Functional Mixed-Effects Modeling of Longitudinal Duchenne Muscular Dystrophy Electrical Impedance Myography Data Using State-Space Approach
Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functi...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on biomedical engineering Jg. 66; H. 6; S. 1761 - 1768 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian 95% confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials. |
|---|---|
| AbstractList | Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood.
Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands.
The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material.
The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials. Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula Omitted] confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials. Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood.OBJECTIVEElectrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood.Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands.METHODSHere, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian [Formula: see text] confidence bands.The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material.RESULTSThe proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material.The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials.SIGNIFICANCEThe modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials. Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional physical functioning scores or quality of life measures, which depend on patient cooperation and mood. Methods: Here, we propose a functional mixed-effects model using a state-space approach to describe the response trajectories of EIM data measured on 16 boys with Duchenne muscular dystrophy and 12 healthy controls, both groups measured over a period of two years. The modeling framework presented imposes a smoothing spline structure on EIM data collected at each visit and taking into account of within subject correlations of these curves along the longitudinal measurements. The modeling framework is recast in a state-space approach, thereby allowing for the employment of computationally efficient diffuse Kalman filtering and smoothing algorithms for the model estimation, as well as the estimates of the posterior variance-covariance matrix for the construction of the Bayesian 95% confidence bands. Results: The proposed model allows us to simultaneously adjust for baseline variables, differentiate the longitudinal changes in the smooth functional response and estimate the subject and subject-time specific deviations from the population-averaged response curves. The code is made publicly available in the supplementary material. Significance: The modeling approach presented will potentially enhance EIM capability to serve as a biomarker for testing therapeutic efficacy in DMD and other clinical trials. |
| Author | Rutkove, Seward B. Kapur, Kush Pacheck, Adam Selukar, Rajesh Sanchez, Benjamin Darras, Basil |
| Author_xml | – sequence: 1 givenname: Kush orcidid: 0000-0001-9022-913X surname: Kapur fullname: Kapur, Kush email: kush.kapur@childrens.harvard.edu organization: Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA – sequence: 2 givenname: Benjamin orcidid: 0000-0002-1594-9847 surname: Sanchez fullname: Sanchez, Benjamin organization: Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical CenterHarvard Medical School – sequence: 3 givenname: Adam surname: Pacheck fullname: Pacheck, Adam organization: Department of Neurology, Beth Israel Deaconess Medical Center – sequence: 4 givenname: Basil surname: Darras fullname: Darras, Basil organization: Department of Neurology, Boston Children's Hospital, Harvard Medical School – sequence: 5 givenname: Seward B. orcidid: 0000-0002-6375-3312 surname: Rutkove fullname: Rutkove, Seward B. organization: Department of Neurology, Division of Neuromuscular Diseases, Beth Israel Deaconess Medical CenterHarvard Medical School – sequence: 6 givenname: Rajesh surname: Selukar fullname: Selukar, Rajesh organization: SAS Institute, Inc |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30387720$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9klFv0zAUhS00xLrCD0BIKBIvvKTEdhw7L0hj7WBSKx62PVuOc9N6Su1gO4j-B340jtpNsAeeLOt-5-jqnnOBzqyzgNBbXCwwLupPd182qwUpsFgQwWtC-As0w4yJnDCKz9CsSKO8JnV5ji5CeEjfUpTVK3ROCyo4J8UM_b4erY7GWdVnG_ML2nzVdaBjyDauhd7Ybea6bO3s1sSxNRO2HPUOrIVsMwY99spny0OI3g27Q7bqk9YbnbCb_QCtsjpxB7f1ahovVVTZfZhcb6OKkN8OKgGXw-Cd0rvX6GWn-gBvTu8c3V-v7q6-5evvX2-uLte5LksecwxFzThVmvKK4FaB6ChmLQEtRMep0AKattKKi7qjHBRjVSNUQxvcVoxxoHP0-eg7jM0eWg02etXLwZu98gfplJH_TqzZya37KatK8ILVyeDjycC7HyOEKPcmaOh7ZcGNQRJMakYrnnKYow_P0Ac3-nTHRKXEmChJxRP1_u-NnlZ5DCoB_Aho70Lw0Elt0gVTcGlB00tcyKkScqqEnCohT5VISvxM-Wj-P827o8YAwBMvGK4rXNI_7OTEUA |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1002_mus_27240 crossref_primary_10_1016_j_clinph_2022_04_015 crossref_primary_10_1109_TSC_2025_3562324 crossref_primary_10_1016_j_clinph_2019_12_418 crossref_primary_10_1002_mus_27095 crossref_primary_10_1080_00224065_2025_2500554 crossref_primary_10_1109_ACCESS_2021_3123569 crossref_primary_10_1109_JERM_2021_3091515 crossref_primary_10_1002_acn3_50958 crossref_primary_10_1109_JSEN_2024_3409821 |
| Cites_doi | 10.1111/j.1541-0420.2007.00846.x 10.1111/j.2517-6161.1983.tb01239.x 10.1002/mus.21362 10.1137/1.9781611970128 10.1007/978-1-4757-3683-0 10.1007/BF01404567 10.1111/j.0006-341X.2002.00121.x 10.1080/01621459.1998.10473755 10.3109/17482968.2012.688837 10.1212/WNL.84.14_supplement.P2.004 10.1214/10-EJS575 10.1016/j.neuroimage.2013.09.020 10.1111/j.2517-6161.1978.tb01050.x 10.1093/acprof:oso/9780199641178.001.0001 10.1016/S1525-1578(10)60560-0 10.1080/01621459.1983.10477935 10.1214/ss/1177011930 10.1111/j.1467-9868.2006.00539.x 10.1097/WCO.0b013e32832fd487 10.1198/106186006X157568 10.7863/ultra.15.04065 10.1016/j.pediatrneurol.2014.02.015 10.1093/biostatistics/kxp058 10.18637/jss.v043.c01 10.1214/aoms/1177697089 10.1002/ana.24904 10.1080/01621459.2013.830071 10.1002/14651858.CD003725.pub3 10.1016/j.pmr.2011.11.004 10.1201/b10954 10.1111/1467-9868.00115 10.1002/mus.21544 10.1198/jasa.2010.tm08737 10.2307/2670121 10.1080/01621459.1998.10474115 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| DOI | 10.1109/TBME.2018.2879227 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1768 |
| ExternalDocumentID | PMC6687059 30387720 10_1109_TBME_2018_2879227 8519614 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: National Institutes of Health-funded study grantid: R01AR060850 – fundername: Harvard University and its affiliated academic healthcare centers – fundername: Harvard Catalyst funderid: 10.13039/100007299 – fundername: National Center for Advancing Translational Sciences funderid: 10.13039/100006108 – fundername: NIAMS NIH HHS grantid: R01 AR060850 – fundername: NCATS NIH HHS grantid: UL1 TR001102 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
| ID | FETCH-LOGICAL-c447t-1e09573ac37621dae8f315d2ec88f738c8ebd6ca789f37ea556b8ab3b1d6557e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468432000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Sep 30 16:10:37 EDT 2025 Mon Sep 29 04:01:04 EDT 2025 Mon Jun 30 08:42:41 EDT 2025 Wed Feb 19 02:31:36 EST 2025 Sat Nov 29 05:34:22 EST 2025 Tue Nov 18 22:22:11 EST 2025 Wed Aug 27 02:30:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c447t-1e09573ac37621dae8f315d2ec88f738c8ebd6ca789f37ea556b8ab3b1d6557e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9022-913X 0000-0002-1594-9847 0000-0002-6375-3312 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6687059 |
| PMID | 30387720 |
| PQID | 2227584267 |
| PQPubID | 85474 |
| PageCount | 8 |
| ParticipantIDs | pubmed_primary_30387720 crossref_citationtrail_10_1109_TBME_2018_2879227 crossref_primary_10_1109_TBME_2018_2879227 ieee_primary_8519614 proquest_miscellaneous_2129536725 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6687059 proquest_journals_2227584267 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref10 ref2 ref1 ref38 ref19 arnold (ref11) 2015; 84 ref24 selukar (ref18) 0 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 (ref17) 2014 ref7 ref9 ref4 ref3 gu (ref16) 1992; 2 ref6 ref5 liu (ref32) 2011; 43 |
| References_xml | – ident: ref36 doi: 10.1111/j.1541-0420.2007.00846.x – volume: 2 start-page: 97 year: 1992 ident: ref16 article-title: Smoothing spline ANOVA with component-wise Bayesian "confidence intervals publication-title: J Comput Graph Statist – ident: ref15 doi: 10.1111/j.2517-6161.1983.tb01239.x – ident: ref8 doi: 10.1002/mus.21362 – ident: ref22 doi: 10.1137/1.9781611970128 – ident: ref28 doi: 10.1007/978-1-4757-3683-0 – ident: ref21 doi: 10.1007/BF01404567 – ident: ref33 doi: 10.1111/j.0006-341X.2002.00121.x – ident: ref27 doi: 10.1080/01621459.1998.10473755 – ident: ref9 doi: 10.3109/17482968.2012.688837 – volume: 84 start-page: supplemental p2.004 year: 2015 ident: ref11 article-title: Electrical impedance myography as a pharmacodynamic biomarker in spinal muscular atrophy publication-title: Amer Acad Neurology doi: 10.1212/WNL.84.14_supplement.P2.004 – ident: ref12 doi: 10.1214/10-EJS575 – ident: ref13 doi: 10.1016/j.neuroimage.2013.09.020 – year: 0 ident: ref18 article-title: Functional modeling of longitudinal data with the SSM procedure publication-title: Proc SAS Global Forum Proc – ident: ref20 doi: 10.1111/j.2517-6161.1978.tb01050.x – ident: ref31 doi: 10.1093/acprof:oso/9780199641178.001.0001 – ident: ref1 doi: 10.1016/S1525-1578(10)60560-0 – ident: ref30 doi: 10.1080/01621459.1983.10477935 – ident: ref23 doi: 10.1214/ss/1177011930 – ident: ref14 doi: 10.1111/j.1467-9868.2006.00539.x – ident: ref3 doi: 10.1097/WCO.0b013e32832fd487 – ident: ref34 doi: 10.1198/106186006X157568 – year: 2014 ident: ref17 publication-title: SAS/ETS 14 1 Users Guide Ch 27 – ident: ref6 doi: 10.7863/ultra.15.04065 – ident: ref10 doi: 10.1016/j.pediatrneurol.2014.02.015 – ident: ref37 doi: 10.1093/biostatistics/kxp058 – volume: 43 start-page: 1 year: 2011 ident: ref32 article-title: Fmixed: A SAS macro for smoothing-spline-based functional mixed effects models publication-title: J Statist Softw doi: 10.18637/jss.v043.c01 – ident: ref19 doi: 10.1214/aoms/1177697089 – ident: ref7 doi: 10.1002/ana.24904 – ident: ref35 doi: 10.1080/01621459.2013.830071 – ident: ref2 doi: 10.1002/14651858.CD003725.pub3 – ident: ref5 doi: 10.1016/j.pmr.2011.11.004 – ident: ref29 doi: 10.1201/b10954 – ident: ref25 doi: 10.1111/1467-9868.00115 – ident: ref4 doi: 10.1002/mus.21544 – ident: ref38 doi: 10.1198/jasa.2010.tm08737 – ident: ref26 doi: 10.2307/2670121 – ident: ref24 doi: 10.1080/01621459.1998.10474115 |
| SSID | ssj0014846 |
| Score | 2.3464966 |
| Snippet | Objective: Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace... Electrical impedance myography (EIM) is a quantitative and objective tool to evaluate muscle status. EIM offers the possibility to replace conventional... |
| SourceID | pubmedcentral proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1761 |
| SubjectTerms | Algorithms Bayesian analysis Biomarkers Biomedical measurement Child Clinical trials Confidence Covariance matrix Data models Deltoid Muscle - physiology Deltoid Muscle - physiopathology Diseases Duchenne's muscular dystrophy Dystrophy Electric Impedance Electrical impedance electrical impedance myography Electromyography - methods Functional data Humans Image Processing, Computer-Assisted - methods Impedance Kalman filtering Kalman filters Male Medical research mixed-effects models Modelling Mood Muscles Muscular dystrophy Muscular Dystrophy, Duchenne - diagnosis Muscular Dystrophy, Duchenne - physiopathology Quality of life Smoothing Smoothing methods smoothing splines Splines (mathematics) Trajectory measurement |
| Title | Functional Mixed-Effects Modeling of Longitudinal Duchenne Muscular Dystrophy Electrical Impedance Myography Data Using State-Space Approach |
| URI | https://ieeexplore.ieee.org/document/8519614 https://www.ncbi.nlm.nih.gov/pubmed/30387720 https://www.proquest.com/docview/2227584267 https://www.proquest.com/docview/2129536725 https://pubmed.ncbi.nlm.nih.gov/PMC6687059 |
| Volume | 66 |
| WOSCitedRecordID | wos000468432000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5qEdEHL62XaC0j-CSmTTI7t8fq7qJgimCFfQuTmRNckER2E7H_wR_tOUkatlIE3wIzExK-c86cmXP5GHsNHtA00kWV8hBTR6q4LEUSg4MUpHEgXejJJvT5uVmt7Oc99naqhQGAPvkMTuixj-WHxnd0VXaK3oFVxFp9S2s11GpNEYOZGYpykhQVOLOzMYKZJvb04l2-oCQuc4LHA5sRgczOHtSTqtzkX_6dJrmz7ywf_N8XP2T3R_-Snw0C8YjtQX3A7u10HTxgd_Ixnn7Ifi9xWxtuA3m-_gUhHroZbzlxpFGlOm8q_qkhUqMuEIEWn3cIMxpnnndDDiufX27bTYNw8UXPqUOw84_ojgeSKJ5fjl2x-dy1jvc5Crz3ceMveGAHfja2NX_Mvi4XF-8_xCM_Q-xnM93GKaB_poXzaKSyNDgwlUhlyMAbU2lhvIEyKO-0sZXQ4KRUpXGlKNOgpNQgnrD9uqnhGeNlEoQ3pS4V2gdZBSdUamygw5ByFUDEkivECj82LycOje9Ff4hJbEEgFwRyMYIcsTfTkh9D545_TT4k8KaJI24RO7oSi2LU7W1B1cPotmUKV72ahlErKdTiamg6nINulBRKZzJiTwcpmt4tKGNAZ0nE9DX5miZQx-_rI_X6W9_5Wyk0r9I-v_lrX7C7-E92SGQ7YvvtpoOX7Lb_2a63m2NUmpU57pXmD8rXF0c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB5KFS8PXtpao1VH8ElMm2QylzxWd5cWN4vgCn0Lk5kTXJCk7CZi_4M_2jnJNGylCL4FMgkJ35kzZ-ac832EvAMDzjXiQZUwECIjVViWLApBQwxcaeDa9mITcrFQFxfZlx3yYeyFAYC--AyO8bLP5dvGdHhUduKig0ygavUdnqZJNHRrjTmDVA1tOVHspnCSpT6HGUfZyfJjPsUyLnXsNghZghIyW6tQL6tyW4T5d6Hk1soze_x_3_yEPPIRJj0dTOIp2YF6jzzc4h3cI_dyn1HfJ79nbmEbzgNpvvoFNhz4jDcUVdKwV502FZ03KGvUWZTQopPOAe3cM827oYqVTq427bpxgNFpr6qDwNNzF5BbtCmaX3lebDrRraZ9lQLto9zwq9uyAz31xOYH5Ntsuvx0FnqFhtCkqWzDGFyEJpk2zk0lsdWgKhZzm4BRqpJMGQWlFUZLlVVMguZclEqXrIyt4FwCe0Z266aG54SWkWVGlbIUzkPwymomYpVZ3A4JXQEEJLpGrDCevhxVNH4U_TYmygoEuUCQCw9yQN6Pj1wO3B3_GryP4I0DPW4BObo2i8LP7k2B_cMucEuEe-rteNvNS0y26Bqazo1xgRRnQiY8IIeDFY3vZlgzIJMoIPKGfY0DkPP75p169b3n_hbCOVievbj9a9-Q-2fLfF7MzxefX5IH7v-yoaztiOy26w5ekbvmZ7varF_3U-cP0psZpg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Mixed-Effects+Modeling+of+Longitudinal+Duchenne+Muscular+Dystrophy+Electrical+Impedance+Myography+Data+Using+State-Space+Approach&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kapur%2C+Kush&rft.au=Sanchez%2C+Benjamin&rft.au=Pacheck%2C+Adam&rft.au=Darras%2C+Basil&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=6&rft.spage=1761&rft_id=info:doi/10.1109%2FTBME.2018.2879227&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |