Functional Mixed-Effects Modeling of Longitudinal Duchenne Muscular Dystrophy Electrical Impedance Myography Data Using State-Space Approach

Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 66; H. 6; S. 1761 - 1768
Hauptverfasser: Kapur, Kush, Sanchez, Benjamin, Pacheck, Adam, Darras, Basil, Rutkove, Seward B., Selukar, Rajesh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian 95% confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.
AbstractList Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands. The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.
Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula Omitted] confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.
Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood.OBJECTIVEElectrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood.Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands.METHODSHere, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands.The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material.RESULTSThe proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material.The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.SIGNIFICANCEThe modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.
Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian 95% confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.
Author Rutkove, Seward B.
Kapur, Kush
Pacheck, Adam
Selukar, Rajesh
Sanchez, Benjamin
Darras, Basil
Author_xml – sequence: 1
  givenname: Kush
  orcidid: 0000-0001-9022-913X
  surname: Kapur
  fullname: Kapur, Kush
  email: kush.kapur@childrens.harvard.edu
  organization: Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0002-1594-9847
  surname: Sanchez
  fullname: Sanchez, Benjamin
  organization: Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical CenterHarvard Medical School
– sequence: 3
  givenname: Adam
  surname: Pacheck
  fullname: Pacheck, Adam
  organization: Department of Neurology, Beth Israel Deaconess Medical Center
– sequence: 4
  givenname: Basil
  surname: Darras
  fullname: Darras, Basil
  organization: Department of Neurology, Boston Children's Hospital, Harvard Medical School
– sequence: 5
  givenname: Seward B.
  orcidid: 0000-0002-6375-3312
  surname: Rutkove
  fullname: Rutkove, Seward B.
  organization: Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical CenterHarvard Medical School
– sequence: 6
  givenname: Rajesh
  surname: Selukar
  fullname: Selukar, Rajesh
  organization: SAS Institute, Inc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30387720$$D View this record in MEDLINE/PubMed
BookMark eNp9klFv0zAUhS00xLrCD0BIKBIvvKTEdhw7L0hj7WBSKx62PVuOc9N6Su1gO4j-B340jtpNsAeeLOt-5-jqnnOBzqyzgNBbXCwwLupPd182qwUpsFgQwWtC-As0w4yJnDCKz9CsSKO8JnV5ji5CeEjfUpTVK3ROCyo4J8UM_b4erY7GWdVnG_ML2nzVdaBjyDauhd7Ybea6bO3s1sSxNRO2HPUOrIVsMwY99spny0OI3g27Q7bqk9YbnbCb_QCtsjpxB7f1ahovVVTZfZhcb6OKkN8OKgGXw-Cd0rvX6GWn-gBvTu8c3V-v7q6-5evvX2-uLte5LksecwxFzThVmvKK4FaB6ChmLQEtRMep0AKattKKi7qjHBRjVSNUQxvcVoxxoHP0-eg7jM0eWg02etXLwZu98gfplJH_TqzZya37KatK8ILVyeDjycC7HyOEKPcmaOh7ZcGNQRJMakYrnnKYow_P0Ac3-nTHRKXEmChJxRP1_u-NnlZ5DCoB_Aho70Lw0Elt0gVTcGlB00tcyKkScqqEnCohT5VISvxM-Wj-P827o8YAwBMvGK4rXNI_7OTEUA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1002_mus_27240
crossref_primary_10_1016_j_clinph_2022_04_015
crossref_primary_10_1109_TSC_2025_3562324
crossref_primary_10_1016_j_clinph_2019_12_418
crossref_primary_10_1002_mus_27095
crossref_primary_10_1080_00224065_2025_2500554
crossref_primary_10_1109_ACCESS_2021_3123569
crossref_primary_10_1109_JERM_2021_3091515
crossref_primary_10_1002_acn3_50958
crossref_primary_10_1109_JSEN_2024_3409821
Cites_doi 10.1111/j.1541-0420.2007.00846.x
10.1111/j.2517-6161.1983.tb01239.x
10.1002/mus.21362
10.1137/1.9781611970128
10.1007/978-1-4757-3683-0
10.1007/BF01404567
10.1111/j.0006-341X.2002.00121.x
10.1080/01621459.1998.10473755
10.3109/17482968.2012.688837
10.1212/WNL.84.14_supplement.P2.004
10.1214/10-EJS575
10.1016/j.neuroimage.2013.09.020
10.1111/j.2517-6161.1978.tb01050.x
10.1093/acprof:oso/9780199641178.001.0001
10.1016/S1525-1578(10)60560-0
10.1080/01621459.1983.10477935
10.1214/ss/1177011930
10.1111/j.1467-9868.2006.00539.x
10.1097/WCO.0b013e32832fd487
10.1198/106186006X157568
10.7863/ultra.15.04065
10.1016/j.pediatrneurol.2014.02.015
10.1093/biostatistics/kxp058
10.18637/jss.v043.c01
10.1214/aoms/1177697089
10.1002/ana.24904
10.1080/01621459.2013.830071
10.1002/14651858.CD003725.pub3
10.1016/j.pmr.2011.11.004
10.1201/b10954
10.1111/1467-9868.00115
10.1002/mus.21544
10.1198/jasa.2010.tm08737
10.2307/2670121
10.1080/01621459.1998.10474115
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2018.2879227
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1768
ExternalDocumentID PMC6687059
30387720
10_1109_TBME_2018_2879227
8519614
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health-funded study
  grantid: R01AR060850
– fundername: Harvard University and its affiliated academic healthcare centers
– fundername: Harvard Catalyst
  funderid: 10.13039/100007299
– fundername: National Center for Advancing Translational Sciences
  funderid: 10.13039/100006108
– fundername: NIAMS NIH HHS
  grantid: R01 AR060850
– fundername: NCATS NIH HHS
  grantid: UL1 TR001102
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-1e09573ac37621dae8f315d2ec88f738c8ebd6ca789f37ea556b8ab3b1d6557e3
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468432000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Tue Sep 30 16:10:37 EDT 2025
Mon Sep 29 04:01:04 EDT 2025
Mon Jun 30 08:42:41 EDT 2025
Wed Feb 19 02:31:36 EST 2025
Sat Nov 29 05:34:22 EST 2025
Tue Nov 18 22:22:11 EST 2025
Wed Aug 27 02:30:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-1e09573ac37621dae8f315d2ec88f738c8ebd6ca789f37ea556b8ab3b1d6557e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9022-913X
0000-0002-1594-9847
0000-0002-6375-3312
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6687059
PMID 30387720
PQID 2227584267
PQPubID 85474
PageCount 8
ParticipantIDs pubmed_primary_30387720
crossref_citationtrail_10_1109_TBME_2018_2879227
crossref_primary_10_1109_TBME_2018_2879227
ieee_primary_8519614
proquest_miscellaneous_2129536725
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687059
proquest_journals_2227584267
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref10
ref2
ref1
ref38
ref19
arnold (ref11) 2015; 84
ref24
selukar (ref18) 0
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
(ref17) 2014
ref7
ref9
ref4
ref3
gu (ref16) 1992; 2
ref6
ref5
liu (ref32) 2011; 43
References_xml – ident: ref36
  doi: 10.1111/j.1541-0420.2007.00846.x
– volume: 2
  start-page: 97
  year: 1992
  ident: ref16
  article-title: Smoothing spline ANOVA with component-wise Bayesian "confidence intervals
  publication-title: J Comput Graph Statist
– ident: ref15
  doi: 10.1111/j.2517-6161.1983.tb01239.x
– ident: ref8
  doi: 10.1002/mus.21362
– ident: ref22
  doi: 10.1137/1.9781611970128
– ident: ref28
  doi: 10.1007/978-1-4757-3683-0
– ident: ref21
  doi: 10.1007/BF01404567
– ident: ref33
  doi: 10.1111/j.0006-341X.2002.00121.x
– ident: ref27
  doi: 10.1080/01621459.1998.10473755
– ident: ref9
  doi: 10.3109/17482968.2012.688837
– volume: 84
  start-page: supplemental p2.004
  year: 2015
  ident: ref11
  article-title: Electrical impedance myography as a pharmacodynamic biomarker in spinal muscular atrophy
  publication-title: Amer Acad Neurology
  doi: 10.1212/WNL.84.14_supplement.P2.004
– ident: ref12
  doi: 10.1214/10-EJS575
– ident: ref13
  doi: 10.1016/j.neuroimage.2013.09.020
– year: 0
  ident: ref18
  article-title: Functional modeling of longitudinal data with the SSM procedure
  publication-title: Proc SAS Global Forum Proc
– ident: ref20
  doi: 10.1111/j.2517-6161.1978.tb01050.x
– ident: ref31
  doi: 10.1093/acprof:oso/9780199641178.001.0001
– ident: ref1
  doi: 10.1016/S1525-1578(10)60560-0
– ident: ref30
  doi: 10.1080/01621459.1983.10477935
– ident: ref23
  doi: 10.1214/ss/1177011930
– ident: ref14
  doi: 10.1111/j.1467-9868.2006.00539.x
– ident: ref3
  doi: 10.1097/WCO.0b013e32832fd487
– ident: ref34
  doi: 10.1198/106186006X157568
– year: 2014
  ident: ref17
  publication-title: SAS/ETS 14 1 Users Guide Ch 27
– ident: ref6
  doi: 10.7863/ultra.15.04065
– ident: ref10
  doi: 10.1016/j.pediatrneurol.2014.02.015
– ident: ref37
  doi: 10.1093/biostatistics/kxp058
– volume: 43
  start-page: 1
  year: 2011
  ident: ref32
  article-title: Fmixed: A SAS macro for smoothing-spline-based functional mixed effects models
  publication-title: J Statist Softw
  doi: 10.18637/jss.v043.c01
– ident: ref19
  doi: 10.1214/aoms/1177697089
– ident: ref7
  doi: 10.1002/ana.24904
– ident: ref35
  doi: 10.1080/01621459.2013.830071
– ident: ref2
  doi: 10.1002/14651858.CD003725.pub3
– ident: ref5
  doi: 10.1016/j.pmr.2011.11.004
– ident: ref29
  doi: 10.1201/b10954
– ident: ref25
  doi: 10.1111/1467-9868.00115
– ident: ref4
  doi: 10.1002/mus.21544
– ident: ref38
  doi: 10.1198/jasa.2010.tm08737
– ident: ref26
  doi: 10.2307/2670121
– ident: ref24
  doi: 10.1080/01621459.1998.10474115
SSID ssj0014846
Score 2.3464966
Snippet Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace...
Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1761
SubjectTerms Algorithms
Bayesian analysis
Biomarkers
Biomedical measurement
Child
Clinical trials
Confidence
Covariance matrix
Data models
Deltoid Muscle - physiology
Deltoid Muscle - physiopathology
Diseases
Duchenne's muscular dystrophy
Dystrophy
Electric Impedance
Electrical impedance
electrical impedance myography
Electromyography - methods
Functional data
Humans
Image Processing, Computer-Assisted - methods
Impedance
Kalman filtering
Kalman filters
Male
Medical research
mixed-effects models
Modelling
Mood
Muscles
Muscular dystrophy
Muscular Dystrophy, Duchenne - diagnosis
Muscular Dystrophy, Duchenne - physiopathology
Quality of life
Smoothing
Smoothing methods
smoothing splines
Splines (mathematics)
Trajectory measurement
Title Functional Mixed-Effects Modeling of Longitudinal Duchenne Muscular Dystrophy Electrical Impedance Myography Data Using State-Space Approach
URI https://ieeexplore.ieee.org/document/8519614
https://www.ncbi.nlm.nih.gov/pubmed/30387720
https://www.proquest.com/docview/2227584267
https://www.proquest.com/docview/2129536725
https://pubmed.ncbi.nlm.nih.gov/PMC6687059
Volume 66
WOSCitedRecordID wos000468432000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5qEdEHL62XaC0j-CSmTTI7t8fq7qJgimCFfQuTmRNckER2E7H_wR_tOUkatlIE3wIzExK-c86cmXP5GHsNHtA00kWV8hBTR6q4LEUSg4MUpHEgXejJJvT5uVmt7Oc99naqhQGAPvkMTuixj-WHxnd0VXaK3oFVxFp9S2s11GpNEYOZGYpykhQVOLOzMYKZJvb04l2-oCQuc4LHA5sRgczOHtSTqtzkX_6dJrmz7ywf_N8XP2T3R_-Snw0C8YjtQX3A7u10HTxgd_Ixnn7Ifi9xWxtuA3m-_gUhHroZbzlxpFGlOm8q_qkhUqMuEIEWn3cIMxpnnndDDiufX27bTYNw8UXPqUOw84_ojgeSKJ5fjl2x-dy1jvc5Crz3ceMveGAHfja2NX_Mvi4XF-8_xCM_Q-xnM93GKaB_poXzaKSyNDgwlUhlyMAbU2lhvIEyKO-0sZXQ4KRUpXGlKNOgpNQgnrD9uqnhGeNlEoQ3pS4V2gdZBSdUamygw5ByFUDEkivECj82LycOje9Ff4hJbEEgFwRyMYIcsTfTkh9D545_TT4k8KaJI24RO7oSi2LU7W1B1cPotmUKV72ahlErKdTiamg6nINulBRKZzJiTwcpmt4tKGNAZ0nE9DX5miZQx-_rI_X6W9_5Wyk0r9I-v_lrX7C7-E92SGQ7YvvtpoOX7Lb_2a63m2NUmpU57pXmD8rXF0c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5KFS8PXtpao1VH8ElMm2QylzxWd5cWN4vgCn0Lk5kTXJCk7CZi_4M_2jnJNGylCL4FMgkJ35kzZ-ac832EvAMDzjXiQZUwECIjVViWLApBQwxcaeDa9mITcrFQFxfZlx3yYeyFAYC--AyO8bLP5dvGdHhUduKig0ygavUdnqZJNHRrjTmDVA1tOVHspnCSpT6HGUfZyfJjPsUyLnXsNghZghIyW6tQL6tyW4T5d6Hk1soze_x_3_yEPPIRJj0dTOIp2YF6jzzc4h3cI_dyn1HfJ79nbmEbzgNpvvoFNhz4jDcUVdKwV502FZ03KGvUWZTQopPOAe3cM827oYqVTq427bpxgNFpr6qDwNNzF5BbtCmaX3lebDrRraZ9lQLto9zwq9uyAz31xOYH5Ntsuvx0FnqFhtCkqWzDGFyEJpk2zk0lsdWgKhZzm4BRqpJMGQWlFUZLlVVMguZclEqXrIyt4FwCe0Z266aG54SWkWVGlbIUzkPwymomYpVZ3A4JXQEEJLpGrDCevhxVNH4U_TYmygoEuUCQCw9yQN6Pj1wO3B3_GryP4I0DPW4BObo2i8LP7k2B_cMucEuEe-rteNvNS0y26Bqazo1xgRRnQiY8IIeDFY3vZlgzIJMoIPKGfY0DkPP75p169b3n_hbCOVievbj9a9-Q-2fLfF7MzxefX5IH7v-yoaztiOy26w5ekbvmZ7varF_3U-cP0psZpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Mixed-Effects+Modeling+of+Longitudinal+Duchenne+Muscular+Dystrophy+Electrical+Impedance+Myography+Data+Using+State-Space+Approach&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kapur%2C+Kush&rft.au=Sanchez%2C+Benjamin&rft.au=Pacheck%2C+Adam&rft.au=Darras%2C+Basil&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=6&rft.spage=1761&rft_id=info:doi/10.1109%2FTBME.2018.2879227&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon