Gadolinium(III)-Loaded Nanoparticulate Zeolites as Potential High-Field MRI Contrast Agents: Relationship Between Structure and Relaxivity
The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or...
Uložené v:
| Vydané v: | Chemistry : a European journal Ročník 11; číslo 16; s. 4799 - 4807 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Weinheim
WILEY-VCH Verlag
05.08.2005
WILEY‐VCH Verlag |
| Predmet: | |
| ISSN: | 0947-6539, 1521-3765 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+‐loaded cavities did not change significantly, which suggests that the windows of the Gd3+‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.
Gd3+‐loaded dealuminated NaY zeolites have high longitudinal 1H relaxivities (r1) at about 60 MHz and high transversal relaxivities (r2) at higher fields (see graphic). Therefore, they have potential as T1 MRI contrast agents at low fields (<1 T) and as T2 contrast agents at higher fields. |
|---|---|
| AbstractList | The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd 3+ ‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH 4 ) 2 SiF 6 or diluted HCl resulted in materials that, upon loading with Gd 3+ , had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1 H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd 3+ ‐loaded cavities did not change significantly, which suggests that the windows of the Gd 3+ ‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd 3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd 3+ ‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd 3+ ‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T 1 MRI contrast agents at low field, and as T 2 agents at higher fields. The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields.The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non‐dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+‐loaded cavities did not change significantly, which suggests that the windows of the Gd3+‐loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+‐loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+‐doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. Gd3+‐loaded dealuminated NaY zeolites have high longitudinal 1H relaxivities (r1) at about 60 MHz and high transversal relaxivities (r2) at higher fields (see graphic). Therefore, they have potential as T1 MRI contrast agents at low fields (<1 T) and as T2 contrast agents at higher fields. The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application as magnetic resonance imaging (MRI) contrast agents were studied. Partial dealumination of zeolites NaY or NaA by treatment with (NH4)2SiF6 or diluted HCl resulted in materials that, upon loading with Gd3+, had a much higher relaxivity than the corresponding non-dealuminated materials. Analysis of the 1H NMR dispersion profiles of the various zeolites showed that this can be mainly ascribed to an increase of the amount of water inside the zeolite cavities as a result of the destruction of walls between cavities. However, the average residence time of water inside the Gd3+-loaded cavities did not change significantly, which suggests that the windows of the Gd3+-loaded cavities are not affected by the dealumination. Upon calcination, the Gd3+ ions moved to the small sodalite cavities and became less accessible for water, resulting in a decrease in relaxivity. The important role of diffusion for the relaxivity was demonstrated by a comparison of the relaxivity of Gd3+-loaded zeolite NaY and NaA samples. NaA had much lower relaxivities due to the smaller pore sizes. The transversal relaxivities of the Gd3+-doped zeolites are comparable in magnitude to the longitudinal ones at low magnetic fields (<60 MHz). However at higher fields, the transversal relaxivities steeply increased, whereas the longitudinal relaxivities decreased as field strength increased. Therefore, these materials have potential as T1 MRI contrast agents at low field, and as T2 agents at higher fields. |
| Author | Zhou, Wuzong Csajbók, Éva Vander Elst, Luce Muller, Robert N. Bányai, István Peters, Joop A. |
| Author_xml | – sequence: 1 givenname: Éva surname: Csajbók fullname: Csajbók, Éva organization: Laboratory of Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 152-784-289 – sequence: 2 givenname: István surname: Bányai fullname: Bányai, István organization: Department of Physical Chemistry, University of Debrecen, 4010 Debrecen, Pf. 7, Hungary – sequence: 3 givenname: Luce surname: Vander Elst fullname: Vander Elst, Luce organization: Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 7000 Mons, Belgium – sequence: 4 givenname: Robert N. surname: Muller fullname: Muller, Robert N. organization: Department of Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons-Hainaut, 7000 Mons, Belgium – sequence: 5 givenname: Wuzong surname: Zhou fullname: Zhou, Wuzong organization: School of Chemistry, University of St Andrews, Haugh KY16 9ST, Fife (Scotland) – sequence: 6 givenname: Joop A. surname: Peters fullname: Peters, Joop A. email: j.a.peters@tnw.tudelft.nl organization: Laboratory of Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 152-784-289 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15929138$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URLctV47IJ0QPWezY-TC3ErW7kbZLVUAgLpaTTLqGxN7aTtv9C_3VpN2yQkiIy8zleV5p5j1Ae8YaQOgVJVNKSPyuXkE_jQlJCCFMPEMTmsQ0Ylma7KEJETyL0oSJfXTg_Y8RESljL9A-TUQsKMsn6H6mGttpo4f-bVmWx9HCqgYavFTGrpULuh46FQB_h5EK4LHy-MIGMEGrDs_11So609A1-PyyxIU1wSkf8MnVCPj3-BJGWVvjV3qNP0C4BTD4U3BDHQYHWJnmEbnTNzpsjtDzVnUeXj7tQ_Tl7PRzMY8WH2dlcbKIas4zEdWpSFTMWcVyVZGKZqSlJBZCERVnVZy2hLY0zVRLgfC2qVjLIaH5OPOKQ8vZIXqzzV07ez2AD7LXvoauUwbs4GWa8zjNk3wEXz-BQ9VDI9dO98pt5O_vjQDfArWz3jtoZa3D48HjG3QnKZEPJcmHkuSupFGb_qXtkv8liK1wqzvY_IeWxfz0_E832rraB7jbucr9lGnGskR-Xc5k8Y0uC7rI5Jz9AqQwtPw |
| CitedBy_id | crossref_primary_10_1038_s41598_017_15732_8 crossref_primary_10_1016_j_micromeso_2013_08_014 crossref_primary_10_3390_appliedchem5030022 crossref_primary_10_1021_cm901358z crossref_primary_10_1002_jbm_b_34773 crossref_primary_10_1039_b821865j crossref_primary_10_1002_ejic_201300756 crossref_primary_10_1016_j_progsurf_2014_08_002 crossref_primary_10_3389_fchem_2020_00203 crossref_primary_10_1021_ja4094378 crossref_primary_10_1016_j_jmmm_2018_01_082 crossref_primary_10_1039_b516376p crossref_primary_10_1016_j_micromeso_2010_02_016 crossref_primary_10_1002_ejic_201101195 crossref_primary_10_1016_j_biomaterials_2020_120249 crossref_primary_10_1016_j_pnmrs_2010_08_002 crossref_primary_10_1002_chem_201304457 crossref_primary_10_1002_zaac_201300566 crossref_primary_10_1021_acs_cgd_5c00263 crossref_primary_10_1016_j_bbrc_2015_02_157 crossref_primary_10_1039_C4CS00201F crossref_primary_10_1016_j_micromeso_2013_03_027 crossref_primary_10_5402_2012_789525 crossref_primary_10_1039_D3NR05947B crossref_primary_10_1021_ic700699n crossref_primary_10_1039_C5CS00210A crossref_primary_10_1016_j_jbiosc_2011_01_017 crossref_primary_10_1186_s11671_016_1334_8 crossref_primary_10_1259_bjr_20140134 |
| Cites_doi | 10.1007/3-540-45733-X_5 10.1007/3-540-45733-X_2 10.1021/jp047829a 10.1002/bbpc.19780821006 10.1039/ft9959101813 10.1016/B978-044450701-3/50359-1 10.1002/mrm.1135 10.1016/0022-2364(73)90046-2 10.1016/S0006-3495(74)85937-0 10.1016/S0898-8838(05)57005-3 10.1016/0022-2364(71)90040-0 10.1039/b002820g 10.1002/hlca.19930760524 10.1023/A:1011133313587 10.1098/rspa.1964.0145 10.1103/PhysRev.99.559 10.1063/1.1731684 10.1002/1521-3765(20021115)8:22<5121::AID-CHEM5121>3.0.CO;2-W 10.1021/j100100a029 10.1016/S1387-1811(03)00318-4 10.1021/cr980440x |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/chem.200500039 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 4807 |
| ExternalDocumentID | 15929138 10_1002_chem_200500039 CHEM200500039 ark_67375_WNG_CX1NC1L7_H |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TN5 TWZ UB1 UPT UQL V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 Y6R YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM VXZ 7X8 |
| ID | FETCH-LOGICAL-c4479-c695a243b38ab0b170f10299a0a27b26f01f167af1e04fdb3f4e518f4e8b4ef43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000231324200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 |
| IngestDate | Thu Jul 10 23:18:10 EDT 2025 Wed Feb 19 01:40:27 EST 2025 Tue Nov 18 22:31:57 EST 2025 Sat Nov 29 07:08:39 EST 2025 Wed Jan 22 17:05:41 EST 2025 Sun Sep 21 06:19:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4479-c695a243b38ab0b170f10299a0a27b26f01f167af1e04fdb3f4e518f4e8b4ef43 |
| Notes | ark:/67375/WNG-CX1NC1L7-H istex:5489CA7C9420675F8194E6BA53D4226FDD09F391 ArticleID:CHEM200500039 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15929138 |
| PQID | 68426858 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_68426858 pubmed_primary_15929138 crossref_citationtrail_10_1002_chem_200500039 crossref_primary_10_1002_chem_200500039 wiley_primary_10_1002_chem_200500039_CHEM200500039 istex_primary_ark_67375_WNG_CX1NC1L7_H |
| PublicationCentury | 2000 |
| PublicationDate | August 5, 2005 |
| PublicationDateYYYYMMDD | 2005-08-05 |
| PublicationDate_xml | – month: 08 year: 2005 text: August 5, 2005 day: 05 |
| PublicationDecade | 2000 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry - A European Journal |
| PublicationYear | 2005 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | W. D. Basler, Ber. Bunsenges. Phys. Chem. 1978, 82, 1051. C. F. Hazlewood, D. C. Chang, B. L. Nichols, D. E. Woessner, Biophys. J. 1974, 14, 583. R. A. Rakoczy, Y. Traa, Microporous Mesoporous Mater. 2003, 60, 69. L. Frullano, J. Rohovec, J. A. Peters, C. F. G. C. Geraldes, Top. Curr. Chem. 2002, 221, 25. A. D. Nunn, K. E. Linder, M. F. Tweedle, Q. J. Nucl. Med. 1997, 41, 155. J. S. Leigh Jr., J. Magn. Reson. 1971, 4, 308. P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293. R. N. Muller, L. Vander Elst, A. Roch, J. A. Peters, É. Csajbók, P. Gillis, Y. Gossuin, Adv. Inorg. Chem. 2005, 57, 239. C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, J. A. Peters, Chem. Eur. J. 2002, 8, 5121. C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, 2001. H. van Bekkum, P. A. Jacobs, E. M. Flanigen, J. C. Jansen, Introduction to Zeolite Science and Practice, 2nd ed., Elsevier, Amsterdam, 2001. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Eds.: A. E. Merbach, É. Tóth), Wiley, Chichester, 2001. V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123. H. Klein, H. Fuess, J. Chem. Soc. Faraday Trans. 1995, 91, 1813. D. H. Powell, A. E. Merbach, G. González, E. Brücher, K. Micskei, M. F. Ottaviani, K. Köhler, A. Von Zelewsky, O. Ya. Grinberg, Ya. S. Lebedev, Helv. Chim. Acta 1993, 76, 2129. A. D. McLachlan, Proc. R. Soc. London Ser. A 1964, 280, 271. R. A. Brooks, F. Moiny, P. Gillis, Magn. Reson. Med. 2001, 45, 1014. Y.-S. Lin, Y. Hung, J.-K. Su, R. Lee, C. Chang, M.-L. Lin, C.-Y. Mou, J. Phys. Chem. B. 2004, 108, 15 608. F. J. Berry, M. Carbucicchio, A. Chiari, C. Johnson, E. A. Moore, M. Mortimer, F. F. F. Vetel, J. Mater. Chem. 2000, 10, 2131. J. Dexpert-Ghys, C. Picard, A. Taurines, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 261. A. C. McLaughlin, J. S. Leigh Jr., J. Magn. Reson. 1973, 9, 296. N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 842. I. Bresinska, K. J. Balkus Jr., J. Phys. Chem. 1994, 98, 12 989. I. Solomon, Phys. Rev. 1955, 99, 559. 1974; 14 1973; 9 1995; 91 2001 1964; 280 1997; 41 2000; 10 1993; 76 2002; 221 2002; 8 1978; 82 1999; 99 1992 2001; 39 2003; 60 1961; 34 2004; 108 2001; 45 2005; 57 1994; 98 1955; 99 1971; 4 e_1_2_7_4_2 e_1_2_7_3_2 (e_1_2_7_1_2) 2001 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 van Bekkum H. (e_1_2_7_9_2) 2001 Nunn A. D. (e_1_2_7_5_2) 1997; 41 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_23_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 Tóth É. (e_1_2_7_18_2) 2001 |
| References_xml | – reference: H. van Bekkum, P. A. Jacobs, E. M. Flanigen, J. C. Jansen, Introduction to Zeolite Science and Practice, 2nd ed., Elsevier, Amsterdam, 2001. – reference: J. Dexpert-Ghys, C. Picard, A. Taurines, J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 261. – reference: D. H. Powell, A. E. Merbach, G. González, E. Brücher, K. Micskei, M. F. Ottaviani, K. Köhler, A. Von Zelewsky, O. Ya. Grinberg, Ya. S. Lebedev, Helv. Chim. Acta 1993, 76, 2129. – reference: W. D. Basler, Ber. Bunsenges. Phys. Chem. 1978, 82, 1051. – reference: F. J. Berry, M. Carbucicchio, A. Chiari, C. Johnson, E. A. Moore, M. Mortimer, F. F. F. Vetel, J. Mater. Chem. 2000, 10, 2131. – reference: L. Frullano, J. Rohovec, J. A. Peters, C. F. G. C. Geraldes, Top. Curr. Chem. 2002, 221, 25. – reference: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (Eds.: A. E. Merbach, É. Tóth), Wiley, Chichester, 2001. – reference: A. D. McLachlan, Proc. R. Soc. London Ser. A 1964, 280, 271. – reference: P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293. – reference: I. Solomon, Phys. Rev. 1955, 99, 559. – reference: C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, J. A. Peters, Chem. Eur. J. 2002, 8, 5121. – reference: A. C. McLaughlin, J. S. Leigh Jr., J. Magn. Reson. 1973, 9, 296. – reference: R. N. Muller, L. Vander Elst, A. Roch, J. A. Peters, É. Csajbók, P. Gillis, Y. Gossuin, Adv. Inorg. Chem. 2005, 57, 239. – reference: J. S. Leigh Jr., J. Magn. Reson. 1971, 4, 308. – reference: A. D. Nunn, K. E. Linder, M. F. Tweedle, Q. J. Nucl. Med. 1997, 41, 155. – reference: R. A. Brooks, F. Moiny, P. Gillis, Magn. Reson. Med. 2001, 45, 1014. – reference: H. Klein, H. Fuess, J. Chem. Soc. Faraday Trans. 1995, 91, 1813. – reference: N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 842. – reference: C. F. Hazlewood, D. C. Chang, B. L. Nichols, D. E. Woessner, Biophys. J. 1974, 14, 583. – reference: Y.-S. Lin, Y. Hung, J.-K. Su, R. Lee, C. Chang, M.-L. Lin, C.-Y. Mou, J. Phys. Chem. B. 2004, 108, 15 608. – reference: V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123. – reference: I. Bresinska, K. J. Balkus Jr., J. Phys. Chem. 1994, 98, 12 989. – reference: C. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolite Framework Types, 5th ed., Elsevier, Amsterdam, 2001. – reference: R. A. Rakoczy, Y. Traa, Microporous Mesoporous Mater. 2003, 60, 69. – volume: 60 start-page: 69 year: 2003 publication-title: Microporous Mesoporous Mater. – volume: 4 start-page: 308 year: 1971 publication-title: J. Magn. Reson. – volume: 82 start-page: 1051 year: 1978 publication-title: Ber. Bunsenges. Phys. Chem. – volume: 14 start-page: 583 year: 1974 publication-title: Biophys. J. – volume: 280 start-page: 271 year: 1964 publication-title: Proc. R. Soc. London Ser. A – volume: 57 start-page: 239 year: 2005 publication-title: Adv. Inorg. Chem. – year: 2001 – volume: 98 start-page: 12 989 year: 1994 publication-title: J. Phys. Chem. – volume: 9 start-page: 296 year: 1973 publication-title: J. Magn. Reson. – volume: 99 start-page: 559 year: 1955 publication-title: Phys. Rev. – volume: 8 start-page: 5121 year: 2002 publication-title: Chem. Eur. J. – volume: 34 start-page: 842 year: 1961 publication-title: J. Chem. Phys. – volume: 10 start-page: 2131 year: 2000 publication-title: J. Mater. Chem. – start-page: 45 year: 2001 end-page: 119 – volume: 221 start-page: 123 year: 2002 publication-title: Top. Curr. Chem. – volume: 108 start-page: 15 608 year: 2004 publication-title: J. Phys. Chem. B. – year: 1992 – volume: 76 start-page: 2129 year: 1993 publication-title: Helv. Chim. Acta – volume: 91 start-page: 1813 year: 1995 publication-title: J. Chem. Soc. Faraday Trans. – volume: 45 start-page: 1014 year: 2001 publication-title: Magn. Reson. Med. – volume: 221 start-page: 25 year: 2002 publication-title: Top. Curr. Chem. – volume: 39 start-page: 261 year: 2001 publication-title: J. Inclusion Phenom. Macrocyclic Chem. – volume: 99 start-page: 2293 year: 1999 publication-title: Chem. Rev. – volume: 41 start-page: 155 year: 1997 publication-title: Q. J. Nucl. Med. – ident: e_1_2_7_4_2 doi: 10.1007/3-540-45733-X_5 – ident: e_1_2_7_3_2 doi: 10.1007/3-540-45733-X_2 – ident: e_1_2_7_19_2 doi: 10.1021/jp047829a – ident: e_1_2_7_22_2 doi: 10.1002/bbpc.19780821006 – start-page: 45 volume-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging year: 2001 ident: e_1_2_7_18_2 – ident: e_1_2_7_21_2 doi: 10.1039/ft9959101813 – ident: e_1_2_7_10_2 doi: 10.1016/B978-044450701-3/50359-1 – ident: e_1_2_7_23_2 doi: 10.1002/mrm.1135 – ident: e_1_2_7_24_2 doi: 10.1016/0022-2364(73)90046-2 – ident: e_1_2_7_26_2 doi: 10.1016/S0006-3495(74)85937-0 – volume-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging year: 2001 ident: e_1_2_7_1_2 – ident: e_1_2_7_6_2 doi: 10.1016/S0898-8838(05)57005-3 – ident: e_1_2_7_25_2 doi: 10.1016/0022-2364(71)90040-0 – ident: e_1_2_7_17_2 doi: 10.1039/b002820g – ident: e_1_2_7_15_2 doi: 10.1002/hlca.19930760524 – ident: e_1_2_7_20_2 doi: 10.1023/A:1011133313587 – ident: e_1_2_7_16_2 doi: 10.1098/rspa.1964.0145 – ident: e_1_2_7_13_2 doi: 10.1103/PhysRev.99.559 – ident: e_1_2_7_14_2 doi: 10.1063/1.1731684 – ident: e_1_2_7_11_2 doi: 10.1002/1521-3765(20021115)8:22<5121::AID-CHEM5121>3.0.CO;2-W – ident: e_1_2_7_8_2 doi: 10.1021/j100100a029 – ident: e_1_2_7_12_2 doi: 10.1016/S1387-1811(03)00318-4 – volume: 41 start-page: 155 year: 1997 ident: e_1_2_7_5_2 publication-title: Q. J. Nucl. Med. – volume-title: Introduction to Zeolite Science and Practice year: 2001 ident: e_1_2_7_9_2 – ident: e_1_2_7_2_2 doi: 10.1021/cr980440x – ident: e_1_2_7_7_2 |
| SSID | ssj0009633 |
| Score | 2.0047882 |
| Snippet | The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+‐loaded zeolites for potential application... The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd 3+ ‐loaded zeolites for potential application... The effects of dealumination, pore size, and calcination on the efficiency (as expressed in the relaxivity) of Gd3+-loaded zeolites for potential application... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4799 |
| SubjectTerms | Aluminum - chemistry contrast agents Contrast Media - chemistry gadolinium Gadolinium - chemistry lanthanides Magnetic Resonance Imaging Molecular Structure X-Ray Diffraction zeolites Zeolites - chemistry |
| Title | Gadolinium(III)-Loaded Nanoparticulate Zeolites as Potential High-Field MRI Contrast Agents: Relationship Between Structure and Relaxivity |
| URI | https://api.istex.fr/ark:/67375/WNG-CX1NC1L7-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200500039 https://www.ncbi.nlm.nih.gov/pubmed/15929138 https://www.proquest.com/docview/68426858 |
| Volume | 11 |
| WOSCitedRecordID | wos000231324200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYFgkuvB_lsfiAeBysjR0njrkthe5WKtVqYUW1F8tObFEB6Spp0R75BYjfyC_B46QplUBIcIkUZew4nrE9jr_5BqHHuaPaL9w5cTHnhEtqiOFaksIwaaJUGlcETU_EdJrNZvLolyj-hh-i--EGIyPM1zDAtan3NqSh_ptCJHkS4kt3UJ954016qP_qeHQy2RDvpm06eS4I0LCuiRsjtrddw9bC1Ic-Pv-d17ntxIZVaHT1_9t_DV1pPVC835jMdXTBljfQpeE68dtN9O0AaJ7m5Xz1-dl4PH7-4-v3yUIXtsB-KvZ77CrwdXgfFZ9aQM_ZGusaHy2WADzyNQN0xJcZATYOvzkeY2DAqnS9xPsQx1W_wB0C78P8DL9skGL4bWCyXVUW67IIIuchscUtdDJ6_W54SNq0DSTnXEiSpzLRjMcmzrSJDBWR816MlDrSTBiWuog6mgrtqI24K0zsuE1o5q-Z4dbx-DbqlYvS3kWYMcmNBK-J-21knBqeRGmWW5EZk8nMDBBZ60zlLac5pNb4pBo2Zqagl1XXywP0tJM_a9g8_ij5JJhAJ6arj4CBE4l6Pz1QwxmdDulEqMMBerS2EeX1BMcturSLVa3ghBPY_QfoTmM6m1cm3imlsX_CgoX8pS0K2DG6u3v_Uug-uhw4ZwHrkjxAPa9R-xBdzL8s53W1i3bELNttR85Pr94Zcw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagi1QuvKHLqz4gHgerceI8zK0sbDcijarSilUvlp3YYlXIVsku6pFfgPiN_BI8TjarlUBIiEukKGMn9ozjsf3NNwg9KwyVduIuiAkYI4xTRRSTnJTK58qLuDKl03QW53kynfKjDk0IsTAtP0S_4QYjw_2vYYDDhvTemjXUNsqFkocuwPQqGjBrS9bIB2-Px6fZmnk36vLJs5gAD-uKudHz9zZr2JiZBtDJl79zOze9WDcNjW_-hwbcQjc6HxTvt0ZzG13R1R20PVqlfruLvh8A0dOsmi2_vEzT9NXPbz-yuSx1ie3P2K6ya8fYYb1UfKYBP6cbLBt8NF8A9MjWDOARW2YM6Dh8eJxi4MCqZbPA-xDJ1bzGPQbv0-wCv2mxYviD47Jd1hrLqnQily61xT10On53MpqQLnEDKRiLOSkiHkqfBSpIpPIUjT1j_RjOpSf9WPmR8aihUSwN1R4zpQoM0yFN7DVRTBsW3Edb1bzSOwj7PmeKg9_E7EIyiBQLvSgpdJwolfBEDRFZKU0UHas5JNf4LFo-Zl9AL4u-l4foRS9_0fJ5_FHyubOBXkzW54CCi0PxMT8QoynNRzSLxWSIdldGIqye4MBFVnq-bASccQK__xA9aG1n_crQuqU0sE98ZyJ_-RYB_Bj93cN_KbSLticnh5nI0vz9I3TdMdAC8iV8jLasdvUTdK34upg19dNuAP0C42Ycew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gadolinium%28III%29-Loaded+Nanoparticulate+Zeolites+as+Potential+High-Field+MRI+Contrast+Agents%3A+Relationship+Between+Structure+and+Relaxivity&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Csajb%C3%B3k%2C+%C3%89va&rft.au=B%C3%A1nyai%2C+Istv%C3%A1n&rft.au=Vander+Elst%2C+Luce&rft.au=Muller%2C+Robert+N.&rft.date=2005-08-05&rft.pub=WILEY-VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=11&rft.issue=16&rft.spage=4799&rft.epage=4807&rft_id=info:doi/10.1002%2Fchem.200500039&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CX1NC1L7_H |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |