Two contrasting spatial processes with a common variogram: inference about spatial models from higher-order statistics

Geostatistical analysis of soil properties is undertaken to allow prediction of values of these properties over regions or at unsampled locations. A key step in geostatistical analysis is the estimation of a variogram function that describes the spatial covariance structure of the variable in questi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of soil science Ročník 61; číslo 4; s. 479 - 492
Hlavní autor: Lark, R. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.08.2010
Blackwell
Témata:
ISSN:1351-0754, 1365-2389
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Geostatistical analysis of soil properties is undertaken to allow prediction of values of these properties over regions or at unsampled locations. A key step in geostatistical analysis is the estimation of a variogram function that describes the spatial covariance structure of the variable in question. If it can be assumed plausibly that the data are a realization of a second‐order stationary multivariate normal random function then this function is entirely characterized by its mean (expectation) and spatially dependent covariance. Because of this, the variogram is sometimes computed as a general ‘descriptor’ of spatial variation, and used, for example, to compare the spatial structure at within‐aggregate scales of soils under different management, or to compare soils from different land uses with respect to the spatial structure of their microbial populations. The objective of this paper is to draw attention to the limited value of the variogram for characterizing spatial variation (as opposed to deriving best linear unbiased predictions). Specifically, it is shown how two contrasting processes, one of which gives rise to a multivariate normal random function (a convolution filter applied to independent identically distributed random values) and one which does not (a partition of space into random sets), may have the same variogram function. A diagnostic is proposed that indicates which of these two processes is most plausible as a model for a data set. This will allow the spatial analysis of soil data to give greater insight into the factors underlying the variation of a soil property, and may permit more realistic simulation of soil properties.
AbstractList Geostatistical analysis of soil properties is undertaken to allow prediction of values of these properties over regions or at unsampled locations. A key step in geostatistical analysis is the estimation of a variogram function that describes the spatial covariance structure of the variable in question. If it can be assumed plausibly that the data are a realization of a second-order stationary multivariate normal random function then this function is entirely characterized by its mean (expectation) and spatially dependent covariance. Because of this, the variogram is sometimes computed as a general 'descriptor' of spatial variation, and used, for example, to compare the spatial structure at within-aggregate scales of soils under different management, or to compare soils from different land uses with respect to the spatial structure of their microbial populations. The objective of this paper is to draw attention to the limited value of the variogram for characterizing spatial variation (as opposed to deriving best linear unbiased predictions). Specifically, it is shown how two contrasting processes, one of which gives rise to a multivariate normal random function (a convolution filter applied to independent identically distributed random values) and one which does not (a partition of space into random sets), may have the same variogram function. A diagnostic is proposed that indicates which of these two processes is most plausible as a model for a data set. This will allow the spatial analysis of soil data to give greater insight into the factors underlying the variation of a soil property, and may permit more realistic simulation of soil properties.
Author Lark, R. M.
Author_xml – sequence: 1
  givenname: R. M.
  surname: Lark
  fullname: Lark, R. M.
  email: murray.lark@bbsrc.ac.uk
  organization: Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23019870$$DView record in Pascal Francis
BookMark eNqNkU1vEzEQhleolWgL_8EXBJcN_ty1OSBBKG1RVSQaxNHyemcTh911am-a9N_jbdIcOFT1xaOZZ97RzHuaHfW-hyxDBE9Ieh-XE8IKkVMm1YTilMWECjnZvspODoWjMRYkx6Xgr7PTGJcYE0aUOsnuZxuPrO-HYOLg-jmKKzM406JV8BZihIg2blggk6Cu8z26N8H5eTDdJ-T6BgL0FpCp_Ho4tHa-hjaiJvgOLdx8ASH3oYaA4pCANMbGN9lxY9oIb_f_Wfb7-_lseplf_7y4mn65zi3npczrigjKa2oYryyRlAMWxAqseK1KoyrOJTRcqqJKNQqgjCANsykhrCFFxc6y9zvdtM7dGuKgOxcttK3pwa-jTgcRQkpBEvnhWZJwXtCSCUwT-m6PmmhN2wTTWxf1KrjOhAdNGSZKljhxn3ecDT7GAI22brzA47VdqwnWo4V6qUen9OiUHi3UjxbqbRKQ_wk8zXhB6372xrXw8OI-ff7j9nYMk0C-E0iGwfYgYMJfXZSsFPrPzYUmUzH7-u2XTGr_ACzgxe4
CitedBy_id crossref_primary_10_1007_s12145_024_01556_4
crossref_primary_10_1016_j_spasta_2012_02_001
crossref_primary_10_1016_j_catena_2013_09_006
crossref_primary_10_1016_j_spasta_2014_02_001
crossref_primary_10_1002_2015WR017519
crossref_primary_10_1111_j_1365_2389_2011_01352_x
crossref_primary_10_3390_s111009973
crossref_primary_10_3390_land13101615
crossref_primary_10_1016_j_geoderma_2012_06_005
Cites_doi 10.1111/j.1574-6941.2002.tb00996.x
10.1111/j.1365-2389.2004.00629.x
10.1016/0012-821X(95)00049-I
10.1016/j.geoderma.2005.11.008
10.1007/s00248-006-9062-8
10.1016/j.geoderma.2005.08.004
10.1016/S0022-1694(97)00056-5
10.1111/1467-9868.00269
10.1016/j.advwatres.2004.04.002
10.1023/A:1021765405952
10.1111/j.1365-2389.2009.01152.x
10.1093/oso/9780195115383.001.0001
10.1023/A:1014009426274
10.1080/00401706.1991.10484771
10.1016/S0016-7061(00)00036-7
10.1080/00401706.1967.10490438
10.1016/j.geoderma.2007.04.028
10.1016/j.envpol.2005.12.010
10.1111/j.1365-2389.1980.tb02084.x
10.1002/9780470517277
10.1007/BF01063317
10.1002/9781119115151
10.1111/j.1365-2389.1975.tb01942.x
10.1016/S0038-0717(97)00107-7
ContentType Journal Article
Copyright 2010 The Author. Journal compilation © 2010 Rothamsted Research Limited
2015 INIST-CNRS
Copyright_xml – notice: 2010 The Author. Journal compilation © 2010 Rothamsted Research Limited
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
7T7
8FD
C1K
FR3
P64
DOI 10.1111/j.1365-2389.2010.01258.x
DatabaseName Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList AGRICOLA
Engineering Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 492
ExternalDocumentID 23019870
10_1111_j_1365_2389_2010_01258_x
EJSS1258
ark_67375_WNG_1C5TBDR8_1
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
O8X
IQODW
7S9
L.6
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c4478-db1524d2a34bc1824e051c5094d97a9b448ef4896b8242ee9a51f3c8965ca16b3
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000279900000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1351-0754
IngestDate Tue Oct 07 10:03:30 EDT 2025
Thu Jul 10 22:58:28 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Nov 18 20:58:45 EST 2025
Sat Nov 29 06:57:29 EST 2025
Thu Sep 25 07:36:15 EDT 2025
Sun Sep 21 06:25:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords processes
Variograms
Inference
Soil science
Spatial model
Earth science
statistics
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4478-db1524d2a34bc1824e051c5094d97a9b448ef4896b8242ee9a51f3c8965ca16b3
Notes istex:52AF4AC0490515A87C5415560BEDB5DE5FE1B655
ark:/67375/WNG-1C5TBDR8-1
ArticleID:EJSS1258
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1446273502
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_754558851
proquest_miscellaneous_1446273502
pascalfrancis_primary_23019870
crossref_citationtrail_10_1111_j_1365_2389_2010_01258_x
crossref_primary_10_1111_j_1365_2389_2010_01258_x
wiley_primary_10_1111_j_1365_2389_2010_01258_x_EJSS1258
istex_primary_ark_67375_WNG_1C5TBDR8_1
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Rivoirard, J. 1994. Introduction to Disjunctive Kriging and Non-linear Geostatistics. Oxford University Press, Oxford.
Stacey, K.F., Lark, R.M., Whitmore, A.P. & Milne, A.E. 2006. Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil. Geoderma, 135, 107-117.
Nunan, N., Ritz, K., Rivers, M., Feeney, D.S. & Young, I.M. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma, 133, 398-407.
Pardo-Igúzquiza, E. 1998. Maximum likelihood estimation of spatial covariance parameters. Mathematical Geology, 30, 95-108.
Lark, R.M. 2009. A stochastic-geometric model of soil variation. European Journal of Soil Science, 60, 706-719.
Zimmerman, D.L. & Zimmerman, M.B. 1991. A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technometrics, 33, 77-91.
Matheron, G. 1962. Traité de Géostatistique Appliqué. Tome 1. Mémoires du Bureau de Recherches Géologiques et Minières, Paris.
Webster, R. 2000. Is soil variation random? Geoderma, 97, 149-163.
Lark, R.M., Milne, A.E., Addiscott, T.M., Goulding, K.W.T., Webster, C.P. & O'Flaherty, S. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: an analysis using wavelets. European Journal of Soil Science, 55, 601-610.
Feeney, D.S., Crawford, J.W., Daniell, T., Hallett, P.D., Nunan, N., Ritz, K., Rivers, M. & Young, I.M. 2006. Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 52, 151-158.
Cohen, A.C. 1967. Estimation in mixtures of two normal distributions. Technometrics, 9, 15-28.
Minasny, B. & McBratney, A.B. 2007. Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma, 140, 324-336.
Allègre, C.J. & Lewin, E. 1995. Scaling laws and geochemical distributions. Earth & Planetary Science Letters, 132, 1-13.
Rawlins, B.G., Lark, R.M., Webster, R. & O'Donnell, K.E. 2006. Historic metal deposition from atmospheric smelter emissions on Humberside, UK: 1. Magnitude and extent of contamination based on soil survey data. Environmental Pollution, 143, 416-426.
Webster, R. & Oliver, M.A. 2007. Geostatistics for Environmental Scientists, 2nd edn. John Wiley & Sons, Chichester.
Brown, P.E., Kåresen, K.F., Roberts, G.O. & Tonellato, S. 2000. Blur-generated non-separable space-time models. Journal of the Royal Statistical Society B, 62, 847-860.
Webster, R. & Cuanalo de la C.H.E. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194.
White, R.W., Haigh, R.A. & MacDuff, J.H. 1987. Frequency distributions and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grassland. Fertilizer Research, 11, 193-208.
Franklin, R.B., Blum, L.K., McComb, A.C. & Mills, A.L. 2002. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments. FEMS Microbiology Ecology, 42, 71-80.
Christakos, G. 2000. Modern Spatiotemporal Geostatistics. Oxford University Press, New York.
Cressie, N.A.C. 1993. Statistics for Spatial Data, revised edn. Wiley, New York.
Kolovos, A., Christakos, G., Hristopulos, D.T. & Serre, M.L. 2004. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Advances in Water Resources, 27, 815-830.
Burgess, T.M. & Webster, R. 1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging. Journal of Soil Science, 31, 315-331.
Görres, J.H., Dichiaro, M.J., Lyons, J.B. & Amador, J.A. 1998. Spatial and temporal patterns of soil biological activity in a forest and an old field. Soil Biology & Biochemistry, 30, 219-230.
Snedecor, G.W. & Cochran, W.G. 1989. Statistical Methods, 8th edn. Iowa State University Press, Ames, IA.
Romano, N. & Santini, A. 1997. Effectiveness of using pedo-transfer functions to quantify the spatial variability of soil water retention characteristics. Journal of Hydrology, 202, 137-157.
Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-21.
IMSL 1997. IMSL, Fortran Routines for Mathematical Applications. Visual Numerics, Houston, TX.
1987; 11
2006; 52
2007; 140
2004; 27
2009; 60
1991; 33
2002; 34
1997
2007
1994
1993
1995; 132
2006; 133
2006; 135
2004; 55
1997; 202
1967; 9
1980; 31
2000
2002; 42
2000; 97
2000; 62
2006; 143
1975; 26
1962
1998; 30
1989
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
Christakos G. (e_1_2_9_5_1) 2000
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
Snedecor G.W. (e_1_2_9_23_1) 1989
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
Matheron G. (e_1_2_9_16_1) 1962
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Rivoirard J. (e_1_2_9_21_1) 1994
IMSL (e_1_2_9_12_1) 1997
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Lark, R.M., Milne, A.E., Addiscott, T.M., Goulding, K.W.T., Webster, C.P. & O'Flaherty, S. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: an analysis using wavelets. European Journal of Soil Science, 55, 601-610.
– reference: Christakos, G. 2000. Modern Spatiotemporal Geostatistics. Oxford University Press, New York.
– reference: Burgess, T.M. & Webster, R. 1980. Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging. Journal of Soil Science, 31, 315-331.
– reference: Zimmerman, D.L. & Zimmerman, M.B. 1991. A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technometrics, 33, 77-91.
– reference: IMSL 1997. IMSL, Fortran Routines for Mathematical Applications. Visual Numerics, Houston, TX.
– reference: Kolovos, A., Christakos, G., Hristopulos, D.T. & Serre, M.L. 2004. Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Advances in Water Resources, 27, 815-830.
– reference: Webster, R. 2000. Is soil variation random? Geoderma, 97, 149-163.
– reference: Feeney, D.S., Crawford, J.W., Daniell, T., Hallett, P.D., Nunan, N., Ritz, K., Rivers, M. & Young, I.M. 2006. Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 52, 151-158.
– reference: Matheron, G. 1962. Traité de Géostatistique Appliqué. Tome 1. Mémoires du Bureau de Recherches Géologiques et Minières, Paris.
– reference: Strebelle, S. 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1-21.
– reference: Minasny, B. & McBratney, A.B. 2007. Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma, 140, 324-336.
– reference: Webster, R. & Oliver, M.A. 2007. Geostatistics for Environmental Scientists, 2nd edn. John Wiley & Sons, Chichester.
– reference: Görres, J.H., Dichiaro, M.J., Lyons, J.B. & Amador, J.A. 1998. Spatial and temporal patterns of soil biological activity in a forest and an old field. Soil Biology & Biochemistry, 30, 219-230.
– reference: White, R.W., Haigh, R.A. & MacDuff, J.H. 1987. Frequency distributions and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grassland. Fertilizer Research, 11, 193-208.
– reference: Rawlins, B.G., Lark, R.M., Webster, R. & O'Donnell, K.E. 2006. Historic metal deposition from atmospheric smelter emissions on Humberside, UK: 1. Magnitude and extent of contamination based on soil survey data. Environmental Pollution, 143, 416-426.
– reference: Allègre, C.J. & Lewin, E. 1995. Scaling laws and geochemical distributions. Earth & Planetary Science Letters, 132, 1-13.
– reference: Brown, P.E., Kåresen, K.F., Roberts, G.O. & Tonellato, S. 2000. Blur-generated non-separable space-time models. Journal of the Royal Statistical Society B, 62, 847-860.
– reference: Stacey, K.F., Lark, R.M., Whitmore, A.P. & Milne, A.E. 2006. Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil. Geoderma, 135, 107-117.
– reference: Cressie, N.A.C. 1993. Statistics for Spatial Data, revised edn. Wiley, New York.
– reference: Webster, R. & Cuanalo de la C.H.E. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194.
– reference: Pardo-Igúzquiza, E. 1998. Maximum likelihood estimation of spatial covariance parameters. Mathematical Geology, 30, 95-108.
– reference: Lark, R.M. 2009. A stochastic-geometric model of soil variation. European Journal of Soil Science, 60, 706-719.
– reference: Snedecor, G.W. & Cochran, W.G. 1989. Statistical Methods, 8th edn. Iowa State University Press, Ames, IA.
– reference: Franklin, R.B., Blum, L.K., McComb, A.C. & Mills, A.L. 2002. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments. FEMS Microbiology Ecology, 42, 71-80.
– reference: Rivoirard, J. 1994. Introduction to Disjunctive Kriging and Non-linear Geostatistics. Oxford University Press, Oxford.
– reference: Romano, N. & Santini, A. 1997. Effectiveness of using pedo-transfer functions to quantify the spatial variability of soil water retention characteristics. Journal of Hydrology, 202, 137-157.
– reference: Cohen, A.C. 1967. Estimation in mixtures of two normal distributions. Technometrics, 9, 15-28.
– reference: Nunan, N., Ritz, K., Rivers, M., Feeney, D.S. & Young, I.M. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography. Geoderma, 133, 398-407.
– volume: 52
  start-page: 151
  year: 2006
  end-page: 158
  article-title: Three‐dimensional microorganization of the soil‐root‐microbe system
  publication-title: Microbial Ecology
– volume: 42
  start-page: 71
  year: 2002
  end-page: 80
  article-title: A geostatistical analysis of small‐scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments
  publication-title: FEMS Microbiology Ecology
– volume: 33
  start-page: 77
  year: 1991
  end-page: 91
  article-title: A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors
  publication-title: Technometrics
– year: 1962
– year: 2007
– year: 1989
– year: 2000
– volume: 34
  start-page: 1
  year: 2002
  end-page: 21
  article-title: Conditional simulation of complex geological structures using multiple‐point statistics
  publication-title: Mathematical Geology
– volume: 30
  start-page: 95
  year: 1998
  end-page: 108
  article-title: Maximum likelihood estimation of spatial covariance parameters
  publication-title: Mathematical Geology
– volume: 9
  start-page: 15
  year: 1967
  end-page: 28
  article-title: Estimation in mixtures of two normal distributions
  publication-title: Technometrics
– volume: 11
  start-page: 193
  year: 1987
  end-page: 208
  article-title: Frequency distributions and spatially dependent variability of ammonium and nitrate concentrations in soil under grazed and ungrazed grassland
  publication-title: Fertilizer Research
– year: 1994
– volume: 31
  start-page: 315
  year: 1980
  end-page: 331
  article-title: Optimal interpolation and isarithmic mapping of soil properties. I. The semivariogram and punctual kriging
  publication-title: Journal of Soil Science
– volume: 62
  start-page: 847
  year: 2000
  end-page: 860
  article-title: Blur‐generated non‐separable space‐time models
  publication-title: Journal of the Royal Statistical Society B
– volume: 26
  start-page: 176
  year: 1975
  end-page: 194
  article-title: Soil transect correlograms of north Oxfordshire and their interpretation
  publication-title: Journal of Soil Science
– volume: 143
  start-page: 416
  year: 2006
  end-page: 426
  article-title: Historic metal deposition from atmospheric smelter emissions on Humberside, UK: 1. Magnitude and extent of contamination based on soil survey data
  publication-title: Environmental Pollution
– volume: 27
  start-page: 815
  year: 2004
  end-page: 830
  article-title: Methods for generating non‐separable spatiotemporal covariance models with potential environmental applications
  publication-title: Advances in Water Resources
– volume: 140
  start-page: 324
  year: 2007
  end-page: 336
  article-title: Spatial prediction of soil properties using EBLUP with the Matérn covariance function
  publication-title: Geoderma
– volume: 30
  start-page: 219
  year: 1998
  end-page: 230
  article-title: Spatial and temporal patterns of soil biological activity in a forest and an old field
  publication-title: Soil Biology & Biochemistry
– year: 1997
– volume: 132
  start-page: 1
  year: 1995
  end-page: 13
  article-title: Scaling laws and geochemical distributions
  publication-title: Earth & Planetary Science Letters
– volume: 133
  start-page: 398
  year: 2006
  end-page: 407
  article-title: Investigating microbial micro‐habitat structure using X‐ray computed tomography
  publication-title: Geoderma
– volume: 60
  start-page: 706
  year: 2009
  end-page: 719
  article-title: A stochastic‐geometric model of soil variation
  publication-title: European Journal of Soil Science
– volume: 202
  start-page: 137
  year: 1997
  end-page: 157
  article-title: Effectiveness of using pedo‐transfer functions to quantify the spatial variability of soil water retention characteristics
  publication-title: Journal of Hydrology
– volume: 97
  start-page: 149
  year: 2000
  end-page: 163
  article-title: Is soil variation random?
  publication-title: Geoderma
– volume: 135
  start-page: 107
  year: 2006
  end-page: 117
  article-title: Using a process model and regression kriging to improve predictions of nitrous oxide emissions from soil
  publication-title: Geoderma
– year: 1993
– volume: 55
  start-page: 601
  year: 2004
  end-page: 610
  article-title: Scale‐ and location‐dependent correlation of nitrous oxide emissions with soil properties: an analysis using wavelets
  publication-title: European Journal of Soil Science
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1574-6941.2002.tb00996.x
– ident: e_1_2_9_15_1
  doi: 10.1111/j.1365-2389.2004.00629.x
– ident: e_1_2_9_2_1
  doi: 10.1016/0012-821X(95)00049-I
– volume-title: Introduction to Disjunctive Kriging and Non‐linear Geostatistics
  year: 1994
  ident: e_1_2_9_21_1
– ident: e_1_2_9_24_1
  doi: 10.1016/j.geoderma.2005.11.008
– volume-title: Statistical Methods
  year: 1989
  ident: e_1_2_9_23_1
– ident: e_1_2_9_8_1
  doi: 10.1007/s00248-006-9062-8
– volume-title: Traité de Géostatistique Appliqué
  year: 1962
  ident: e_1_2_9_16_1
– ident: e_1_2_9_18_1
  doi: 10.1016/j.geoderma.2005.08.004
– ident: e_1_2_9_22_1
  doi: 10.1016/S0022-1694(97)00056-5
– ident: e_1_2_9_3_1
  doi: 10.1111/1467-9868.00269
– ident: e_1_2_9_13_1
  doi: 10.1016/j.advwatres.2004.04.002
– ident: e_1_2_9_19_1
  doi: 10.1023/A:1021765405952
– volume-title: IMSL, Fortran Routines for Mathematical Applications
  year: 1997
  ident: e_1_2_9_12_1
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1365-2389.2009.01152.x
– ident: e_1_2_9_10_1
  doi: 10.1093/oso/9780195115383.001.0001
– ident: e_1_2_9_25_1
  doi: 10.1023/A:1014009426274
– ident: e_1_2_9_30_1
  doi: 10.1080/00401706.1991.10484771
– ident: e_1_2_9_26_1
  doi: 10.1016/S0016-7061(00)00036-7
– ident: e_1_2_9_6_1
  doi: 10.1080/00401706.1967.10490438
– ident: e_1_2_9_17_1
  doi: 10.1016/j.geoderma.2007.04.028
– ident: e_1_2_9_20_1
  doi: 10.1016/j.envpol.2005.12.010
– volume-title: Modern Spatiotemporal Geostatistics
  year: 2000
  ident: e_1_2_9_5_1
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1365-2389.1980.tb02084.x
– ident: e_1_2_9_28_1
  doi: 10.1002/9780470517277
– ident: e_1_2_9_29_1
  doi: 10.1007/BF01063317
– ident: e_1_2_9_7_1
  doi: 10.1002/9781119115151
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365-2389.1975.tb01942.x
– ident: e_1_2_9_11_1
  doi: 10.1016/S0038-0717(97)00107-7
SSID ssj0013199
Score 1.9721464
Snippet Geostatistical analysis of soil properties is undertaken to allow prediction of values of these properties over regions or at unsampled locations. A key step...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 479
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
covariance
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
geostatistics
land use
population structure
prediction
soil analysis
soil properties
Soil science
Soils
Surficial geology
Title Two contrasting spatial processes with a common variogram: inference about spatial models from higher-order statistics
URI https://api.istex.fr/ark:/67375/WNG-1C5TBDR8-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2389.2010.01258.x
https://www.proquest.com/docview/1446273502
https://www.proquest.com/docview/754558851
Volume 61
WOSCitedRecordID wos000279900000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013199
  issn: 1351-0754
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB6hhEN7KD9thUtBWwlxcxU767_eQkKKEIoQhJbbane9hqqVg-yS5sgj8Iw8SWfWjoulVkIVUg5RshNpJzM7M-tvvgHYM1loYtOLXKWjvstjX7lJKPEw5Abz4TDNlCXT-XISTSbx5WVyWuOfqBem4odoLtzIM-x5TQ4uVdl2covQwohbI7QwVscfMZ_s-mjGvAPd0dn44uTPM4VqmiSNpHMxUPI2ruevv9UKVl3S-4LAk7JE_WXV4ItWZvo4v7UBarz2nFtbh1d1msoGlV1twIrJN-Hl4KqoqTrMa1hMf82YRbrLkrDTrCRwNgrdVL0HpmR0ycskLiJjZ3Msyy0Y7BP7tmwzZBYY3YjauTwlo54Xdm0RKA9395YdlFHnU0Uq_QYuxofT4ZFbz3FwNedYpKYKkwSe-rLPlcZ6hhs8CTQx96VJJBOFFaLJeJyECr_zjUlk4GV9jR8EWnqh6r-FTj7LzRYwXKV9fKG4z3Wk4pQnaSCV6UkiduMORMs_TOia5JxmbfwQj4od1K0g3QrSrbC6FQsHvEbypiL6eILMvrWJRkAW3wkoFwXi6-Sz8IbB9GB0FgvPgd2W0TQCWADSrU_PgQ9LKxLo3_TQRuZmdlsKqtcxxQx6vgPsH2vQmIMgxtwZt2_t6sk7EIfH5-f09t1_S27DiwpRQaDI99D5WdyaHVjVczSKYrd2wt8MoDCW
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VSaW2B-gDVAOlW6niZhQ7u35w45VCm0YVhMdttbtet1VRgmKgOfYn8Bv5JcysHRdLVEKoUg5RshNpJzM7M-tvvgH4aPPIJrYT-9rEXZ8nofbTSOFhyC3mw1GWa0emc9yPB4Pk9DT9Vo0Dol6Ykh-ivnAjz3DnNTk4XUg3vdxBtDDkVhAtDNbJOiaUbY5WJVrQ3jnoHfX_PlQox0nSTDofIyVvAnvu_a1GtGqT4qeEnlQFKjAvJ180UtO7Ca6LUL35_7q3lzBXJapss7SsV_DEjl7Di83vk4qsw76B6fD3mDmsuyoIPc0Kgmej0HnZfWALRte8TOEiMnd2hYW5g4NtsJ-zRkPmoNG1qJvMUzDqemE_HAbl5s-14wdl1PtU0kovwFFvd7i951eTHHzDOZapmcY0gWeh6nJtsKLhFs8CQ9x9WRqrVGONaHOepJHG70JrUyWCvGvwA2FUEOnuIrRG45F9CwxXmRBfKB5yE-sk42kmlLYdRdRu3IN49o9JU9Gc07SNM3mn3EHdStKtJN1Kp1s59SCoJc9Lqo8HyKw5o6gF1OQXQeViIU8Gn2SwLYZbOweJDDxYbVhNLYAlIN37dDz4MDMjiR5Oj23UyI4vC0kVOyaZohN6wP6xBq1ZiASzZ9y-M6wH70Dufj48pLdLj5Z8D8_2hl_7sr8_-LIMz0t8BUEkV6B1Mbm07-CpuUIDmaxWHnkLSVk0hg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VpKroAfqgwpTHVqp6cxU7u370RgkplChCEFpuq931ulStkijmkSM_gd_YX8LM2jFYaiVUIeUQJTuRdjKzM7P-5huA9zaPbGLbsa9N3PF5Emo_jRQehtxiPhxluXZkOt_68WCQnJ6mh9U4IOqFKfkh6gs38gx3XpOD20mWN73cQbQw5FYQLQzWyUdMKFtcpBF6aat71Dvp3z1UKMdJ0kw6HyMlbwJ7_vpbjWjVIsXPCD2pClRgXk6-aKSm9xNcF6F6y4-6txewVCWqbLu0rJfwxI5ewfPtH9OKrMO-htnwaswc1l0VhJ5mBcGzUWhSdh_YgtE1L1O4iMydXWJh7uBgn9jPeaMhc9DoWtRN5ikYdb2wM4dB-XN94_hBGfU-lbTSK3DS2x3u7PnVJAffcI5laqYxTeBZqDpcG6xouMWzwBB3X5bGKtVYI9qcJ2mk8bvQ2lSJIO8Y_EAYFUS68wYWRuORXQWGq0yILxQPuYl1kvE0E0rbtiJqN-5BPP_HpKlozmnaxm95r9xB3UrSrSTdSqdbOfMgqCUnJdXHA2Q-OKOoBdT0F0HlYiG_D77IYEcMP3ePEhl4sNmwmloAS0C692l78G5uRhI9nB7bqJEdXxSSKnZMMkU79ID9Yw1asxAJZs-4fWdYD96B3P16fExv1_5bcgueHXZ7sr8_OHgLiyW8ghCS67BwPr2wG_DUXKJ9TDcrh7wFhho0AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+contrasting+spatial+processes+with+a+common+variogram%3A+inference+about+spatial+models+from+higher-order+statistics&rft.jtitle=European+journal+of+soil+science&rft.au=LARK%2C+R.+M&rft.date=2010-08-01&rft.pub=Blackwell&rft.issn=1351-0754&rft.volume=61&rft.issue=4&rft.spage=479&rft.epage=492&rft_id=info:doi/10.1111%2Fj.1365-2389.2010.01258.x&rft.externalDBID=n%2Fa&rft.externalDocID=23019870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon