Gadolinium(III)-Loaded Nanoparticulate Zeolites as Potential High-Field MRI Contrast Agents: Relationship Between Structure and Relaxivity

The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Chemistry : a European journal Ročník 11; číslo 16; s. 4799 - 4807
Hlavní autori: Csajbók, Éva, Bányai, István, Vander Elst, Luce, Muller, Robert N., Zhou, Wuzong, Peters, Joop A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Weinheim WILEY-VCH Verlag 05.08.2005
WILEY‐VCH Verlag
Predmet:
ISSN:0947-6539, 1521-3765
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+‐loaded cavities did not change significantly, which suggests that the windows of the Gd3+‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. Gd3+‐loaded dealuminated NaY zeolites have high longitudinal 1H relaxivities (r1) at about 60 MHz and high transversal relaxivities (r2) at higher fields (see graphic). Therefore, they have potential as T1 MRI contrast agents at low fields (<1 T) and as T2 contrast agents at higher fields.
AbstractList The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd 3+ ‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH 4 ) 2 SiF 6 or diluted HCl resulted in materials that, upon loading with Gd 3+ , had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1 H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd 3+ ‐loaded cavities did not change significantly, which suggests that the windows of the Gd 3+ ‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd 3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd 3+ ‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd 3+ ‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T 1 MRI contrast agents at low field, and as T 2 agents at higher fields.
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+‐loaded cavities did not change significantly, which suggests that the windows of the Gd3+‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. Gd3+‐loaded dealuminated NaY zeolites have high longitudinal 1H relaxivities (r1) at about 60 MHz and high transversal relaxivities (r2) at higher fields (see graphic). Therefore, they have potential as T1 MRI contrast agents at low fields (<1 T) and as T2 contrast agents at higher fields.
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.
Author Zhou, Wuzong
Csajbók, Éva
Vander Elst, Luce
Muller, Robert N.
Bányai, István
Peters, Joop A.
Author_xml – sequence: 1
  givenname: Éva
  surname: Csajbók
  fullname: Csajbók, Éva
  organization: Laboratory of Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 152-784-289
– sequence: 2
  givenname: István
  surname: Bányai
  fullname: Bányai, István
  organization: Department of Physical Chemistry, University of Debrecen, 4010 Debrecen, Pf. 7, Hungary
– sequence: 3
  givenname: Luce
  surname: Vander Elst
  fullname: Vander Elst, Luce
  organization: Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 7000 Mons, Belgium
– sequence: 4
  givenname: Robert N.
  surname: Muller
  fullname: Muller, Robert N.
  organization: Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 7000 Mons, Belgium
– sequence: 5
  givenname: Wuzong
  surname: Zhou
  fullname: Zhou, Wuzong
  organization: School of Chemistry, University of St Andrews, Haugh KY16 9ST, Fife (Scotland)
– sequence: 6
  givenname: Joop A.
  surname: Peters
  fullname: Peters, Joop A.
  email: j.a.peters@tnw.tudelft.nl
  organization: Laboratory of Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 152-784-289
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15929138$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLctV47IJ0QPWezY-TC3ErW7kbZLVUAgLpaTTLqGxN7aTtv9C_3VpN2yQkiIy8zleV5p5j1Ae8YaQOgVJVNKSPyuXkE_jQlJCCFMPEMTmsQ0Ylma7KEJETyL0oSJfXTg_Y8RESljL9A-TUQsKMsn6H6mGttpo4f-bVmWx9HCqgYavFTGrpULuh46FQB_h5EK4LHy-MIGMEGrDs_11So609A1-PyyxIU1wSkf8MnVCPj3-BJGWVvjV3qNP0C4BTD4U3BDHQYHWJnmEbnTNzpsjtDzVnUeXj7tQ_Tl7PRzMY8WH2dlcbKIas4zEdWpSFTMWcVyVZGKZqSlJBZCERVnVZy2hLY0zVRLgfC2qVjLIaH5OPOKQ8vZIXqzzV07ez2AD7LXvoauUwbs4GWa8zjNk3wEXz-BQ9VDI9dO98pt5O_vjQDfArWz3jtoZa3D48HjG3QnKZEPJcmHkuSupFGb_qXtkv8liK1wqzvY_IeWxfz0_E832rraB7jbucr9lGnGskR-Xc5k8Y0uC7rI5Jz9AqQwtPw
CitedBy_id crossref_primary_10_1038_s41598_017_15732_8
crossref_primary_10_1016_j_micromeso_2013_08_014
crossref_primary_10_3390_appliedchem5030022
crossref_primary_10_1021_cm901358z
crossref_primary_10_1002_jbm_b_34773
crossref_primary_10_1039_b821865j
crossref_primary_10_1002_ejic_201300756
crossref_primary_10_1016_j_progsurf_2014_08_002
crossref_primary_10_3389_fchem_2020_00203
crossref_primary_10_1021_ja4094378
crossref_primary_10_1016_j_jmmm_2018_01_082
crossref_primary_10_1039_b516376p
crossref_primary_10_1016_j_micromeso_2010_02_016
crossref_primary_10_1002_ejic_201101195
crossref_primary_10_1016_j_biomaterials_2020_120249
crossref_primary_10_1016_j_pnmrs_2010_08_002
crossref_primary_10_1002_chem_201304457
crossref_primary_10_1002_zaac_201300566
crossref_primary_10_1021_acs_cgd_5c00263
crossref_primary_10_1016_j_bbrc_2015_02_157
crossref_primary_10_1039_C4CS00201F
crossref_primary_10_1016_j_micromeso_2013_03_027
crossref_primary_10_5402_2012_789525
crossref_primary_10_1039_D3NR05947B
crossref_primary_10_1021_ic700699n
crossref_primary_10_1039_C5CS00210A
crossref_primary_10_1016_j_jbiosc_2011_01_017
crossref_primary_10_1186_s11671_016_1334_8
crossref_primary_10_1259_bjr_20140134
Cites_doi 10.1007/3-540-45733-X_5
10.1007/3-540-45733-X_2
10.1021/jp047829a
10.1002/bbpc.19780821006
10.1039/ft9959101813
10.1016/B978-044450701-3/50359-1
10.1002/mrm.1135
10.1016/0022-2364(73)90046-2
10.1016/S0006-3495(74)85937-0
10.1016/S0898-8838(05)57005-3
10.1016/0022-2364(71)90040-0
10.1039/b002820g
10.1002/hlca.19930760524
10.1023/A:1011133313587
10.1098/rspa.1964.0145
10.1103/PhysRev.99.559
10.1063/1.1731684
10.1002/1521-3765(20021115)8:22<5121::AID-CHEM5121>3.0.CO;2-W
10.1021/j100100a029
10.1016/S1387-1811(03)00318-4
10.1021/cr980440x
ContentType Journal Article
Copyright Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/chem.200500039
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 4807
ExternalDocumentID 15929138
10_1002_chem_200500039
CHEM200500039
ark_67375_WNG_CX1NC1L7_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
ID FETCH-LOGICAL-c4479-c695a243b38ab0b170f10299a0a27b26f01f167af1e04fdb3f4e518f4e8b4ef43
IEDL.DBID DRFUL
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000231324200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
IngestDate Thu Jul 10 23:18:10 EDT 2025
Wed Feb 19 01:40:27 EST 2025
Tue Nov 18 22:31:57 EST 2025
Sat Nov 29 07:08:39 EST 2025
Wed Jan 22 17:05:41 EST 2025
Sun Sep 21 06:19:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4479-c695a243b38ab0b170f10299a0a27b26f01f167af1e04fdb3f4e518f4e8b4ef43
Notes ark:/67375/WNG-CX1NC1L7-H
istex:5489CA7C9420675F8194E6BA53D4226FDD09F391
ArticleID:CHEM200500039
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15929138
PQID 68426858
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_68426858
pubmed_primary_15929138
crossref_citationtrail_10_1002_chem_200500039
crossref_primary_10_1002_chem_200500039
wiley_primary_10_1002_chem_200500039_CHEM200500039
istex_primary_ark_67375_WNG_CX1NC1L7_H
PublicationCentury 2000
PublicationDate August 5, 2005
PublicationDateYYYYMMDD 2005-08-05
PublicationDate_xml – month: 08
  year: 2005
  text: August 5, 2005
  day: 05
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry - A European Journal
PublicationYear 2005
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References W. D. Basler, Ber. Bunsenges. Phys. Chem. 1978, 82, 1051.
C. F. Hazlewood, D. C. Chang, B. L. Nichols, D. E. Woessner, Biophys. J. 1974, 14, 583.
R. A. Rakoczy, Y. Traa, Microporous Mesoporous Mater. 2003, 60, 69.
L. Frullano, J. Rohovec, J. A. Peters, C. F. G. C. Geraldes, Top. Curr. Chem. 2002, 221, 25.
A. D. Nunn, K. E. Linder, M. F. Tweedle, Q. J. Nucl. Med. 1997, 41, 155.
J. S. Leigh Jr., J. Magn. Reson. 1971, 4, 308.
P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
R. N. Muller, L. Vander Elst, A. Roch, J. A. Peters, É. Csajbók, P. Gillis, Y. Gossuin, Adv. Inorg. Chem. 2005, 57, 239.
C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, J. A. Peters, Chem. Eur. J. 2002, 8, 5121.
C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, 2001.
H. van Bekkum, P. A. Jacobs, E. M. Flanigen, J. C. Jansen, Introduction to Zeolite Science and Practice, 2nd ed., Elsevier, Amsterdam, 2001.
The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Eds.: A. E. Merbach, É. Tóth), Wiley, Chichester, 2001.
V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123.
H. Klein, H. Fuess, J. Chem. Soc. Faraday Trans. 1995, 91, 1813.
D. H. Powell, A. E. Merbach, G. González, E. Brücher, K. Micskei, M. F. Ottaviani, K. Köhler, A. Von Zelewsky, O. Ya. Grinberg, Ya. S. Lebedev, Helv. Chim. Acta 1993, 76, 2129.
A. D. McLachlan, Proc. R. Soc. London Ser. A 1964, 280, 271.
R. A. Brooks, F. Moiny, P. Gillis, Magn. Reson. Med. 2001, 45, 1014.
Y.-S. Lin, Y. Hung, J.-K. Su, R. Lee, C. Chang, M.-L. Lin, C.-Y. Mou, J. Phys. Chem. B. 2004, 108, 15 608.
F. J. Berry, M. Carbucicchio, A. Chiari, C. Johnson, E. A. Moore, M. Mortimer, F. F. F. Vetel, J. Mater. Chem. 2000, 10, 2131.
J. Dexpert-Ghys, C. Picard, A. Taurines, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 261.
A. C. McLaughlin, J. S. Leigh Jr., J. Magn. Reson. 1973, 9, 296.
N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 842.
I. Bresinska, K. J. Balkus Jr., J. Phys. Chem. 1994, 98, 12 989.
I. Solomon, Phys. Rev. 1955, 99, 559.
1974; 14
1973; 9
1995; 91
2001
1964; 280
1997; 41
2000; 10
1993; 76
2002; 221
2002; 8
1978; 82
1999; 99
1992
2001; 39
2003; 60
1961; 34
2004; 108
2001; 45
2005; 57
1994; 98
1955; 99
1971; 4
e_1_2_7_4_2
e_1_2_7_3_2
(e_1_2_7_1_2) 2001
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
van Bekkum H. (e_1_2_7_9_2) 2001
Nunn A. D. (e_1_2_7_5_2) 1997; 41
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
Tóth É. (e_1_2_7_18_2) 2001
References_xml – reference: H. van Bekkum, P. A. Jacobs, E. M. Flanigen, J. C. Jansen, Introduction to Zeolite Science and Practice, 2nd ed., Elsevier, Amsterdam, 2001.
– reference: J. Dexpert-Ghys, C. Picard, A. Taurines, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 261.
– reference: D. H. Powell, A. E. Merbach, G. González, E. Brücher, K. Micskei, M. F. Ottaviani, K. Köhler, A. Von Zelewsky, O. Ya. Grinberg, Ya. S. Lebedev, Helv. Chim. Acta 1993, 76, 2129.
– reference: W. D. Basler, Ber. Bunsenges. Phys. Chem. 1978, 82, 1051.
– reference: F. J. Berry, M. Carbucicchio, A. Chiari, C. Johnson, E. A. Moore, M. Mortimer, F. F. F. Vetel, J. Mater. Chem. 2000, 10, 2131.
– reference: L. Frullano, J. Rohovec, J. A. Peters, C. F. G. C. Geraldes, Top. Curr. Chem. 2002, 221, 25.
– reference: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Eds.: A. E. Merbach, É. Tóth), Wiley, Chichester, 2001.
– reference: A. D. McLachlan, Proc. R. Soc. London Ser. A 1964, 280, 271.
– reference: P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
– reference: I. Solomon, Phys. Rev. 1955, 99, 559.
– reference: C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, J. A. Peters, Chem. Eur. J. 2002, 8, 5121.
– reference: A. C. McLaughlin, J. S. Leigh Jr., J. Magn. Reson. 1973, 9, 296.
– reference: R. N. Muller, L. Vander Elst, A. Roch, J. A. Peters, É. Csajbók, P. Gillis, Y. Gossuin, Adv. Inorg. Chem. 2005, 57, 239.
– reference: J. S. Leigh Jr., J. Magn. Reson. 1971, 4, 308.
– reference: A. D. Nunn, K. E. Linder, M. F. Tweedle, Q. J. Nucl. Med. 1997, 41, 155.
– reference: R. A. Brooks, F. Moiny, P. Gillis, Magn. Reson. Med. 2001, 45, 1014.
– reference: H. Klein, H. Fuess, J. Chem. Soc. Faraday Trans. 1995, 91, 1813.
– reference: N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 842.
– reference: C. F. Hazlewood, D. C. Chang, B. L. Nichols, D. E. Woessner, Biophys. J. 1974, 14, 583.
– reference: Y.-S. Lin, Y. Hung, J.-K. Su, R. Lee, C. Chang, M.-L. Lin, C.-Y. Mou, J. Phys. Chem. B. 2004, 108, 15 608.
– reference: V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123.
– reference: I. Bresinska, K. J. Balkus Jr., J. Phys. Chem. 1994, 98, 12 989.
– reference: C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, 2001.
– reference: R. A. Rakoczy, Y. Traa, Microporous Mesoporous Mater. 2003, 60, 69.
– volume: 60
  start-page: 69
  year: 2003
  publication-title: Microporous Mesoporous Mater.
– volume: 4
  start-page: 308
  year: 1971
  publication-title: J. Magn. Reson.
– volume: 82
  start-page: 1051
  year: 1978
  publication-title: Ber. Bunsenges. Phys. Chem.
– volume: 14
  start-page: 583
  year: 1974
  publication-title: Biophys. J.
– volume: 280
  start-page: 271
  year: 1964
  publication-title: Proc. R. Soc. London Ser. A
– volume: 57
  start-page: 239
  year: 2005
  publication-title: Adv. Inorg. Chem.
– year: 2001
– volume: 98
  start-page: 12 989
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 9
  start-page: 296
  year: 1973
  publication-title: J. Magn. Reson.
– volume: 99
  start-page: 559
  year: 1955
  publication-title: Phys. Rev.
– volume: 8
  start-page: 5121
  year: 2002
  publication-title: Chem. Eur. J.
– volume: 34
  start-page: 842
  year: 1961
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 2131
  year: 2000
  publication-title: J. Mater. Chem.
– start-page: 45
  year: 2001
  end-page: 119
– volume: 221
  start-page: 123
  year: 2002
  publication-title: Top. Curr. Chem.
– volume: 108
  start-page: 15 608
  year: 2004
  publication-title: J. Phys. Chem. B.
– year: 1992
– volume: 76
  start-page: 2129
  year: 1993
  publication-title: Helv. Chim. Acta
– volume: 91
  start-page: 1813
  year: 1995
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 45
  start-page: 1014
  year: 2001
  publication-title: Magn. Reson. Med.
– volume: 221
  start-page: 25
  year: 2002
  publication-title: Top. Curr. Chem.
– volume: 39
  start-page: 261
  year: 2001
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
– volume: 99
  start-page: 2293
  year: 1999
  publication-title: Chem. Rev.
– volume: 41
  start-page: 155
  year: 1997
  publication-title: Q. J. Nucl. Med.
– ident: e_1_2_7_4_2
  doi: 10.1007/3-540-45733-X_5
– ident: e_1_2_7_3_2
  doi: 10.1007/3-540-45733-X_2
– ident: e_1_2_7_19_2
  doi: 10.1021/jp047829a
– ident: e_1_2_7_22_2
  doi: 10.1002/bbpc.19780821006
– start-page: 45
  volume-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
  year: 2001
  ident: e_1_2_7_18_2
– ident: e_1_2_7_21_2
  doi: 10.1039/ft9959101813
– ident: e_1_2_7_10_2
  doi: 10.1016/B978-044450701-3/50359-1
– ident: e_1_2_7_23_2
  doi: 10.1002/mrm.1135
– ident: e_1_2_7_24_2
  doi: 10.1016/0022-2364(73)90046-2
– ident: e_1_2_7_26_2
  doi: 10.1016/S0006-3495(74)85937-0
– volume-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
  year: 2001
  ident: e_1_2_7_1_2
– ident: e_1_2_7_6_2
  doi: 10.1016/S0898-8838(05)57005-3
– ident: e_1_2_7_25_2
  doi: 10.1016/0022-2364(71)90040-0
– ident: e_1_2_7_17_2
  doi: 10.1039/b002820g
– ident: e_1_2_7_15_2
  doi: 10.1002/hlca.19930760524
– ident: e_1_2_7_20_2
  doi: 10.1023/A:1011133313587
– ident: e_1_2_7_16_2
  doi: 10.1098/rspa.1964.0145
– ident: e_1_2_7_13_2
  doi: 10.1103/PhysRev.99.559
– ident: e_1_2_7_14_2
  doi: 10.1063/1.1731684
– ident: e_1_2_7_11_2
  doi: 10.1002/1521-3765(20021115)8:22<5121::AID-CHEM5121>3.0.CO;2-W
– ident: e_1_2_7_8_2
  doi: 10.1021/j100100a029
– ident: e_1_2_7_12_2
  doi: 10.1016/S1387-1811(03)00318-4
– volume: 41
  start-page: 155
  year: 1997
  ident: e_1_2_7_5_2
  publication-title: Q. J. Nucl. Med.
– volume-title: Introduction to Zeolite Science and Practice
  year: 2001
  ident: e_1_2_7_9_2
– ident: e_1_2_7_2_2
  doi: 10.1021/cr980440x
– ident: e_1_2_7_7_2
SSID ssj0009633
Score 2.0047882
Snippet The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application...
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd 3+ ‐loaded zeolites for potential application...
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4799
SubjectTerms Aluminum - chemistry
contrast agents
Contrast Media - chemistry
gadolinium
Gadolinium - chemistry
lanthanides
Magnetic Resonance Imaging
Molecular Structure
X-Ray Diffraction
zeolites
Zeolites - chemistry
Title Gadolinium(III)-Loaded Nanoparticulate Zeolites as Potential High-Field MRI Contrast Agents: Relationship Between Structure and Relaxivity
URI https://api.istex.fr/ark:/67375/WNG-CX1NC1L7-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200500039
https://www.ncbi.nlm.nih.gov/pubmed/15929138
https://www.proquest.com/docview/68426858
Volume 11
WOSCitedRecordID wos000231324200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYFgkuvB_lsfiAeBysjR0njrkthe5WKtVqYUW1F8tObFEB6Spp0R75BYjfyC_B46QplUBIcIkUZew4nrE9jr_5BqHHuaPaL9w5cTHnhEtqiOFaksIwaaJUGlcETU_EdJrNZvLolyj-hh-i--EGIyPM1zDAtan3NqSh_ptCJHkS4kt3UJ954016qP_qeHQy2RDvpm06eS4I0LCuiRsjtrddw9bC1Ic-Pv-d17ntxIZVaHT1_9t_DV1pPVC835jMdXTBljfQpeE68dtN9O0AaJ7m5Xz1-dl4PH7-4-v3yUIXtsB-KvZ77CrwdXgfFZ9aQM_ZGusaHy2WADzyNQN0xJcZATYOvzkeY2DAqnS9xPsQx1W_wB0C78P8DL9skGL4bWCyXVUW67IIIuchscUtdDJ6_W54SNq0DSTnXEiSpzLRjMcmzrSJDBWR816MlDrSTBiWuog6mgrtqI24K0zsuE1o5q-Z4dbx-DbqlYvS3kWYMcmNBK-J-21knBqeRGmWW5EZk8nMDBBZ60zlLac5pNb4pBo2Zqagl1XXywP0tJM_a9g8_ij5JJhAJ6arj4CBE4l6Pz1QwxmdDulEqMMBerS2EeX1BMcturSLVa3ghBPY_QfoTmM6m1cm3imlsX_CgoX8pS0K2DG6u3v_Uug-uhw4ZwHrkjxAPa9R-xBdzL8s53W1i3bELNttR85Pr94Zcw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagi1QuvKHLqz4gHgerceI8zK0sbDcijarSilUvlp3YYlXIVsku6pFfgPiN_BI8TjarlUBIiEukKGMn9ozjsf3NNwg9KwyVduIuiAkYI4xTRRSTnJTK58qLuDKl03QW53kynfKjDk0IsTAtP0S_4QYjw_2vYYDDhvTemjXUNsqFkocuwPQqGjBrS9bIB2-Px6fZmnk36vLJs5gAD-uKudHz9zZr2JiZBtDJl79zOze9WDcNjW_-hwbcQjc6HxTvt0ZzG13R1R20PVqlfruLvh8A0dOsmi2_vEzT9NXPbz-yuSx1ie3P2K6ya8fYYb1UfKYBP6cbLBt8NF8A9MjWDOARW2YM6Dh8eJxi4MCqZbPA-xDJ1bzGPQbv0-wCv2mxYviD47Jd1hrLqnQily61xT10On53MpqQLnEDKRiLOSkiHkqfBSpIpPIUjT1j_RjOpSf9WPmR8aihUSwN1R4zpQoM0yFN7DVRTBsW3Edb1bzSOwj7PmeKg9_E7EIyiBQLvSgpdJwolfBEDRFZKU0UHas5JNf4LFo-Zl9AL4u-l4foRS9_0fJ5_FHyubOBXkzW54CCi0PxMT8QoynNRzSLxWSIdldGIqye4MBFVnq-bASccQK__xA9aG1n_crQuqU0sE98ZyJ_-RYB_Bj93cN_KbSLticnh5nI0vz9I3TdMdAC8iV8jLasdvUTdK34upg19dNuAP0C42Ycew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gadolinium%28III%29-Loaded+Nanoparticulate+Zeolites+as+Potential+High-Field+MRI+Contrast+Agents%3A+Relationship+Between+Structure+and+Relaxivity&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Csajb%C3%B3k%2C+%C3%89va&rft.au=B%C3%A1nyai%2C+Istv%C3%A1n&rft.au=Vander+Elst%2C+Luce&rft.au=Muller%2C+Robert+N.&rft.date=2005-08-05&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=11&rft.issue=16&rft.spage=4799&rft.epage=4807&rft_id=info:doi/10.1002%2Fchem.200500039&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CX1NC1L7_H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon