Molecular Recognition of Sialic Acid End Groups by Phenylboronates
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH depen...
Gespeichert in:
| Veröffentlicht in: | Chemistry : a European journal Jg. 11; H. 13; S. 4010 - 4018 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
WILEY-VCH Verlag
20.06.2005
WILEY‐VCH Verlag |
| Schlagworte: | |
| ISSN: | 0947-6539, 1521-3765 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐O‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy.
A potential targeting moiety in artificial sugar receptors, phenylboronic acid (PBA), can bind sialic acid in two different modes: at the α‐hydroxycarboxylate function or at the glycerol tail. This interaction is very pH dependent, and the formation of several species is possible (see picture). Sialic acid residues in glycoproteins are recognized by PBA through boronate ester formation at the glycerol side chain. |
|---|---|
| AbstractList | A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17 O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐ O ‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy. A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐O‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy. A potential targeting moiety in artificial sugar receptors, phenylboronic acid (PBA), can bind sialic acid in two different modes: at the α‐hydroxycarboxylate function or at the glycerol tail. This interaction is very pH dependent, and the formation of several species is possible (see picture). Sialic acid residues in glycoproteins are recognized by PBA through boronate ester formation at the glycerol side chain. A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy. A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy. |
| Author | Djanashvili, Kristina Frullano, Luca Peters, Joop A. |
| Author_xml | – sequence: 1 givenname: Kristina surname: Djanashvili fullname: Djanashvili, Kristina organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289 – sequence: 2 givenname: Luca surname: Frullano fullname: Frullano, Luca organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289 – sequence: 3 givenname: Joop A. surname: Peters fullname: Peters, Joop A. email: j.a.peters@tnw.tudelft.nl organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15838860$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtvEzEYRS1URNPHtks0K3YT7PFrvCxRSCs1pdBWlbqxbM831OCMgz0jyL_vRCkRQkKs7uacK917hA662AFCZwRPCcbVe_cEq2mFMcOEUv4KTQivSEml4AdoghWTpeBUHaKjnL9hjJWg9A06JLymdS3wBH1YxgBuCCYVX8DFr53vfeyK2Ba33gTvinPnm2LeNcUixWGdC7spbp6g2wQbU-xMD_kEvW5NyHD6ksfo_uP8bnZRXn1aXM7Or0rHmORlIypKamJri6FtpYVKNYJixhspGmdaWRMjOJPEsrqyoEirqKHgjMWj2Vb0GL3b9a5T_DFA7vXKZwchmA7ikLWQinFaqRF8-wIOdgWNXie_Mmmjf68eAbYDXIo5J2i1873ZDu-T8UETrLfn6u25en_uqE3_0vbN_xLUTvjpA2z-Q-vZxXz5p1vuXJ97-LV3Tfo-DqWS64frhV6y68cbjJf6M30GlNGarg |
| CitedBy_id | crossref_primary_10_1039_D0RA02793F crossref_primary_10_1002_cmmi_141 crossref_primary_10_1002_chem_201904442 crossref_primary_10_1002_smll_201402038 crossref_primary_10_1002_mabi_202000341 crossref_primary_10_1016_j_chroma_2009_05_084 crossref_primary_10_1039_D1BM00185J crossref_primary_10_1016_j_biomaterials_2025_123500 crossref_primary_10_1126_sciadv_adu1326 crossref_primary_10_1002_cbic_202400402 crossref_primary_10_1007_s00604_019_3480_z crossref_primary_10_1002_ange_201005161 crossref_primary_10_1186_s12951_024_02433_4 crossref_primary_10_1039_C5CC01662B crossref_primary_10_1163_016942410X525812 crossref_primary_10_3390_molecules26061730 crossref_primary_10_1039_C9RA07608E crossref_primary_10_1016_j_bmc_2005_09_028 crossref_primary_10_1016_j_chroma_2008_10_039 crossref_primary_10_1002_marc_202300029 crossref_primary_10_1007_s00604_015_1736_9 crossref_primary_10_1016_j_biomaterials_2014_03_029 crossref_primary_10_1002_chem_201402627 crossref_primary_10_1002_mabi_201000295 crossref_primary_10_3390_molecules24081477 crossref_primary_10_1002_jbm_a_31880 crossref_primary_10_1016_j_bioadv_2023_213700 crossref_primary_10_48130_BPR_2023_0014 crossref_primary_10_1002_anie_201207131 crossref_primary_10_1007_s00604_019_3387_8 crossref_primary_10_1002_anie_201005161 crossref_primary_10_3390_biomedicines9101459 crossref_primary_10_1002_ejoc_200700295 crossref_primary_10_1016_j_biomaterials_2015_10_022 crossref_primary_10_1021_ic902461g crossref_primary_10_1002_adma_202400582 crossref_primary_10_1134_S0965545X12010026 crossref_primary_10_1002_ejoc_201000186 crossref_primary_10_1016_j_jcis_2022_07_027 crossref_primary_10_1016_j_talanta_2019_01_074 crossref_primary_10_1016_j_jelechem_2018_11_011 crossref_primary_10_1039_C5AN02402A crossref_primary_10_1002_adfm_201500587 crossref_primary_10_1021_ja902964m crossref_primary_10_1002_ange_201207131 crossref_primary_10_1016_j_bios_2017_02_043 crossref_primary_10_1038_pj_2014_42 crossref_primary_10_1002_cmmi_123 crossref_primary_10_1002_adhm_202200242 crossref_primary_10_3390_polym9070249 crossref_primary_10_1021_jacs_5b08482 crossref_primary_10_1002_ejoc_200700264 crossref_primary_10_1007_s10719_015_9591_9 crossref_primary_10_1021_ja406406h crossref_primary_10_1038_aps_2017_16 crossref_primary_10_1016_j_proeng_2010_09_261 crossref_primary_10_1002_chem_200700677 crossref_primary_10_1016_j_bios_2016_05_083 crossref_primary_10_1016_j_snb_2020_129259 crossref_primary_10_1039_D4CC06730D crossref_primary_10_1016_j_jconrel_2016_10_029 crossref_primary_10_1039_b900836p crossref_primary_10_2217_nnm_14_213 crossref_primary_10_1021_jo061901e crossref_primary_10_3390_pharmaceutics15071928 crossref_primary_10_1080_14756366_2017_1384823 crossref_primary_10_1002_chem_202201033 crossref_primary_10_1002_anie_201001220 crossref_primary_10_1016_j_snb_2019_127074 crossref_primary_10_1002_adfm_201702126 crossref_primary_10_1021_ma8012674 crossref_primary_10_1002_open_201800071 crossref_primary_10_1016_j_jconrel_2022_01_041 crossref_primary_10_1002_adom_201800680 crossref_primary_10_1080_07391102_2019_1596839 crossref_primary_10_1016_j_talanta_2019_120579 crossref_primary_10_1246_cl_210229 crossref_primary_10_1021_ja401000m crossref_primary_10_1016_j_ccr_2023_215254 crossref_primary_10_1016_j_matlet_2018_05_002 crossref_primary_10_1002_ange_201001220 crossref_primary_10_1016_j_ccr_2014_01_016 crossref_primary_10_1016_j_eurpolymj_2020_109888 crossref_primary_10_1002_adfm_201502420 crossref_primary_10_1021_ja210719s crossref_primary_10_1016_j_bios_2016_10_100 crossref_primary_10_1016_j_aca_2018_04_072 crossref_primary_10_3390_molecules27238297 crossref_primary_10_1039_c2cc17384k crossref_primary_10_1016_j_ijbiomac_2023_127254 crossref_primary_10_4155_fmc_09_157 crossref_primary_10_3390_molecules23020479 crossref_primary_10_1002_advs_201801423 |
| Cites_doi | 10.1007/3-540-45010-6_6 10.1039/dt9900002137 10.1021/jo01370a013 10.1002/recl.19110301103 10.1002/recl.19710900309 10.1002/chem.200400369 10.1007/3-540-45733-X_5 10.1016/S0040-4020(01)91300-6 10.1135/cccc20041282 10.1021/cr980440x 10.1002/cber.19821150603 10.1016/0968-0004(85)90112-4 10.1002/cber.19660990235 10.1021/ja984228m 10.1002/chem.200204632 10.1016/S0040-4039(98)00514-0 10.1023/A:1011062223612 10.1006/abio.1999.4105 10.1016/S0040-4020(98)00057-X 10.1002/1097-0290(20010205)72:3<307::AID-BIT7>3.0.CO;2-E 10.1021/ja021303r 10.1016/0022-328X(92)83330-K |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/chem.200401335 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | 4018 |
| ExternalDocumentID | 15838860 10_1002_chem_200401335 CHEM200401335 ark_67375_WNG_M4NZP00M_Q |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TN5 TWZ UB1 UPT UQL V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 Y6R YZZ ZZTAW ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGC RWI WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM VXZ 7X8 |
| ID | FETCH-LOGICAL-c4475-d623181b8b0eff7be29d63045d76dcaf781a65471b482be91f93a3ecab0623f23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230071100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 |
| IngestDate | Thu Jul 10 23:52:22 EDT 2025 Wed Feb 19 01:41:35 EST 2025 Tue Nov 18 22:29:32 EST 2025 Sat Nov 29 07:16:50 EST 2025 Wed Jan 22 16:25:43 EST 2025 Sun Sep 21 06:18:05 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4475-d623181b8b0eff7be29d63045d76dcaf781a65471b482be91f93a3ecab0623f23 |
| Notes | istex:25E394EE4E47BE5CCCAC27EA3B4AB317ECFF9986 ArticleID:CHEM200401335 ark:/67375/WNG-M4NZP00M-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 15838860 |
| PQID | 67945329 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_67945329 pubmed_primary_15838860 crossref_citationtrail_10_1002_chem_200401335 crossref_primary_10_1002_chem_200401335 wiley_primary_10_1002_chem_200401335_CHEM200401335 istex_primary_ark_67375_WNG_M4NZP00M_Q |
| PublicationCentury | 2000 |
| PublicationDate | June 20, 2005 |
| PublicationDateYYYYMMDD | 2005-06-20 |
| PublicationDate_xml | – month: 06 year: 2005 text: June 20, 2005 day: 20 |
| PublicationDecade | 2000 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry - A European Journal |
| PublicationYear | 2005 |
| Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
| Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
| References | W. Chai, C. T. Yuen, T. Feizi, A. M. Lawson, Anal. Biochem. 1999, 270, 314-322. F. R. Venema, J. A. Peters, H. van Bekkum, J. Chem. Soc. Dalton Trans. 1990, 7, 2137-2143. H. G. Kuivila, A. H. Keough, E. J. Soboczenski, J. Org. Chem. 1954, 19, 780-783. M. Yamamoto, M. Takeuchi, S. Shinkai, Tetrahedron 1998, 54, 3125. S. Patterson, B. D. Smith, R. E. Taylor, Tetrahedron Lett. 1998, 39, 3111-3114. A. van Veen, A. J. Hoefnagel, B. M. Wepster, Recl. Trav. Chim. Pays-Bas 1971, 90, 289-300. T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159-200. M. van Duin, J. A. Peters, A. P. G. Kieboom, H. van Bekkum, Tetrahedron 1984, 40, 2901-2911. V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123-164. H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, J. Am. Chem. Soc. 2003, 125, 3493-3502. J. Böeseken, A. van Rossem, Recl. Trav. Chim. Pays-Bas Belg. 1912, 30, 392-406. M. Biedrzycki, W. H. Scouten, Z. Biedrzycka, J. Organomet. Chem. 1992, 431, 255-270. E. Uchimura, H. Otsuka, T. Okano, Y. Sakurai, K. Kataoka, Biotechnol. Bioeng. 2001, 72, 307-314. L. Frullano, J. Rohovec, S. Aime, T. Maschmeyer, M. I. Prata, J. J. Pedroso de Lima, C. F. G. C. Geraldes, J. A. Peters, Chem. Eur. J. 2004, 10, 5205-5217. R. Schauer, Trends Biochem. Sci. 1985, 10, 357-360. G. A. Lemieux, K. J. Yarema, C. L. Jacobs, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 4278-4279. P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352. K. Oshima, H. Toi, Y. Aoyama, Carbohydr. Lett. 1995, 1, 223-230. Y. Yang, P. T. Lewis, J. O. Escobedo, N. N. St. Luce, W. D. Treleaven, R. L. Cook, R. M. Strongin, Collect. Czech. Chem. Commun. 2004, 69, 1282-1291. R. Schauer, Glycoconjugate J. 2000, 17, 485-499. R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber. 1966, 99, 611-617. B. Wrackmeyer, R. Köster, Chem. Ber. 1982, 115, 2022-2034. J. Rohovec, T. Maschmeyer, S. Aime, J. A. Peters, Chem. Eur. J. 2003, 9, 2193-2199. 2004; 10 1984; 40 1998; 39 2001; 72 2000; 17 1999; 270 2004; 69 1992; 431 2002; 221 2003; 9 1999; 121 1954; 19 1999; 99 1982; 115 2002; 218 2003; 125 1995; 1 1998; 54 1985; 10 1966; 99 1971; 90 1990; 7 1912; 30 e_1_2_5_14_2 e_1_2_5_13_2 e_1_2_5_9_2 e_1_2_5_16_2 e_1_2_5_8_2 e_1_2_5_7_2 e_1_2_5_10_2 e_1_2_5_22_2 e_1_2_5_6_2 e_1_2_5_23_2 e_1_2_5_5_2 e_1_2_5_12_2 e_1_2_5_20_2 e_1_2_5_4_2 e_1_2_5_11_2 e_1_2_5_21_2 e_1_2_5_3_2 e_1_2_5_2_2 e_1_2_5_1_2 e_1_2_5_18_2 e_1_2_5_17_2 e_1_2_5_19_2 Oshima K. (e_1_2_5_15_2) 1995; 1 |
| References_xml | – reference: P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352. – reference: E. Uchimura, H. Otsuka, T. Okano, Y. Sakurai, K. Kataoka, Biotechnol. Bioeng. 2001, 72, 307-314. – reference: V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123-164. – reference: S. Patterson, B. D. Smith, R. E. Taylor, Tetrahedron Lett. 1998, 39, 3111-3114. – reference: F. R. Venema, J. A. Peters, H. van Bekkum, J. Chem. Soc. Dalton Trans. 1990, 7, 2137-2143. – reference: G. A. Lemieux, K. J. Yarema, C. L. Jacobs, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 4278-4279. – reference: Y. Yang, P. T. Lewis, J. O. Escobedo, N. N. St. Luce, W. D. Treleaven, R. L. Cook, R. M. Strongin, Collect. Czech. Chem. Commun. 2004, 69, 1282-1291. – reference: A. van Veen, A. J. Hoefnagel, B. M. Wepster, Recl. Trav. Chim. Pays-Bas 1971, 90, 289-300. – reference: J. Rohovec, T. Maschmeyer, S. Aime, J. A. Peters, Chem. Eur. J. 2003, 9, 2193-2199. – reference: K. Oshima, H. Toi, Y. Aoyama, Carbohydr. Lett. 1995, 1, 223-230. – reference: W. Chai, C. T. Yuen, T. Feizi, A. M. Lawson, Anal. Biochem. 1999, 270, 314-322. – reference: M. Biedrzycki, W. H. Scouten, Z. Biedrzycka, J. Organomet. Chem. 1992, 431, 255-270. – reference: R. Schauer, Trends Biochem. Sci. 1985, 10, 357-360. – reference: R. Schauer, Glycoconjugate J. 2000, 17, 485-499. – reference: M. Yamamoto, M. Takeuchi, S. Shinkai, Tetrahedron 1998, 54, 3125. – reference: L. Frullano, J. Rohovec, S. Aime, T. Maschmeyer, M. I. Prata, J. J. Pedroso de Lima, C. F. G. C. Geraldes, J. A. Peters, Chem. Eur. J. 2004, 10, 5205-5217. – reference: H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, J. Am. Chem. Soc. 2003, 125, 3493-3502. – reference: J. Böeseken, A. van Rossem, Recl. Trav. Chim. Pays-Bas Belg. 1912, 30, 392-406. – reference: H. G. Kuivila, A. H. Keough, E. J. Soboczenski, J. Org. Chem. 1954, 19, 780-783. – reference: M. van Duin, J. A. Peters, A. P. G. Kieboom, H. van Bekkum, Tetrahedron 1984, 40, 2901-2911. – reference: T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159-200. – reference: B. Wrackmeyer, R. Köster, Chem. Ber. 1982, 115, 2022-2034. – reference: R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber. 1966, 99, 611-617. – volume: 121 start-page: 4278 year: 1999 end-page: 4279 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 780 year: 1954 end-page: 783 publication-title: J. Org. Chem. – volume: 54 start-page: 3125 year: 1998 publication-title: Tetrahedron – volume: 69 start-page: 1282 year: 2004 end-page: 1291 publication-title: Collect. Czech. Chem. Commun. – volume: 125 start-page: 3493 year: 2003 end-page: 3502 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 3111 year: 1998 end-page: 3114 publication-title: Tetrahedron Lett. – volume: 218 start-page: 159 year: 2002 end-page: 200 publication-title: Top. Curr. Chem. – volume: 115 start-page: 2022 year: 1982 end-page: 2034 publication-title: Chem. Ber. – volume: 17 start-page: 485 year: 2000 end-page: 499 publication-title: Glycoconjugate J. – volume: 1 start-page: 223 year: 1995 end-page: 230 publication-title: Carbohydr. Lett. – volume: 7 start-page: 2137 year: 1990 end-page: 2143 publication-title: J. Chem. Soc. Dalton Trans. – volume: 10 start-page: 357 year: 1985 end-page: 360 publication-title: Trends Biochem. Sci. – volume: 99 start-page: 611 year: 1966 end-page: 617 publication-title: Chem. Ber. – volume: 72 start-page: 307 year: 2001 end-page: 314 publication-title: Biotechnol. Bioeng. – volume: 10 start-page: 5205 year: 2004 end-page: 5217 publication-title: Chem. Eur. J. – volume: 40 start-page: 2901 year: 1984 end-page: 2911 publication-title: Tetrahedron – volume: 99 start-page: 2293 year: 1999 end-page: 2352 publication-title: Chem. Rev. – volume: 30 start-page: 392 year: 1912 end-page: 406 publication-title: Recl. Trav. Chim. Pays‐Bas Belg. – volume: 221 start-page: 123 year: 2002 end-page: 164 publication-title: Top. Curr. Chem. – volume: 270 start-page: 314 year: 1999 end-page: 322 publication-title: Anal. Biochem. – volume: 431 start-page: 255 year: 1992 end-page: 270 publication-title: J. Organomet. Chem. – volume: 9 start-page: 2193 year: 2003 end-page: 2199 publication-title: Chem. Eur. J. – volume: 90 start-page: 289 year: 1971 end-page: 300 publication-title: Recl. Trav. Chim. Pays‐Bas – ident: e_1_2_5_8_2 doi: 10.1007/3-540-45010-6_6 – ident: e_1_2_5_13_2 doi: 10.1039/dt9900002137 – ident: e_1_2_5_6_2 doi: 10.1021/jo01370a013 – ident: e_1_2_5_5_2 doi: 10.1002/recl.19110301103 – ident: e_1_2_5_23_2 doi: 10.1002/recl.19710900309 – ident: e_1_2_5_21_2 doi: 10.1002/chem.200400369 – ident: e_1_2_5_2_2 doi: 10.1007/3-540-45733-X_5 – ident: e_1_2_5_7_2 doi: 10.1016/S0040-4020(01)91300-6 – ident: e_1_2_5_17_2 doi: 10.1135/cccc20041282 – ident: e_1_2_5_1_2 doi: 10.1021/cr980440x – ident: e_1_2_5_14_2 doi: 10.1002/cber.19821150603 – ident: e_1_2_5_20_2 doi: 10.1016/0968-0004(85)90112-4 – ident: e_1_2_5_22_2 doi: 10.1002/cber.19660990235 – ident: e_1_2_5_4_2 doi: 10.1021/ja984228m – ident: e_1_2_5_19_2 doi: 10.1002/chem.200204632 – ident: e_1_2_5_10_2 doi: 10.1016/S0040-4039(98)00514-0 – ident: e_1_2_5_3_2 doi: 10.1023/A:1011062223612 – ident: e_1_2_5_16_2 doi: 10.1006/abio.1999.4105 – ident: e_1_2_5_9_2 doi: 10.1016/S0040-4020(98)00057-X – ident: e_1_2_5_11_2 doi: 10.1002/1097-0290(20010205)72:3<307::AID-BIT7>3.0.CO;2-E – ident: e_1_2_5_12_2 doi: 10.1021/ja021303r – volume: 1 start-page: 223 year: 1995 ident: e_1_2_5_15_2 publication-title: Carbohydr. Lett. – ident: e_1_2_5_18_2 doi: 10.1016/0022-328X(92)83330-K |
| SSID | ssj0009633 |
| Score | 2.2044353 |
| Snippet | A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be... A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4010 |
| SubjectTerms | borates Boronic Acids - chemistry Butyrates - chemistry carbohydrates Esters - chemistry glycoproteins Hydrogen-Ion Concentration Magnetic Resonance Spectroscopy molecular recognition Molecular Structure N-Acetylneuraminic Acid - chemistry sialic acids |
| Title | Molecular Recognition of Sialic Acid End Groups by Phenylboronates |
| URI | https://api.istex.fr/ark:/67375/WNG-M4NZP00M-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200401335 https://www.ncbi.nlm.nih.gov/pubmed/15838860 https://www.proquest.com/docview/67945329 |
| Volume | 11 |
| WOSCitedRecordID | wos000230071100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61CRJcoC2PLtDiQwWnVR3vrtc-ltLAoYnSQiHiYtleW0StNihpEf33ePYVIhUhwXGlsdeeGdtjj_19AAeZYE4b7mMuZBGnadjuCJ-xsEvh1lKdJK66Tfj5NB-PxXQqJ7-94q_xIboDNxwZ1XyNA1yb5eEKNDT0qXpJjhuEJNuEPgvOm_Wg_-58eHG6At7lDZ18mscIw9oCN1J2uF7D2sLURx3_vCvqXA9iq1Vo-Oj_278FD5sIlBzVLrMNG67cgfvHLfHbY3g7ailzyXl7vWhekrknH4Ozziw5srOCnJQFqQ6ulsTcksk3V95eGYRDwOD1CVwMTz4df4gbqoXYIuJfXIQoKKz1RhjqvM-NY7LgmEQtcl5Y7XMx0EhTPDCpYMbJgZeJTpzVhoaSniVPoVfOS7cLRHCk_-XBzsynVuamEMxKKywNM2noaQRxq2dlGxxypMO4UjWCMlOoGdVpJoI3nfz3GoHjj5KvK7N1YnpxiffW8kx9Gb9Xo3T8dULpSJ1F8Kq1qwq6xRSJLt38ZhmkZZolTEbwrDb36peYXxacRsAqq_6lLQoRLbqv5_9S6AU8qHBiKQ9T2UvoXS9u3B7csz-uZ8vFPmzmU7HfePsvfqb7ag |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tK9J4YeM7DJgfEDxFc53EsR_3VYZoozI2mPZixY4tKqoUtRva_vv58lVVAiGhPUY6J_Hd2T6fz78fwLtEMJtr7kIuZBHGsd_uCJcwv0vhxtA8imxVTfhtmGaZuLiQ46aaEO_C1PgQXcINR0Y1X-MAx4T03hI11HequkqOO4QoWYde7H3JO3nv6HRwPlwi7_KGTz5OQ8RhbZEbKdtbfcPKytRDJd_8KexcjWKrZWiwdQ8d2IZHTQxK9muneQxrtnwCm4ct9dtTOBi1pLnktC0wmpVk5shX764TQ_bNpCDHZUGq1NWC6Fsy_mHL26lGQAQMX5_B-eD47PAkbMgWQoOYf2Hh4yC_2muhqXUu1ZbJguMxapHywuQuFf0ciYr7OhZMW9l3Msoja3JNfUvHouewUc5K-xKI4EgAzL2lmYuNTHUhmJFGGOrnUt_TAMJW0co0SORIiDFVNYYyU6gZ1WkmgA-d_K8ag-Ovku8ru3Vi-fwnVq6lifqefVSjOLscUzpSXwLYbQ2rvG7xkCQv7ex64aVlnERMBvCitvfyk3jCLDgNgFVm_ce_KMS06J5e_U-jXdg8ORsN1fBT9nkHHlaosZT7ie01bFzNr-0beGB-X00W87eN098Brzn-cg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Recognition+of+Sialic+Acid+End+Groups+by+Phenylboronates&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Djanashvili%2C+Kristina&rft.au=Frullano%2C+Luca&rft.au=Peters%2C+Joop+A.&rft.date=2005-06-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=11&rft.issue=13&rft.spage=4010&rft.epage=4018&rft_id=info:doi/10.1002%2Fchem.200401335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_200401335 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |