Molecular Recognition of Sialic Acid End Groups by Phenylboronates

A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal Jg. 11; H. 13; S. 4010 - 4018
Hauptverfasser: Djanashvili, Kristina, Frullano, Luca, Peters, Joop A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim WILEY-VCH Verlag 20.06.2005
WILEY‐VCH Verlag
Schlagworte:
ISSN:0947-6539, 1521-3765
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐O‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy. A potential targeting moiety in artificial sugar receptors, phenylboronic acid (PBA), can bind sialic acid in two different modes: at the α‐hydroxycarboxylate function or at the glycerol tail. This interaction is very pH dependent, and the formation of several species is possible (see picture). Sialic acid residues in glycoproteins are recognized by PBA through boronate ester formation at the glycerol side chain.
AbstractList A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17 O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐ O ‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy.
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the α‐hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its α‐hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2‐hydroxy group. To mimic this the 2‐α‐O‐methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable‐complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five‐membered 2‐boron‐1,3‐dioxalate. In addition, a relatively small amount of the C7–C9 six‐membered complex was observed. Molecular modeling studies confirm that the C8–C9 boronate complex has the lowest energy. A potential targeting moiety in artificial sugar receptors, phenylboronic acid (PBA), can bind sialic acid in two different modes: at the α‐hydroxycarboxylate function or at the glycerol tail. This interaction is very pH dependent, and the formation of several species is possible (see picture). Sialic acid residues in glycoproteins are recognized by PBA through boronate ester formation at the glycerol side chain.
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.
Author Djanashvili, Kristina
Frullano, Luca
Peters, Joop A.
Author_xml – sequence: 1
  givenname: Kristina
  surname: Djanashvili
  fullname: Djanashvili, Kristina
  organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289
– sequence: 2
  givenname: Luca
  surname: Frullano
  fullname: Frullano, Luca
  organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289
– sequence: 3
  givenname: Joop A.
  surname: Peters
  fullname: Peters, Joop A.
  email: j.a.peters@tnw.tudelft.nl
  organization: Laboratory for Applied Organic Chemistry and Catalysis, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, Fax: (+31) 15-278-4289
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15838860$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtvEzEYRS1URNPHtks0K3YT7PFrvCxRSCs1pdBWlbqxbM831OCMgz0jyL_vRCkRQkKs7uacK917hA662AFCZwRPCcbVe_cEq2mFMcOEUv4KTQivSEml4AdoghWTpeBUHaKjnL9hjJWg9A06JLymdS3wBH1YxgBuCCYVX8DFr53vfeyK2Ba33gTvinPnm2LeNcUixWGdC7spbp6g2wQbU-xMD_kEvW5NyHD6ksfo_uP8bnZRXn1aXM7Or0rHmORlIypKamJri6FtpYVKNYJixhspGmdaWRMjOJPEsrqyoEirqKHgjMWj2Vb0GL3b9a5T_DFA7vXKZwchmA7ikLWQinFaqRF8-wIOdgWNXie_Mmmjf68eAbYDXIo5J2i1873ZDu-T8UETrLfn6u25en_uqE3_0vbN_xLUTvjpA2z-Q-vZxXz5p1vuXJ97-LV3Tfo-DqWS64frhV6y68cbjJf6M30GlNGarg
CitedBy_id crossref_primary_10_1039_D0RA02793F
crossref_primary_10_1002_cmmi_141
crossref_primary_10_1002_chem_201904442
crossref_primary_10_1002_smll_201402038
crossref_primary_10_1002_mabi_202000341
crossref_primary_10_1016_j_chroma_2009_05_084
crossref_primary_10_1039_D1BM00185J
crossref_primary_10_1016_j_biomaterials_2025_123500
crossref_primary_10_1126_sciadv_adu1326
crossref_primary_10_1002_cbic_202400402
crossref_primary_10_1007_s00604_019_3480_z
crossref_primary_10_1002_ange_201005161
crossref_primary_10_1186_s12951_024_02433_4
crossref_primary_10_1039_C5CC01662B
crossref_primary_10_1163_016942410X525812
crossref_primary_10_3390_molecules26061730
crossref_primary_10_1039_C9RA07608E
crossref_primary_10_1016_j_bmc_2005_09_028
crossref_primary_10_1016_j_chroma_2008_10_039
crossref_primary_10_1002_marc_202300029
crossref_primary_10_1007_s00604_015_1736_9
crossref_primary_10_1016_j_biomaterials_2014_03_029
crossref_primary_10_1002_chem_201402627
crossref_primary_10_1002_mabi_201000295
crossref_primary_10_3390_molecules24081477
crossref_primary_10_1002_jbm_a_31880
crossref_primary_10_1016_j_bioadv_2023_213700
crossref_primary_10_48130_BPR_2023_0014
crossref_primary_10_1002_anie_201207131
crossref_primary_10_1007_s00604_019_3387_8
crossref_primary_10_1002_anie_201005161
crossref_primary_10_3390_biomedicines9101459
crossref_primary_10_1002_ejoc_200700295
crossref_primary_10_1016_j_biomaterials_2015_10_022
crossref_primary_10_1021_ic902461g
crossref_primary_10_1002_adma_202400582
crossref_primary_10_1134_S0965545X12010026
crossref_primary_10_1002_ejoc_201000186
crossref_primary_10_1016_j_jcis_2022_07_027
crossref_primary_10_1016_j_talanta_2019_01_074
crossref_primary_10_1016_j_jelechem_2018_11_011
crossref_primary_10_1039_C5AN02402A
crossref_primary_10_1002_adfm_201500587
crossref_primary_10_1021_ja902964m
crossref_primary_10_1002_ange_201207131
crossref_primary_10_1016_j_bios_2017_02_043
crossref_primary_10_1038_pj_2014_42
crossref_primary_10_1002_cmmi_123
crossref_primary_10_1002_adhm_202200242
crossref_primary_10_3390_polym9070249
crossref_primary_10_1021_jacs_5b08482
crossref_primary_10_1002_ejoc_200700264
crossref_primary_10_1007_s10719_015_9591_9
crossref_primary_10_1021_ja406406h
crossref_primary_10_1038_aps_2017_16
crossref_primary_10_1016_j_proeng_2010_09_261
crossref_primary_10_1002_chem_200700677
crossref_primary_10_1016_j_bios_2016_05_083
crossref_primary_10_1016_j_snb_2020_129259
crossref_primary_10_1039_D4CC06730D
crossref_primary_10_1016_j_jconrel_2016_10_029
crossref_primary_10_1039_b900836p
crossref_primary_10_2217_nnm_14_213
crossref_primary_10_1021_jo061901e
crossref_primary_10_3390_pharmaceutics15071928
crossref_primary_10_1080_14756366_2017_1384823
crossref_primary_10_1002_chem_202201033
crossref_primary_10_1002_anie_201001220
crossref_primary_10_1016_j_snb_2019_127074
crossref_primary_10_1002_adfm_201702126
crossref_primary_10_1021_ma8012674
crossref_primary_10_1002_open_201800071
crossref_primary_10_1016_j_jconrel_2022_01_041
crossref_primary_10_1002_adom_201800680
crossref_primary_10_1080_07391102_2019_1596839
crossref_primary_10_1016_j_talanta_2019_120579
crossref_primary_10_1246_cl_210229
crossref_primary_10_1021_ja401000m
crossref_primary_10_1016_j_ccr_2023_215254
crossref_primary_10_1016_j_matlet_2018_05_002
crossref_primary_10_1002_ange_201001220
crossref_primary_10_1016_j_ccr_2014_01_016
crossref_primary_10_1016_j_eurpolymj_2020_109888
crossref_primary_10_1002_adfm_201502420
crossref_primary_10_1021_ja210719s
crossref_primary_10_1016_j_bios_2016_10_100
crossref_primary_10_1016_j_aca_2018_04_072
crossref_primary_10_3390_molecules27238297
crossref_primary_10_1039_c2cc17384k
crossref_primary_10_1016_j_ijbiomac_2023_127254
crossref_primary_10_4155_fmc_09_157
crossref_primary_10_3390_molecules23020479
crossref_primary_10_1002_advs_201801423
Cites_doi 10.1007/3-540-45010-6_6
10.1039/dt9900002137
10.1021/jo01370a013
10.1002/recl.19110301103
10.1002/recl.19710900309
10.1002/chem.200400369
10.1007/3-540-45733-X_5
10.1016/S0040-4020(01)91300-6
10.1135/cccc20041282
10.1021/cr980440x
10.1002/cber.19821150603
10.1016/0968-0004(85)90112-4
10.1002/cber.19660990235
10.1021/ja984228m
10.1002/chem.200204632
10.1016/S0040-4039(98)00514-0
10.1023/A:1011062223612
10.1006/abio.1999.4105
10.1016/S0040-4020(98)00057-X
10.1002/1097-0290(20010205)72:3<307::AID-BIT7>3.0.CO;2-E
10.1021/ja021303r
10.1016/0022-328X(92)83330-K
ContentType Journal Article
Copyright Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/chem.200401335
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 4018
ExternalDocumentID 15838860
10_1002_chem_200401335
CHEM200401335
ark_67375_WNG_M4NZP00M_Q
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
TWZ
UB1
UPT
UQL
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
YZZ
ZZTAW
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGC
RWI
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
ID FETCH-LOGICAL-c4475-d623181b8b0eff7be29d63045d76dcaf781a65471b482be91f93a3ecab0623f23
IEDL.DBID DRFUL
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000230071100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
IngestDate Thu Jul 10 23:52:22 EDT 2025
Wed Feb 19 01:41:35 EST 2025
Tue Nov 18 22:29:32 EST 2025
Sat Nov 29 07:16:50 EST 2025
Wed Jan 22 16:25:43 EST 2025
Sun Sep 21 06:18:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4475-d623181b8b0eff7be29d63045d76dcaf781a65471b482be91f93a3ecab0623f23
Notes istex:25E394EE4E47BE5CCCAC27EA3B4AB317ECFF9986
ArticleID:CHEM200401335
ark:/67375/WNG-M4NZP00M-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15838860
PQID 67945329
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_67945329
pubmed_primary_15838860
crossref_citationtrail_10_1002_chem_200401335
crossref_primary_10_1002_chem_200401335
wiley_primary_10_1002_chem_200401335_CHEM200401335
istex_primary_ark_67375_WNG_M4NZP00M_Q
PublicationCentury 2000
PublicationDate June 20, 2005
PublicationDateYYYYMMDD 2005-06-20
PublicationDate_xml – month: 06
  year: 2005
  text: June 20, 2005
  day: 20
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry - A European Journal
PublicationYear 2005
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References W. Chai, C. T. Yuen, T. Feizi, A. M. Lawson, Anal. Biochem. 1999, 270, 314-322.
F. R. Venema, J. A. Peters, H. van Bekkum, J. Chem. Soc. Dalton Trans. 1990, 7, 2137-2143.
H. G. Kuivila, A. H. Keough, E. J. Soboczenski, J. Org. Chem. 1954, 19, 780-783.
M. Yamamoto, M. Takeuchi, S. Shinkai, Tetrahedron 1998, 54, 3125.
S. Patterson, B. D. Smith, R. E. Taylor, Tetrahedron Lett. 1998, 39, 3111-3114.
A. van Veen, A. J. Hoefnagel, B. M. Wepster, Recl. Trav. Chim. Pays-Bas 1971, 90, 289-300.
T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159-200.
M. van Duin, J. A. Peters, A. P. G. Kieboom, H. van Bekkum, Tetrahedron 1984, 40, 2901-2911.
V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123-164.
H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, J. Am. Chem. Soc. 2003, 125, 3493-3502.
J. Böeseken, A. van Rossem, Recl. Trav. Chim. Pays-Bas Belg. 1912, 30, 392-406.
M. Biedrzycki, W. H. Scouten, Z. Biedrzycka, J. Organomet. Chem. 1992, 431, 255-270.
E. Uchimura, H. Otsuka, T. Okano, Y. Sakurai, K. Kataoka, Biotechnol. Bioeng. 2001, 72, 307-314.
L. Frullano, J. Rohovec, S. Aime, T. Maschmeyer, M. I. Prata, J. J. Pedroso de Lima, C. F. G. C. Geraldes, J. A. Peters, Chem. Eur. J. 2004, 10, 5205-5217.
R. Schauer, Trends Biochem. Sci. 1985, 10, 357-360.
G. A. Lemieux, K. J. Yarema, C. L. Jacobs, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 4278-4279.
P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352.
K. Oshima, H. Toi, Y. Aoyama, Carbohydr. Lett. 1995, 1, 223-230.
Y. Yang, P. T. Lewis, J. O. Escobedo, N. N. St. Luce, W. D. Treleaven, R. L. Cook, R. M. Strongin, Collect. Czech. Chem. Commun. 2004, 69, 1282-1291.
R. Schauer, Glycoconjugate J. 2000, 17, 485-499.
R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber. 1966, 99, 611-617.
B. Wrackmeyer, R. Köster, Chem. Ber. 1982, 115, 2022-2034.
J. Rohovec, T. Maschmeyer, S. Aime, J. A. Peters, Chem. Eur. J. 2003, 9, 2193-2199.
2004; 10
1984; 40
1998; 39
2001; 72
2000; 17
1999; 270
2004; 69
1992; 431
2002; 221
2003; 9
1999; 121
1954; 19
1999; 99
1982; 115
2002; 218
2003; 125
1995; 1
1998; 54
1985; 10
1966; 99
1971; 90
1990; 7
1912; 30
e_1_2_5_14_2
e_1_2_5_13_2
e_1_2_5_9_2
e_1_2_5_16_2
e_1_2_5_8_2
e_1_2_5_7_2
e_1_2_5_10_2
e_1_2_5_22_2
e_1_2_5_6_2
e_1_2_5_23_2
e_1_2_5_5_2
e_1_2_5_12_2
e_1_2_5_20_2
e_1_2_5_4_2
e_1_2_5_11_2
e_1_2_5_21_2
e_1_2_5_3_2
e_1_2_5_2_2
e_1_2_5_1_2
e_1_2_5_18_2
e_1_2_5_17_2
e_1_2_5_19_2
Oshima K. (e_1_2_5_15_2) 1995; 1
References_xml – reference: P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352.
– reference: E. Uchimura, H. Otsuka, T. Okano, Y. Sakurai, K. Kataoka, Biotechnol. Bioeng. 2001, 72, 307-314.
– reference: V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123-164.
– reference: S. Patterson, B. D. Smith, R. E. Taylor, Tetrahedron Lett. 1998, 39, 3111-3114.
– reference: F. R. Venema, J. A. Peters, H. van Bekkum, J. Chem. Soc. Dalton Trans. 1990, 7, 2137-2143.
– reference: G. A. Lemieux, K. J. Yarema, C. L. Jacobs, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 4278-4279.
– reference: Y. Yang, P. T. Lewis, J. O. Escobedo, N. N. St. Luce, W. D. Treleaven, R. L. Cook, R. M. Strongin, Collect. Czech. Chem. Commun. 2004, 69, 1282-1291.
– reference: A. van Veen, A. J. Hoefnagel, B. M. Wepster, Recl. Trav. Chim. Pays-Bas 1971, 90, 289-300.
– reference: J. Rohovec, T. Maschmeyer, S. Aime, J. A. Peters, Chem. Eur. J. 2003, 9, 2193-2199.
– reference: K. Oshima, H. Toi, Y. Aoyama, Carbohydr. Lett. 1995, 1, 223-230.
– reference: W. Chai, C. T. Yuen, T. Feizi, A. M. Lawson, Anal. Biochem. 1999, 270, 314-322.
– reference: M. Biedrzycki, W. H. Scouten, Z. Biedrzycka, J. Organomet. Chem. 1992, 431, 255-270.
– reference: R. Schauer, Trends Biochem. Sci. 1985, 10, 357-360.
– reference: R. Schauer, Glycoconjugate J. 2000, 17, 485-499.
– reference: M. Yamamoto, M. Takeuchi, S. Shinkai, Tetrahedron 1998, 54, 3125.
– reference: L. Frullano, J. Rohovec, S. Aime, T. Maschmeyer, M. I. Prata, J. J. Pedroso de Lima, C. F. G. C. Geraldes, J. A. Peters, Chem. Eur. J. 2004, 10, 5205-5217.
– reference: H. Otsuka, E. Uchimura, H. Koshino, T. Okano, K. Kataoka, J. Am. Chem. Soc. 2003, 125, 3493-3502.
– reference: J. Böeseken, A. van Rossem, Recl. Trav. Chim. Pays-Bas Belg. 1912, 30, 392-406.
– reference: H. G. Kuivila, A. H. Keough, E. J. Soboczenski, J. Org. Chem. 1954, 19, 780-783.
– reference: M. van Duin, J. A. Peters, A. P. G. Kieboom, H. van Bekkum, Tetrahedron 1984, 40, 2901-2911.
– reference: T. D. James, S. Shinkai, Top. Curr. Chem. 2002, 218, 159-200.
– reference: B. Wrackmeyer, R. Köster, Chem. Ber. 1982, 115, 2022-2034.
– reference: R. Kuhn, P. Lutz, D. L. MacDonald, Chem. Ber. 1966, 99, 611-617.
– volume: 121
  start-page: 4278
  year: 1999
  end-page: 4279
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 780
  year: 1954
  end-page: 783
  publication-title: J. Org. Chem.
– volume: 54
  start-page: 3125
  year: 1998
  publication-title: Tetrahedron
– volume: 69
  start-page: 1282
  year: 2004
  end-page: 1291
  publication-title: Collect. Czech. Chem. Commun.
– volume: 125
  start-page: 3493
  year: 2003
  end-page: 3502
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 3111
  year: 1998
  end-page: 3114
  publication-title: Tetrahedron Lett.
– volume: 218
  start-page: 159
  year: 2002
  end-page: 200
  publication-title: Top. Curr. Chem.
– volume: 115
  start-page: 2022
  year: 1982
  end-page: 2034
  publication-title: Chem. Ber.
– volume: 17
  start-page: 485
  year: 2000
  end-page: 499
  publication-title: Glycoconjugate J.
– volume: 1
  start-page: 223
  year: 1995
  end-page: 230
  publication-title: Carbohydr. Lett.
– volume: 7
  start-page: 2137
  year: 1990
  end-page: 2143
  publication-title: J. Chem. Soc. Dalton Trans.
– volume: 10
  start-page: 357
  year: 1985
  end-page: 360
  publication-title: Trends Biochem. Sci.
– volume: 99
  start-page: 611
  year: 1966
  end-page: 617
  publication-title: Chem. Ber.
– volume: 72
  start-page: 307
  year: 2001
  end-page: 314
  publication-title: Biotechnol. Bioeng.
– volume: 10
  start-page: 5205
  year: 2004
  end-page: 5217
  publication-title: Chem. Eur. J.
– volume: 40
  start-page: 2901
  year: 1984
  end-page: 2911
  publication-title: Tetrahedron
– volume: 99
  start-page: 2293
  year: 1999
  end-page: 2352
  publication-title: Chem. Rev.
– volume: 30
  start-page: 392
  year: 1912
  end-page: 406
  publication-title: Recl. Trav. Chim. Pays‐Bas Belg.
– volume: 221
  start-page: 123
  year: 2002
  end-page: 164
  publication-title: Top. Curr. Chem.
– volume: 270
  start-page: 314
  year: 1999
  end-page: 322
  publication-title: Anal. Biochem.
– volume: 431
  start-page: 255
  year: 1992
  end-page: 270
  publication-title: J. Organomet. Chem.
– volume: 9
  start-page: 2193
  year: 2003
  end-page: 2199
  publication-title: Chem. Eur. J.
– volume: 90
  start-page: 289
  year: 1971
  end-page: 300
  publication-title: Recl. Trav. Chim. Pays‐Bas
– ident: e_1_2_5_8_2
  doi: 10.1007/3-540-45010-6_6
– ident: e_1_2_5_13_2
  doi: 10.1039/dt9900002137
– ident: e_1_2_5_6_2
  doi: 10.1021/jo01370a013
– ident: e_1_2_5_5_2
  doi: 10.1002/recl.19110301103
– ident: e_1_2_5_23_2
  doi: 10.1002/recl.19710900309
– ident: e_1_2_5_21_2
  doi: 10.1002/chem.200400369
– ident: e_1_2_5_2_2
  doi: 10.1007/3-540-45733-X_5
– ident: e_1_2_5_7_2
  doi: 10.1016/S0040-4020(01)91300-6
– ident: e_1_2_5_17_2
  doi: 10.1135/cccc20041282
– ident: e_1_2_5_1_2
  doi: 10.1021/cr980440x
– ident: e_1_2_5_14_2
  doi: 10.1002/cber.19821150603
– ident: e_1_2_5_20_2
  doi: 10.1016/0968-0004(85)90112-4
– ident: e_1_2_5_22_2
  doi: 10.1002/cber.19660990235
– ident: e_1_2_5_4_2
  doi: 10.1021/ja984228m
– ident: e_1_2_5_19_2
  doi: 10.1002/chem.200204632
– ident: e_1_2_5_10_2
  doi: 10.1016/S0040-4039(98)00514-0
– ident: e_1_2_5_3_2
  doi: 10.1023/A:1011062223612
– ident: e_1_2_5_16_2
  doi: 10.1006/abio.1999.4105
– ident: e_1_2_5_9_2
  doi: 10.1016/S0040-4020(98)00057-X
– ident: e_1_2_5_11_2
  doi: 10.1002/1097-0290(20010205)72:3<307::AID-BIT7>3.0.CO;2-E
– ident: e_1_2_5_12_2
  doi: 10.1021/ja021303r
– volume: 1
  start-page: 223
  year: 1995
  ident: e_1_2_5_15_2
  publication-title: Carbohydr. Lett.
– ident: e_1_2_5_18_2
  doi: 10.1016/0022-328X(92)83330-K
SSID ssj0009633
Score 2.2044353
Snippet A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be...
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4010
SubjectTerms borates
Boronic Acids - chemistry
Butyrates - chemistry
carbohydrates
Esters - chemistry
glycoproteins
Hydrogen-Ion Concentration
Magnetic Resonance Spectroscopy
molecular recognition
Molecular Structure
N-Acetylneuraminic Acid - chemistry
sialic acids
Title Molecular Recognition of Sialic Acid End Groups by Phenylboronates
URI https://api.istex.fr/ark:/67375/WNG-M4NZP00M-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.200401335
https://www.ncbi.nlm.nih.gov/pubmed/15838860
https://www.proquest.com/docview/67945329
Volume 11
WOSCitedRecordID wos000230071100024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB61CRJcoC2PLtDiQwWnVR3vrtc-ltLAoYnSQiHiYtleW0StNihpEf33ePYVIhUhwXGlsdeeGdtjj_19AAeZYE4b7mMuZBGnadjuCJ-xsEvh1lKdJK66Tfj5NB-PxXQqJ7-94q_xIboDNxwZ1XyNA1yb5eEKNDT0qXpJjhuEJNuEPgvOm_Wg_-58eHG6At7lDZ18mscIw9oCN1J2uF7D2sLURx3_vCvqXA9iq1Vo-Oj_278FD5sIlBzVLrMNG67cgfvHLfHbY3g7ailzyXl7vWhekrknH4Ozziw5srOCnJQFqQ6ulsTcksk3V95eGYRDwOD1CVwMTz4df4gbqoXYIuJfXIQoKKz1RhjqvM-NY7LgmEQtcl5Y7XMx0EhTPDCpYMbJgZeJTpzVhoaSniVPoVfOS7cLRHCk_-XBzsynVuamEMxKKywNM2noaQRxq2dlGxxypMO4UjWCMlOoGdVpJoI3nfz3GoHjj5KvK7N1YnpxiffW8kx9Gb9Xo3T8dULpSJ1F8Kq1qwq6xRSJLt38ZhmkZZolTEbwrDb36peYXxacRsAqq_6lLQoRLbqv5_9S6AU8qHBiKQ9T2UvoXS9u3B7csz-uZ8vFPmzmU7HfePsvfqb7ag
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9tK9J4YeM7DJgfEDxFc53EsR_3VYZoozI2mPZixY4tKqoUtRva_vv58lVVAiGhPUY6J_Hd2T6fz78fwLtEMJtr7kIuZBHGsd_uCJcwv0vhxtA8imxVTfhtmGaZuLiQ46aaEO_C1PgQXcINR0Y1X-MAx4T03hI11HequkqOO4QoWYde7H3JO3nv6HRwPlwi7_KGTz5OQ8RhbZEbKdtbfcPKytRDJd_8KexcjWKrZWiwdQ8d2IZHTQxK9muneQxrtnwCm4ct9dtTOBi1pLnktC0wmpVk5shX764TQ_bNpCDHZUGq1NWC6Fsy_mHL26lGQAQMX5_B-eD47PAkbMgWQoOYf2Hh4yC_2muhqXUu1ZbJguMxapHywuQuFf0ciYr7OhZMW9l3Msoja3JNfUvHouewUc5K-xKI4EgAzL2lmYuNTHUhmJFGGOrnUt_TAMJW0co0SORIiDFVNYYyU6gZ1WkmgA-d_K8ag-Ovku8ru3Vi-fwnVq6lifqefVSjOLscUzpSXwLYbQ2rvG7xkCQv7ex64aVlnERMBvCitvfyk3jCLDgNgFVm_ce_KMS06J5e_U-jXdg8ORsN1fBT9nkHHlaosZT7ie01bFzNr-0beGB-X00W87eN098Brzn-cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Recognition+of+Sialic+Acid+End+Groups+by+Phenylboronates&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Djanashvili%2C+Kristina&rft.au=Frullano%2C+Luca&rft.au=Peters%2C+Joop+A.&rft.date=2005-06-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=11&rft.issue=13&rft.spage=4010&rft.epage=4018&rft_id=info:doi/10.1002%2Fchem.200401335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_200401335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon