10.13039/100007845
– fundername: National Information Technology Industry Promotion Agency through the High Performance Computing Support Project
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTPV
AGRUY
AOWAS
D8T
D92
ZZAVC
ID FETCH-LOGICAL-c447t-1ff89c9ac3876fe7dfdcc51b3411d2fb36ca1d1c0e8b960579028d4a124a40683
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286671500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:17 EDT 2025
Tue Nov 04 16:18:05 EST 2025
Mon Jun 30 17:08:54 EDT 2025
Sat Nov 29 04:26:59 EST 2025
Tue Nov 18 22:22:56 EST 2025
Wed Aug 27 03:06:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-1ff89c9ac3876fe7dfdcc51b3411d2fb36ca1d1c0e8b960579028d4a124a40683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3905-9774
0000-0002-7420-9216
0000-0002-4318-5055
OpenAccessLink https://ieeexplore.ieee.org/document/10613764
PQID 3089929486
PQPubID 4845423
PageCount 15
ParticipantIDs swepub_primary_oai_DiVA_org_lnu_132046
crossref_citationtrail_10_1109_ACCESS_2024_3435144
doaj_primary_oai_doaj_org_article_019eb1c7a4d348dbabd9f21e95c8a0cb
crossref_primary_10_1109_ACCESS_2024_3435144
ieee_primary_10613764
proquest_journals_3089929486
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Michelucci (ref25) 2022
ref24
ref23
ref26
ref20
Mathieu (ref32) 2015
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref54
  doi: 10.1109/ACCESS.2024.3404553
– ident: ref57
  doi: 10.1007/s11042-020-09406-3
– ident: ref6
  doi: 10.1109/TCSVT.2018.2884203
– ident: ref34
  doi: 10.1109/WACV.2017.118
– ident: ref46
  doi: 10.1109/ICME.2017.8019325
– ident: ref39
  doi: 10.1109/ICCV.2019.00179
– ident: ref55
  doi: 10.1016/j.patrec.2022.03.004
– ident: ref47
  doi: 10.1109/ICCV.2017.45
– ident: ref26
  doi: 10.1109/TCSVT.2022.3221622
– ident: ref48
  doi: 10.1109/CVPR42600.2020.01438
– ident: ref56
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref53
  doi: 10.1109/ACCESS.2022.3142247
– ident: ref51
  doi: 10.1109/TCSVT.2019.2962229
– ident: ref13
  doi: 10.1109/TCDS.2022.3183997
– ident: ref19
  doi: 10.1109/TMM.2020.2984093
– ident: ref38
  doi: 10.1007/978-3-030-58555-6_20
– ident: ref41
  doi: 10.1109/ACCESS.2023.3315739
– ident: ref5
  doi: 10.1109/TII.2013.2255616
– ident: ref16
  doi: 10.3390/math10091555
– ident: ref14
  doi: 10.1109/TCSII.2022.3161049
– ident: ref9
  doi: 10.1109/TCSVT.2020.3014889
– ident: ref50
  doi: 10.1109/AVSS.2019.8909850
– ident: ref31
  doi: 10.1109/ICCV.2013.338
– ident: ref11
  doi: 10.1109/tcds.2024.3349705
– ident: ref35
  doi: 10.1109/TCSVT.2022.3190539
– ident: ref2
  doi: 10.1109/TCSVT.2022.3181452
– ident: ref4
  doi: 10.1109/ACCESS.2024.3374383
– ident: ref40
  doi: 10.1109/ACCESS.2021.3109102
– ident: ref12
  doi: 10.1109/TCDS.2018.2883368
– ident: ref18
  doi: 10.1016/j.cviu.2020.102920
– ident: ref42
  doi: 10.1109/ICCV.2017.315
– year: 2022
  ident: ref25
  article-title: An introduction to autoencoders
  publication-title: arXiv:2201.03898
– ident: ref3
  doi: 10.1109/ACCESS.2024.3380192
– ident: ref22
  doi: 10.1109/CVPR.2016.213
– ident: ref58
  doi: 10.32604/csse.2023.034805
– ident: ref17
  doi: 10.1109/TCSVT.2013.2280061
– ident: ref27
  doi: 10.1109/ICCV.2015.510
– ident: ref33
  doi: 10.1109/CVPR.2018.00684
– ident: ref52
  doi: 10.1109/ACCESS.2021.3126335
– ident: ref23
  doi: 10.1109/CVPR.2016.86
– ident: ref8
  doi: 10.1109/TCSI.2017.2758379
– ident: ref30
  doi: 10.1109/CVPR.2016.70
– ident: ref37
  doi: 10.1016/j.neucom.2019.08.044
– ident: ref43
  doi: 10.1109/TIFS.2019.2900907
– ident: ref45
  doi: 10.1145/3394171.3413887
– ident: ref49
  doi: 10.1109/ICCC51575.2020.9345287
– ident: ref21
  doi: 10.1109/TIP.2017.2695105
– ident: ref28
  doi: 10.1109/TPAMI.2007.70738
– ident: ref1
  doi: 10.1109/TCSVT.2019.2929855
– year: 2015
  ident: ref32
  article-title: Deep multi-scale video prediction beyond mean square error
  publication-title: arXiv:1511.05440
– ident: ref24
  doi: 10.1007/978-3-319-59081-3_23
– ident: ref36
  doi: 10.1109/TII.2019.2938527
– ident: ref20
  doi: 10.1007/s10489-022-03613-1
– ident: ref7
  doi: 10.1109/TCSVT.2019.2892608
– ident: ref10
  doi: 10.1109/TCDS.2018.2866838
– ident: ref29
  doi: 10.1109/TIP.2011.2172800
– ident: ref15
  doi: 10.1109/TCSII.2022.3161061
– ident: ref44
  doi: 10.1109/CVPR.2019.01227
SSID ssj0000816957
Score 2.3771148
Snippet Surveillance videos are crucial for crime prevention and public safety, yet the challenge of defining abnormal events hinders their effectiveness, limiting the...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104770
SubjectTerms Anomalies
Anomaly detection
autoencoders
Computer Science
computer vision
Crime prevention
Datavetenskap
Effectiveness
Encoders-Decoders
Feature extraction
intelligent surveillance systems
Optical flow
Pedestrians
Predictive models
Public safety
Representations
Surveillance
three-dimensional convolutional neural network (3DCNN)
video-based abnormal event detection
Videos
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRCwX5gDgRGsdObB_DLisOqEICqt4sxw9ppSWpttmi_vvOOG6VvcCFa-TneDLzjTP5hpD3znLlwM8WZRN9IbyrC1VxVzQxVlZLgLA2UeZ_k2dn6uJCf5-V-sKcsIkeeBLcKUAQMCdOWuG5UL6zndexYkHXTtnSdWh9AfXMgqlkgxVrdC0zzRAr9Wm7XMKOICCsxCcuMH9dHLiixNifS6wcos05g2jyOuun5EmGi7SdlvmMPAj9c_J4RiL4gvzAqsKgRdsb2v6xu0DXe7wBo5ue8hVdDv111i4cZz8OyFyJ2csU4Co93_gw0LYfflvovwpjyszqj8mv9Zefy69FLpVQOCHkWLAYlXbaOg7WLQbpo3euZh34KOar2PHGWeaZK4PqIGapJZK2eGHBu1tw6Yq_JEf90IdXhHrGnOc-YrAIaK22HVKQ1RJvSQAslQtS3UnNuMwjjuUstibFE6U2k6gNitpkUS_Ix_tOlxONxt-bf8bjuG-KHNjpAWiGyZph_qUZC3KMhzmbD6CLbGDwk7vTNfmFvTIcP39WWqhmQT5MJ34w-2pz3qbZt_3e4G_nonn9Pxb5hjzCjU-XOifkaNztw1vy0F2Pm6vdu6TUtxYi-PM
  priority: 102
  providerName: Directory of Open Access Journals
Title Spatially Aware Fusion in 3D Convolutional Autoencoders for Video Anomaly Detection
URI https://ieeexplore.ieee.org/document/10613764
https://www.proquest.com/docview/3089929486
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-132046
https://doaj.org/article/019eb1c7a4d348dbabd9f21e95c8a0cb
Volume 12
WOSCitedRecordID wos001286671500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPIsIlMoHxIm0SezE8THsdsUBKiSg6s1y_JBW2iZomxRx6W_vjOOudg9U6iWKIj_izDjz8Mw3hHw0mtUG5GyaVd6m3JoyrQtm0sr7QksBKqwOkPnfxNlZfXEhf8Rk9ZAL45wLwWfuGG_DWb7tzYiushM0X2BD8D2yJ4SYkrU2DhWsICFLEZGF8kyeNLMZLAJswIIfM44h63xH-gSQ_lhVZVfB3AYNDYJm8fyBr_iCPIsaJW0mFnhJHrnuFXm6hTP4mvzEwsPAaKt_tPmr144uRnSS0WVH2ZzO-u46MiCOMw49gltigDMFjZaeL63radP1lxr6z90Qgre6A_J7cfpr9jWN1RRSw7kY0tz7WhqpDYMfoHfCemtMmbcgxnJb-JZVRuc2N5mrWzBrSoG4LpZrUAA0SP2avSH7Xd-5t4TaPDeWWY_2JCh0pW4RpawU6EgBfSpLSHH3lZWJUONY8WKlgsmRSTWRRiFpVCRNQj5vOv2ZkDbub_4FybdpijDZ4QGQQ8Vdp0B_BVlkhOaW8dq2urXSF7mTpal1ZtqEHCAJt-abqJeQwztuUHFPXymGJ6SF5HWVkE8Th-zMPl-eN2H2VTcqzEzn1bv_jP-ePMG1TK6cQ7I_rEf3gTw218Pyan0U_AJw_X5zehR4_BY1yfc7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOPIsIFPABcSJtHDsPH5ddVkUsKyRK1Zvl-CGttE3QNini3-Nx3NXuASRuURTbcWac-WY8_gbgnVas1t7OplnpTMqNLtI6ZzotncuVqDyEVYEyf1Etl_XFhfgWD6uHszDW2pB8Zo_xMuzlm04PGCo7QffFLwh-G-4UnOd0PK61DalgDQlRVJFbiGbiZDKd-ml4LzDnx4xj0jrfsz-Bpj_WVdmHmLu0ocHUzB_950s-hocRU5LJqARP4JZtn8KDHabBZ_AdSw97VVv_JpNfamPJfMAwGVm1hM3ItGuvowpiP0PfIb0lpjgTj2nJ-crYjkza7lL59jPbh_St9hB-zD-dTU_TWE8h1ZxXfUqdq4UWSjP_C3S2Ms5oXdDGGzJqctewUitqqM5s3XjHpqiQ2cVw5SGA8na_Zs_hoO1a-wKIoVQbZhx6lB7SFapBnrKiwlCKR1RZAvnNV5Y6ko1jzYu1DE5HJuQoGomikVE0CXzYNvo5cm38-_GPKL7to0iUHW54cci47qRHsN4a6Upxw3htGtUY4XJqRaFrlekmgUMU4c54o_QSOLrRBhlX9ZVkuEeaC16XCbwfNWRv9NnqfBJGX7eDxLPpvHz5l_7fwr3Ts68Lufi8_PIK7uO8xsDOERz0m8G-hrv6ul9dbd4EHf8DjT_4XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Aware+Fusion+in+3D+Convolutional+Autoencoders+for+Video+Anomaly+Detection&rft.jtitle=IEEE+access&rft.au=Niaz%2C+Asim&rft.au=Ul+Amin%2C+Sareer&rft.au=Soomro%2C+Shafiullah&rft.au=Zia%2C+Hamza&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=104770&rft.epage=104784&rft_id=info:doi/10.1109%2FACCESS.2024.3435144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3435144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon