High‐Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC‐SIGN and Langerin

The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal Jg. 30; H. 2; S. e202303041 - n/a
Hauptverfasser: Herrera‐González, Irene, González‐Cuesta, Manuel, Thépaut, Michel, Laigre, Eugénie, Goyard, David, Rojo, Javier, García Fernández, José M., Fieschi, Franck, Renaudet, Olivier, Nieto, Pedro M., Ortiz Mellet, Carmen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 08.01.2024
Wiley-VCH Verlag
Schlagworte:
ISSN:0947-6539, 1521-3765, 1521-3765
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The “carbohydrate chemical mimicry” of sp2‐iminosugars enables the synthesis of high‐mannose‐type oligosaccharide analogs whose solution and lectin bound conformations match those of the natural partners. Upon multivalent presentation, enhanced affinities towards ConA, DC‐SIGN and langerin are achieved, with distinct selectivity profiles.
AbstractList The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man 3 and Man 5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man 2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp 2 ‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
The "carbohydrate chemical mimicry" exhibited by sp -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man and Man . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The “carbohydrate chemical mimicry” of sp2‐iminosugars enables the synthesis of high‐mannose‐type oligosaccharide analogs whose solution and lectin bound conformations match those of the natural partners. Upon multivalent presentation, enhanced affinities towards ConA, DC‐SIGN and langerin are achieved, with distinct selectivity profiles.
Abstract The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man 3 and Man 5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man 2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp 2 ‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Author Thépaut, Michel
García Fernández, José M.
Laigre, Eugénie
Nieto, Pedro M.
González‐Cuesta, Manuel
Rojo, Javier
Fieschi, Franck
Herrera‐González, Irene
Renaudet, Olivier
Goyard, David
Ortiz Mellet, Carmen
Author_xml – sequence: 1
  givenname: Irene
  orcidid: 0000-0003-0575-3928
  surname: Herrera‐González
  fullname: Herrera‐González, Irene
  organization: Université Grenoble Alpes, CNRS
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0003-2778-9489
  surname: González‐Cuesta
  fullname: González‐Cuesta, Manuel
  organization: University of Seville
– sequence: 3
  givenname: Michel
  orcidid: 0000-0003-4792-8271
  surname: Thépaut
  fullname: Thépaut, Michel
  organization: Université Grenoble Alpes, CNRS, CEA
– sequence: 4
  givenname: Eugénie
  orcidid: 0000-0002-2004-8461
  surname: Laigre
  fullname: Laigre, Eugénie
  organization: Université Grenoble Alpes, CNRS
– sequence: 5
  givenname: David
  orcidid: 0000-0002-6410-0866
  surname: Goyard
  fullname: Goyard, David
  organization: Université Grenoble Alpes, CNRS
– sequence: 6
  givenname: Javier
  orcidid: 0000-0003-3173-3437
  surname: Rojo
  fullname: Rojo, Javier
  organization: CSIC – Universidad de Sevilla
– sequence: 7
  givenname: José M.
  orcidid: 0000-0002-6827-0387
  surname: García Fernández
  fullname: García Fernández, José M.
  organization: CSIC – Universidad de Sevilla
– sequence: 8
  givenname: Franck
  orcidid: 0000-0003-1194-8107
  surname: Fieschi
  fullname: Fieschi, Franck
  organization: Institut Universitaire de France (IUF)
– sequence: 9
  givenname: Olivier
  orcidid: 0000-0003-4963-3848
  surname: Renaudet
  fullname: Renaudet, Olivier
  organization: Université Grenoble Alpes, CNRS
– sequence: 10
  givenname: Pedro M.
  orcidid: 0000-0002-4074-9011
  surname: Nieto
  fullname: Nieto, Pedro M.
  email: pedro.nieto@iiq.csic.es
  organization: CSIC – Universidad de Sevilla
– sequence: 11
  givenname: Carmen
  orcidid: 0000-0002-7676-7721
  surname: Ortiz Mellet
  fullname: Ortiz Mellet, Carmen
  email: mellet@us.es
  organization: University of Seville
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37828571$$D View this record in MEDLINE/PubMed
https://hal.univ-grenoble-alpes.fr/hal-04294809$$DView record in HAL
BookMark eNqFkc1u1DAUhS1URKeFLUsUiQ1IZLAdJ46XQyhNpRkq8bO2bhxnxlViD7FT1B1bdjwjT4Jnpi1SJYQsy9L1d8699jlBR9ZZjdBzgucEY_pWbfQwp5hmOMOMPEIzklOSZrzIj9AMC8bTIs_EMTrx_gpjLIose4KOM17SMudkhn7WZr35_ePXCqx1XieXvVk7D0ptYDStTmo9mLh0MMonYQMh-aQVbE2Yegg6VnRSOdu5cYBgnE3Atsk7Y1tj18nKRYPgdoACC9fQG5ss3iTvq9jw88X5xz29BLvWo7FP0eMOeq-f3Z6n6OuHsy9VnS4vzy-qxTJVjHGS8g53pRAK8lxjzrOiLBvdxU1Uq4F3nLUsx9CwsqAt6WjDCAgOTRdvRdtk2Sl6ffDdQC-3oxlgvJEOjKwXS7mrYUYFK7G4JpF9dWC3o_s2aR_kYLzSfQ9Wu8lLWsYJSi6YiOjLB-iVm0YbXyKpIKRglO2pF7fU1Ay6ve9_F0gE2AFQo_N-1J1UJuy_Noxgekmw3OUud7nL-9yjbP5Aduf8T4E4CL6bXt_8h5ZVfbb6q_0DqhHBjA
CitedBy_id crossref_primary_10_3762_bjoc_21_57
Cites_doi 10.1002/cplu.201600569
10.1002/chem.201903391
10.1002/chem.202101674
10.1002/chem.201405481
10.1046/j.1432-1327.1998.2580372.x
10.1002/anie.200502794
10.1039/C7TB00860K
10.1080/14756366.2022.2073444
10.1002/cbic.200800361
10.1126/science.1059820
10.1039/D2CS00736C
10.1021/jacs.1c10504
10.7717/peerj.3784
10.1021/bi00171a014
10.3390/ph13080179
10.1021/ja050934t
10.1039/D1MD00238D
10.1016/j.carres.2016.01.006
10.1016/S0092-8674(00)80694-7
10.1021/acschembio.7b00958
10.1021/acscentsci.2c01136
10.1007/s11030-010-9285-y
10.1021/acs.orglett.6b01899
10.1002/chem.201200279
10.3389/fimmu.2018.02754
10.1039/a705755e
10.1038/nm1541
10.1021/jacs.1c07235
10.1007/s10719-019-09865-3
10.1007/s10822-013-9644-8
10.1002/ejoc.200500071
10.1039/D0CC01135E
10.1021/jacs.1c06778
10.1038/s41577-018-0004-8
10.1016/j.bbagen.2015.04.004
10.1039/C4CC09709B
10.1002/cbic.201000323
10.1016/S0021-9258(18)50033-8
10.1016/0008-6215(93)87005-D
10.1007/s00418-016-1523-7
10.1021/cr500303t
10.1039/C7OB02286G
10.3390/v9030059
10.1074/jbc.M109.021204
10.1016/S0021-9258(18)88862-7
10.1021/acschembio.8b00875
10.1016/j.ejmech.2023.115390
10.3762/bjoc.6.90
10.1002/ejoc.202200113
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
10.1371/journal.pone.0076411
10.1021/acs.jmedchem.9b00153
10.1074/jbc.M609689200
10.1039/b920048g
10.1021/jo201797b
10.1002/anie.201701943
10.1039/C9SC06334J
10.1039/c2cs35424a
10.1021/ja00172a038
10.1039/c1ob05234a
10.1126/science.1066371
10.1021/jo015639f
10.1021/jo051503w
10.1016/j.jmb.2010.11.039
10.1021/acs.jmedchem.2c01948
10.1002/cbic.201000167
10.1021/ja3053305
10.1002/chem.201804505
10.1038/s42004-022-00679-3
10.1039/c0cc00446d
10.1007/s00249-011-0749-5
10.1021/acs.jmedchem.0c00908
10.1039/c1ob05573a
10.1002/jcc.540151111
10.1021/ja072944v
10.1093/protein/gzr016
10.1039/C2CS35219B
10.1002/jcc.540090409
10.1002/anie.200390233
10.1016/j.colsurfb.2017.09.035
10.2174/0929867328666210705143102
10.1016/j.carres.2007.08.015
10.1016/S1074-7613(02)00259-5
10.1021/ja411582t
10.1021/ja511529x
10.1002/anie.201505147
10.1002/1439-7633(20011001)2:10<777::AID-CBIC777>3.0.CO;2-C
10.1111/pim.12951
10.1002/anie.200351947
10.3390/ijms21155290
10.1093/glycob/8.2.173
10.1038/nsmb784
10.3390/nano10122517
10.1111/j.1749-6632.1974.tb53040.x
10.1093/glycob/9.6.539
10.1002/jcc.540120908
10.1006/jmre.1997.1110
10.1016/j.jmr.2006.06.009
10.1039/D1OB01150B
10.1002/cmdc.200700047
10.1016/j.bioorg.2022.106279
10.1021/cr000418f
10.1039/c2cc30773a
10.1039/D0OB00781A
10.1016/S1074-7613(02)00447-8
10.1038/s41467-022-31840-0
10.1039/C6OB00083E
10.1002/cbic.202000238
10.1002/jcc.21334
10.1016/j.carres.2003.11.013
10.1080/07328303.2011.590260
10.1021/acscentsci.9b00093
10.1039/D2CC00121G
10.1021/cb900216e
10.1039/D2CC04478A
10.1039/C5PY01283J
10.1021/jo034673m
10.1039/D0SC01744B
ContentType Journal Article
Copyright 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
– notice: 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
VOOES
DOI 10.1002/chem.202303041
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID oai:HAL:hal-04294809v1
37828571
10_1002_chem_202303041
CHEM202303041
Genre article
Journal Article
GrantInformation_xml – fundername: H2020 Marie Skłodowska-Curie Actions
  funderid: COST action GLYCONanoPROBES (CM18132)
– fundername: French Infrastructure for Integrated Structural Biology
  funderid: ANR-10-INBS-05-02
– fundername: Agence Nationale de la Recherche
  funderid: ANR-15-IDEX-02; PRCI LectArray 19-CE18-0019-01
– fundername: HORIZON EUROPE Marie Sklodowska-Curie Actions
  funderid: 101130235 - Bicyclos
– fundername: Ministerio de Universidades
  funderid: FPU17/03147
– fundername: Universidad de Sevilla
  funderid: Contrato de Acceso al Sistema Español de Ciencia y Tecnologia
– fundername: Junta de Andalucía
  funderid: US-1380698; P20_00515
– fundername: European Research Council
  funderid: Consolidator Grant "LEGO" (647938)
– fundername: Agencia Estatal de Investigación
  funderid: PID2019-105858RB-I00; PID2022-141034OB-C21; PID2021-124247OB-C21; PID2021-125094NB-I00; PID2020-118403GB-I00
– fundername: European Research Council
  grantid: Consolidator Grant "LEGO" (647938)
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGC
RWI
WRC
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
VOOES
ID FETCH-LOGICAL-c4471-7f0f899ca55e0773688bef8be1cdea7f74d450ab4862d1f2b41a97abfdea9db33
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101820100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Tue Oct 14 20:53:11 EDT 2025
Fri Jul 11 08:45:03 EDT 2025
Tue Oct 07 07:04:25 EDT 2025
Wed Feb 19 02:08:35 EST 2025
Tue Nov 18 21:16:25 EST 2025
Sat Nov 29 07:20:48 EST 2025
Sun Jul 06 04:45:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords carbohydrates
glycomimetics
multivalency
lectins
high-mannose oligosaccharides
Language English
License Attribution
2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4471-7f0f899ca55e0773688bef8be1cdea7f74d450ab4862d1f2b41a97abfdea9db33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4963-3848
0000-0002-4074-9011
0000-0003-2778-9489
0000-0002-2004-8461
0000-0003-3173-3437
0000-0003-4792-8271
0000-0002-7676-7721
0000-0002-6410-0866
0000-0003-0575-3928
0000-0002-6827-0387
0000-0003-1194-8107
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303041
PMID 37828571
PQID 2911642449
PQPubID 986340
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_04294809v1
proquest_miscellaneous_2877387949
proquest_journals_2911642449
pubmed_primary_37828571
crossref_citationtrail_10_1002_chem_202303041
crossref_primary_10_1002_chem_202303041
wiley_primary_10_1002_chem_202303041_CHEM202303041
PublicationCentury 2000
PublicationDate January 8, 2024
PublicationDateYYYYMMDD 2024-01-08
PublicationDate_xml – month: 01
  year: 2024
  text: January 8, 2024
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2002; 16
2010; 11
2002; 17
2017; 82
2016; 429
1991; 12
2007; 342
2012; 18
2020; 13
2020; 11
2020; 10
2013; 8
2014; 136
2022; 29
2020; 18
2018; 9
2011; 405
2023; 66
2015; 137
2019; 25
2017; 160
2022; 37
2008; 22
2005; 70
2007; 2
2004; 339
2010; 5
2003; 42
2010; 6
2010; 8
2023; 52
2010; 31
2019; 5
2007; 282
2015; 51
1992; 267
2015; 54
2019; 36
2015; 1850
1997
2021; 143
1998; 259
2016; 18
1985; 260
2007; 13
2016; 14
2020; 429
2011; 9
2018; 18
1993; 238
2023; 45
2010; 46
2006; 45
2015; 115
2022; 5
2005; 127
2017; 56
2022; 13
1974; 234
1994; 15
2000; 100
2020; 21
2012; 48
2006; 182
1990; 112
2017; 147
2018; 13
1998; 8
2017; 5
2022; 131
2021; 27
2013; 27
2020; 63
2020; 56
2011; 15
2017; 9
2001; 294
2001; 291
2002; 102
2020; 9
1994; 33
2011; 24
2009; 284
2007; 129
2015; 6
2013; 42
2011; 40
2011; 30
2001; 66
2012; 77
1999; 9
2022; 144
1998; 37
2004; 11
1997; 125
2021; 12
2023
2017; 15
2022
1988; 9
2005 2019; 62
2015; 21
2021; 19
2003; 68
2022; 58
2013; 135
2001; 2
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
Mnich M. E. (e_1_2_8_6_2) 2020; 11
e_1_2_8_132_1
e_1_2_8_5_2
e_1_2_8_117_1
e_1_2_8_41_2
e_1_2_8_87_2
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_109_2
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_120_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_72_2
e_1_2_8_29_2
Nagae M. (e_1_2_8_14_2) 2020; 429
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_2
e_1_2_8_37_2
e_1_2_8_79_2
e_1_2_8_90_2
e_1_2_8_94_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_129_1
e_1_2_8_102_1
e_1_2_8_71_2
e_1_2_8_125_1
e_1_2_8_28_2
e_1_2_8_47_1
e_1_2_8_24_2
e_1_2_8_89_2
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_3_2
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_115_2
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_62_2
e_1_2_8_134_1
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_13_1
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_51_2
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_1
Busold S. (e_1_2_8_7_2) 2020; 9
e_1_2_8_69_1
e_1_2_8_80_2
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_31_1
e_1_2_8_127_1
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_123_1
e_1_2_8_92_2
e_1_2_8_104_1
References_xml – volume: 6
  start-page: 7666
  year: 2015
  end-page: 7683
  publication-title: Polym. Chem.
– volume: 284
  start-page: 21229
  year: 2009
  end-page: 21240
  publication-title: J. Biol. Chem.
– volume: 182
  start-page: 173
  year: 2006
  end-page: 177
  publication-title: J. Magn. Reson.
– volume: 21
  start-page: 2999
  year: 2020
  end-page: 3025
  publication-title: ChemBioChem
– volume: 136
  start-page: 2008
  year: 2014
  end-page: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 429
  start-page: 113
  year: 2016
  end-page: 122
  publication-title: Carbohydr. Res.
– volume: 9
  start-page: 59
  year: 2017
  publication-title: Viruses
– volume: 56
  start-page: 7292
  year: 2017
  end-page: 7296
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 1849
  year: 2010
  end-page: 1860
  publication-title: Org. Biomol. Chem.
– volume: 46
  start-page: 5328
  year: 2010
  publication-title: Chem. Commun.
– volume: 27
  start-page: 221
  year: 2013
  end-page: 234
  publication-title: J. Comput. Aided Mol. Des.
– volume: 115
  start-page: 525
  year: 2015
  end-page: 561
  publication-title: Chem. Rev.
– volume: 13
  start-page: 600
  year: 2018
  end-page: 608
  publication-title: ACS Chem. Biol.
– volume: 9
  start-page: 2754
  year: 2018
  publication-title: Front. Immunol.
– volume: 112
  start-page: 6127
  year: 1990
  end-page: 6129
  publication-title: J. Am.Chem. Soc.
– volume: 18
  start-page: 374
  year: 2018
  end-page: 389
  publication-title: Nat. Rev. Immunol.
– volume: 1850
  start-page: 1457
  year: 2015
  end-page: 1465
  publication-title: Biochim. Biophys. Acta
– volume: 40
  start-page: 1357
  year: 2011
  end-page: 1369
  publication-title: Eur. Biophys. J.
– volume: 12
  start-page: 1985
  year: 2021
  end-page: 2000
  publication-title: RSC Med. Chem.
– volume: 42
  start-page: 4746
  year: 2013
  end-page: 4773
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 4518
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 4100
  year: 2015
  end-page: 4110
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 458
  year: 2011
  end-page: 468
  publication-title: J. Carbohydr. Chem.
– volume: 66
  start-page: 4768
  year: 2023
  end-page: 4783
  publication-title: J. Med. Chem.
– volume: 11
  start-page: 134
  year: 2020
  publication-title: Front. Cell. Infect. Microbiol.
– volume: 267
  start-page: 22907
  year: 1992
  end-page: 22911
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 2754
  year: 2020
  publication-title: Front. Immunol.
– volume: 25
  start-page: 3301
  year: 2019
  end-page: 3309
  publication-title: Chem. Eur. J.
– volume: 143
  start-page: 17465
  year: 2021
  end-page: 17478
  publication-title: J. Am. Chem. Soc.
– volume: 259
  start-page: 372
  year: 1998
  end-page: 386
  publication-title: Eur. J. Biochem.
– volume: 22
  start-page: 2225
  year: 2008
  end-page: 22257
  publication-title: ChemBioChem
– volume: 9
  start-page: 5778
  year: 2011
  end-page: 5786
  publication-title: Org. Biomol. Chem.
– volume: 10
  start-page: 2517
  year: 2020
  publication-title: Nanomaterials
– volume: 18
  start-page: 4763
  year: 2020
  end-page: 4772
  publication-title: Org. Biomol. Chem.
– volume: 18
  start-page: 8527
  year: 2012
  end-page: 8539
  publication-title: Chem. Eur. J.
– volume: 429
  start-page: 147
  year: 2020
  end-page: 176
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 45
  start-page: 2348
  year: 2006
  end-page: 2368
  publication-title: Angew. Chem. Int. Ed.
– volume: 339
  start-page: 967
  year: 2004
  end-page: 973
  publication-title: Carbohydr. Res.
– volume: 11
  start-page: 2453
  year: 2010
  end-page: 2464
  publication-title: ChemBioChem
– volume: 17
  start-page: 653
  year: 2002
  end-page: 664
  publication-title: Immunity
– volume: 102
  start-page: 555
  year: 2002
  end-page: 578
  publication-title: Chem. Rev.
– volume: 54
  start-page: 11696
  year: 2015
  end-page: 11700
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  year: 2013
  publication-title: PLoS ONE
– volume: 14
  start-page: 2873
  year: 2016
  end-page: 2882
  publication-title: Org. Biomol. Chem.
– volume: 143
  start-page: 18977
  year: 2021
  end-page: 18988
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 4054
  year: 2022
  publication-title: Nat. Commun.
– volume: 19
  start-page: 7013
  year: 2021
  end-page: 7023
  publication-title: Org. Biomol. Chem.
– volume: 5
  start-page: 301
  year: 2010
  end-page: 312
  publication-title: ACS Chem. Biol.
– volume: 15
  start-page: 1302
  year: 1994
  end-page: 1310
  publication-title: J. Comput. Chem.
– volume: 160
  start-page: 281
  year: 2017
  end-page: 288
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 129
  start-page: 12780
  year: 2007
  end-page: 12785
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1173
  year: 2022
  end-page: 1192
  publication-title: Curr. Med. Chem.
– volume: 131
  year: 2022
  publication-title: Bioorg. Chem.
– volume: 25
  start-page: 14659
  year: 2019
  end-page: 14668
  publication-title: Chem. Eur. J.
– volume: 77
  start-page: 1273
  year: 2012
  end-page: 1288
  publication-title: J. Org. Chem.
– volume: 27
  start-page: 12395
  year: 2021
  end-page: 12409
  publication-title: Chem Eur. J.
– volume: 42
  start-page: 864
  year: 2003
  end-page: 890
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 3816
  year: 2015
  end-page: 3819
  publication-title: Chem. Commun.
– volume: 100
  start-page: 587
  year: 2000
  end-page: 597
  publication-title: Cell
– volume: 147
  start-page: 223
  year: 2017
  end-page: 237
  publication-title: Histochem. Cell Biol.
– year: 2023
  publication-title: Eur. J. Med. Chem.
– volume: 21
  start-page: 5290
  year: 2020
  publication-title: Int. J. Mol. Sci.
– volume: 2
  start-page: 777
  year: 2001
  end-page: 783
  publication-title: ChemBioChem
– volume: 58
  start-page: 5136
  year: 2022
  end-page: 5139
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1110
  year: 1991
  end-page: 1117
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 343
  year: 1988
  end-page: 355
  publication-title: J. Comput. Chem.
– volume: 48
  start-page: 3733
  year: 2012
  end-page: 3735
  publication-title: Chem. Commun.
– volume: 5
  start-page: 808
  year: 2019
  end-page: 820
  publication-title: ACS Cent. Sci.
– volume: 56
  start-page: 5207
  year: 2020
  end-page: 5222
  publication-title: Chem. Commun.
– volume: 260
  start-page: 6882
  year: 1985
  end-page: 6887
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 6428
  year: 2017
  end-page: 6436
  publication-title: J. Mater. Chem. B
– volume: 37
  start-page: 2755
  year: 1998
  end-page: 2794
  publication-title: Angew. Chem. Int. Ed.
– volume: 405
  start-page: 1027
  year: 2011
  end-page: 1039
  publication-title: J. Mol. Biol.
– volume: 33
  start-page: 1149
  year: 1994
  end-page: 1156
  publication-title: Biochemistry.
– year: 2022
  publication-title: Eur. J. Org. Chem.
– volume: 11
  start-page: 591
  year: 2004
  end-page: 598
  publication-title: Nat. Struct. Mol. Biol.
– volume: 9
  start-page: 539
  year: 1999
  end-page: 545
  publication-title: Glycobiology
– volume: 11
  start-page: 3996
  year: 2020
  end-page: 4006
  publication-title: Chem. Sci.
– volume: 282
  start-page: 4202
  year: 2007
  end-page: 4209
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 135
  year: 2002
  end-page: 144
  publication-title: Immunity
– volume: 70
  start-page: 9809
  year: 2005
  end-page: 9813
  publication-title: J. Org. Chem.
– volume: 36
  start-page: 175
  year: 2019
  end-page: 183
  publication-title: Glycoconjugate J.
– volume: 11
  start-page: 5227
  year: 2020
  end-page: 5237
  publication-title: Chem. Sci.
– volume: 125
  start-page: 302
  year: 1997
  end-page: 324
  publication-title: J. Magn. Reson.
– volume: 82
  start-page: 390
  year: 2017
  end-page: 398
  publication-title: ChemPlusChem
– volume: 13
  start-page: 367
  year: 2007
  end-page: 371
  publication-title: Nat. Med.
– volume: 13
  start-page: 179
  year: 2020
  publication-title: Pharmaceuticals
– volume: 342
  start-page: 2628
  year: 2007
  end-page: 2634
  publication-title: Carbohydr.Res.
– volume: 15
  start-page: 347
  year: 2011
  end-page: 360
  publication-title: Mol. Divers.
– volume: 234
  start-page: 283
  year: 1974
  end-page: 296
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 2
  start-page: 1030
  year: 2007
  end-page: 1036
  publication-title: ChemMedChem
– volume: 6
  start-page: 801
  year: 2010
  end-page: 809
  publication-title: Beilstein J. Org. Chem.
– volume: 5
  year: 2017
  publication-title: PeerJ
– volume: 13
  start-page: 3229
  year: 2018
  end-page: 3235
  publication-title: ACS Chem. Biol.
– volume: 8
  start-page: 173
  year: 1998
  end-page: 181
  publication-title: Glycobiology
– start-page: 709
  year: 2023
  end-page: 718
  publication-title: ACS Cent. Sci.
– volume: 135
  start-page: 2518
  year: 2013
  end-page: 2529
  publication-title: J. Am. Chem. Soc.
– volume: 45
  year: 2023
  publication-title: Parasite Immunol.
– volume: 58
  start-page: 12086
  year: 2022
  end-page: 12089
  publication-title: Chem. Commun.
– volume: 238
  start-page: 49
  year: 1993
  end-page: 73
  publication-title: Carbohydr. Res.
– volume: 291
  start-page: 2357
  year: 2001
  end-page: 2364
  publication-title: Science
– volume: 127
  start-page: 7970
  year: 2005
  end-page: 7971
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 832
  year: 2022
  end-page: 844
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3890
  year: 2016
  end-page: 3893
  publication-title: Org. Lett.
– volume: 66
  start-page: 7604
  year: 2001
  end-page: 7614
  publication-title: J. Org. Chem.
– volume: 24
  start-page: 659
  year: 2011
  end-page: 669
  publication-title: Protein Eng. Des. Sel.
– volume: 63
  start-page: 8524
  year: 2020
  end-page: 8533
  publication-title: J. Med. Chem.
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 64
  year: 2022
  publication-title: Commun. Chem.
– volume: 9
  start-page: 3698
  year: 2011
  end-page: 3713
  publication-title: Org. Biomol. Chem.
– volume: 15
  start-page: 8877
  year: 2017
  end-page: 8882
  publication-title: Org Biomol Chem.
– volume: 37
  start-page: 1364
  year: 2022
  end-page: 1374
  publication-title: J. Enzyme Inhib. Med. Chem.
– volume: 42
  start-page: 3938
  year: 2003
  end-page: 3941
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 536
  year: 2023
  end-page: 572
  publication-title: Chem. Soc. Rev.
– volume: 62
  start-page: 2903 5832
  year: 2005 2019
  end-page: 2913 5843
  publication-title: Eur. J. Org. Chem. J. Med. Chem.
– volume: 294
  start-page: 2163
  year: 2001
  end-page: 2166
  publication-title: Science
– volume: 68
  start-page: 8890
  year: 2003
  end-page: 8901
  publication-title: J. Org. Chem.
– start-page: 1969
  year: 1997
  end-page: 1970
  publication-title: Chem. Commun.
– volume: 11
  start-page: 1430
  year: 2010
  end-page: 1442
  publication-title: ChemBioChem
– volume: 21
  start-page: 1978
  year: 2015
  end-page: 1991
  publication-title: Chem. Eur. J.
– ident: e_1_2_8_123_1
  doi: 10.1002/cplu.201600569
– ident: e_1_2_8_74_2
  doi: 10.1002/chem.201903391
– ident: e_1_2_8_132_1
  doi: 10.1002/chem.202101674
– ident: e_1_2_8_80_2
  doi: 10.1002/chem.201405481
– ident: e_1_2_8_103_1
  doi: 10.1046/j.1432-1327.1998.2580372.x
– ident: e_1_2_8_43_2
  doi: 10.1002/anie.200502794
– ident: e_1_2_8_88_2
  doi: 10.1039/C7TB00860K
– ident: e_1_2_8_54_2
  doi: 10.1080/14756366.2022.2073444
– ident: e_1_2_8_32_2
  doi: 10.1002/cbic.200800361
– ident: e_1_2_8_42_2
  doi: 10.1126/science.1059820
– ident: e_1_2_8_45_2
  doi: 10.1039/D2CS00736C
– ident: e_1_2_8_55_2
  doi: 10.1021/jacs.1c10504
– ident: e_1_2_8_105_2
  doi: 10.7717/peerj.3784
– ident: e_1_2_8_36_2
  doi: 10.1021/bi00171a014
– ident: e_1_2_8_40_1
– ident: e_1_2_8_116_2
  doi: 10.3390/ph13080179
– ident: e_1_2_8_83_2
  doi: 10.1021/ja050934t
– ident: e_1_2_8_69_1
– ident: e_1_2_8_10_1
– ident: e_1_2_8_66_1
– ident: e_1_2_8_12_2
  doi: 10.1039/D1MD00238D
– ident: e_1_2_8_94_1
  doi: 10.1016/j.carres.2016.01.006
– ident: e_1_2_8_97_1
– ident: e_1_2_8_18_2
  doi: 10.1016/S0092-8674(00)80694-7
– ident: e_1_2_8_73_2
  doi: 10.1021/acschembio.7b00958
– ident: e_1_2_8_77_2
  doi: 10.1021/acscentsci.2c01136
– ident: e_1_2_8_115_2
  doi: 10.1007/s11030-010-9285-y
– ident: e_1_2_8_61_2
  doi: 10.1021/acs.orglett.6b01899
– ident: e_1_2_8_63_2
  doi: 10.1002/chem.201200279
– ident: e_1_2_8_8_2
  doi: 10.3389/fimmu.2018.02754
– ident: e_1_2_8_48_2
  doi: 10.1039/a705755e
– ident: e_1_2_8_19_1
  doi: 10.1038/nm1541
– ident: e_1_2_8_22_2
  doi: 10.1021/jacs.1c07235
– ident: e_1_2_8_106_2
  doi: 10.1007/s10719-019-09865-3
– ident: e_1_2_8_137_1
  doi: 10.1007/s10822-013-9644-8
– ident: e_1_2_8_65_1
  doi: 10.1002/ejoc.200500071
– ident: e_1_2_8_90_2
  doi: 10.1039/D0CC01135E
– ident: e_1_2_8_81_2
  doi: 10.1021/jacs.1c06778
– ident: e_1_2_8_2_2
  doi: 10.1038/s41577-018-0004-8
– ident: e_1_2_8_15_2
  doi: 10.1016/j.bbagen.2015.04.004
– ident: e_1_2_8_72_2
  doi: 10.1039/C4CC09709B
– ident: e_1_2_8_50_2
  doi: 10.1002/cbic.201000323
– ident: e_1_2_8_37_2
  doi: 10.1016/S0021-9258(18)50033-8
– ident: e_1_2_8_99_1
  doi: 10.1016/0008-6215(93)87005-D
– ident: e_1_2_8_3_2
  doi: 10.1007/s00418-016-1523-7
– ident: e_1_2_8_44_2
  doi: 10.1021/cr500303t
– ident: e_1_2_8_127_1
  doi: 10.1039/C7OB02286G
– ident: e_1_2_8_114_1
– volume: 9
  start-page: 2754
  year: 2020
  ident: e_1_2_8_7_2
  publication-title: Front. Immunol.
– ident: e_1_2_8_9_2
  doi: 10.3390/v9030059
– ident: e_1_2_8_101_1
– ident: e_1_2_8_138_1
  doi: 10.1074/jbc.M109.021204
– ident: e_1_2_8_25_1
– ident: e_1_2_8_82_1
– ident: e_1_2_8_112_1
  doi: 10.1016/S0021-9258(18)88862-7
– ident: e_1_2_8_1_1
– ident: e_1_2_8_27_2
  doi: 10.1021/acschembio.8b00875
– ident: e_1_2_8_47_1
– ident: e_1_2_8_107_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_57_2
  doi: 10.1016/j.ejmech.2023.115390
– ident: e_1_2_8_96_1
  doi: 10.3762/bjoc.6.90
– ident: e_1_2_8_35_1
– ident: e_1_2_8_76_2
  doi: 10.1002/ejoc.202200113
– ident: e_1_2_8_41_2
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– ident: e_1_2_8_62_2
  doi: 10.1371/journal.pone.0076411
– ident: e_1_2_8_65_2
  doi: 10.1021/acs.jmedchem.9b00153
– ident: e_1_2_8_33_2
  doi: 10.1074/jbc.M609689200
– ident: e_1_2_8_84_2
  doi: 10.1039/b920048g
– ident: e_1_2_8_85_2
  doi: 10.1021/jo201797b
– ident: e_1_2_8_31_1
– ident: e_1_2_8_28_2
  doi: 10.1002/anie.201701943
– ident: e_1_2_8_59_2
  doi: 10.1039/C9SC06334J
– ident: e_1_2_8_67_2
  doi: 10.1039/c2cs35424a
– ident: e_1_2_8_134_1
  doi: 10.1021/ja00172a038
– ident: e_1_2_8_52_2
  doi: 10.1039/c1ob05234a
– ident: e_1_2_8_117_1
  doi: 10.1126/science.1066371
– ident: e_1_2_8_49_2
  doi: 10.1021/jo015639f
– ident: e_1_2_8_93_1
  doi: 10.1021/jo051503w
– ident: e_1_2_8_104_1
– ident: e_1_2_8_119_1
  doi: 10.1016/j.jmb.2010.11.039
– ident: e_1_2_8_58_2
  doi: 10.1021/acs.jmedchem.2c01948
– ident: e_1_2_8_109_2
  doi: 10.1002/cbic.201000167
– ident: e_1_2_8_71_2
  doi: 10.1021/ja3053305
– ident: e_1_2_8_89_2
  doi: 10.1002/chem.201804505
– ident: e_1_2_8_26_2
  doi: 10.1038/s42004-022-00679-3
– ident: e_1_2_8_64_2
  doi: 10.1039/c0cc00446d
– ident: e_1_2_8_131_1
  doi: 10.1007/s00249-011-0749-5
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_60_2
  doi: 10.1021/acs.jmedchem.0c00908
– ident: e_1_2_8_141_1
  doi: 10.1039/c1ob05573a
– ident: e_1_2_8_100_1
  doi: 10.1002/jcc.540151111
– ident: e_1_2_8_30_2
  doi: 10.1021/ja072944v
– ident: e_1_2_8_34_1
  doi: 10.1093/protein/gzr016
– ident: e_1_2_8_86_2
  doi: 10.1039/C2CS35219B
– ident: e_1_2_8_98_1
  doi: 10.1002/jcc.540090409
– ident: e_1_2_8_130_1
  doi: 10.1002/anie.200390233
– ident: e_1_2_8_111_1
  doi: 10.1016/j.colsurfb.2017.09.035
– ident: e_1_2_8_21_2
  doi: 10.2174/0929867328666210705143102
– ident: e_1_2_8_126_1
  doi: 10.1016/j.carres.2007.08.015
– ident: e_1_2_8_17_2
  doi: 10.1016/S1074-7613(02)00259-5
– ident: e_1_2_8_87_2
  doi: 10.1021/ja411582t
– ident: e_1_2_8_24_2
  doi: 10.1021/ja511529x
– ident: e_1_2_8_53_2
  doi: 10.1002/anie.201505147
– ident: e_1_2_8_124_1
  doi: 10.1002/1439-7633(20011001)2:10<777::AID-CBIC777>3.0.CO;2-C
– ident: e_1_2_8_20_1
– ident: e_1_2_8_5_2
  doi: 10.1111/pim.12951
– ident: e_1_2_8_56_1
– ident: e_1_2_8_128_1
  doi: 10.1002/anie.200351947
– ident: e_1_2_8_139_1
  doi: 10.3390/ijms21155290
– ident: e_1_2_8_113_1
  doi: 10.1093/glycob/8.2.173
– ident: e_1_2_8_118_1
  doi: 10.1038/nsmb784
– ident: e_1_2_8_68_2
  doi: 10.3390/nano10122517
– ident: e_1_2_8_110_1
  doi: 10.1111/j.1749-6632.1974.tb53040.x
– ident: e_1_2_8_38_2
  doi: 10.1093/glycob/9.6.539
– ident: e_1_2_8_135_1
  doi: 10.1002/jcc.540120908
– volume: 429
  start-page: 147
  year: 2020
  ident: e_1_2_8_14_2
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 11
  start-page: 134
  year: 2020
  ident: e_1_2_8_6_2
  publication-title: Front. Cell. Infect. Microbiol.
– ident: e_1_2_8_78_1
– ident: e_1_2_8_129_1
  doi: 10.1006/jmre.1997.1110
– ident: e_1_2_8_133_1
  doi: 10.1016/j.jmr.2006.06.009
– ident: e_1_2_8_91_2
  doi: 10.1039/D1OB01150B
– ident: e_1_2_8_70_2
  doi: 10.1002/cmdc.200700047
– ident: e_1_2_8_120_1
  doi: 10.1016/j.bioorg.2022.106279
– ident: e_1_2_8_108_2
  doi: 10.1021/cr000418f
– ident: e_1_2_8_79_2
  doi: 10.1039/c2cc30773a
– ident: e_1_2_8_125_1
  doi: 10.1039/D0OB00781A
– ident: e_1_2_8_140_1
  doi: 10.1016/S1074-7613(02)00447-8
– ident: e_1_2_8_92_2
  doi: 10.1038/s41467-022-31840-0
– ident: e_1_2_8_95_1
  doi: 10.1039/C6OB00083E
– ident: e_1_2_8_11_2
  doi: 10.1002/cbic.202000238
– ident: e_1_2_8_136_1
  doi: 10.1002/jcc.21334
– ident: e_1_2_8_102_1
  doi: 10.1016/j.carres.2003.11.013
– ident: e_1_2_8_122_1
  doi: 10.1080/07328303.2011.590260
– ident: e_1_2_8_23_2
  doi: 10.1021/acscentsci.9b00093
– ident: e_1_2_8_75_2
  doi: 10.1039/D2CC00121G
– ident: e_1_2_8_29_2
  doi: 10.1021/cb900216e
– ident: e_1_2_8_46_1
  doi: 10.1039/D2CC04478A
– ident: e_1_2_8_121_1
  doi: 10.1039/C5PY01283J
– ident: e_1_2_8_51_2
  doi: 10.1021/jo034673m
– ident: e_1_2_8_39_1
  doi: 10.1039/D0SC01744B
SSID ssj0009633
Score 2.4710498
Snippet The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type...
The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched...
The "carbohydrate chemical mimicry" exhibited by sp -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type...
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched...
Abstract The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched...
SourceID hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202303041
SubjectTerms Binding Sites
Carbohydrates
Chemical Sciences
Chemistry
Concanavalin A
Concanavalin A - metabolism
Conformation
Epitopes
glycomimetics
high-mannose oligosaccharides
Humans
Lectins
Lectins, C-Type - metabolism
Mannose
Mannose - chemistry
Mannose-Binding Lectins - chemistry
Mimicry
Monosaccharides
multivalency
NMR
Nuclear magnetic resonance
Oligosaccharides
Oligosaccharides - chemistry
Phytochemicals
Surface plasmon resonance
Title High‐Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC‐SIGN and Langerin
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303041
https://www.ncbi.nlm.nih.gov/pubmed/37828571
https://www.proquest.com/docview/2911642449
https://www.proquest.com/docview/2877387949
https://hal.univ-grenoble-alpes.fr/hal-04294809
Volume 30
WOSCitedRecordID wos001101820100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgQ4KXjfvKxmQQEi9ESxyndh5LRylSVSZgqG-Rb2GRpmRasj3zyhu_cb9k5ziXUSGEBKpapcmXOLWPfY5Tf98h5JUDFyEiGP3AO4UBl7ClICwNmFAq0dYZ7VMnfF2I5VKuVunRLyz-Vh9ieOCGPcOP19jBla4PbkRD4TchkxxCaJiRw_xnM4JS0a4ZP7qR3R13yeS5CFCEtZdtDNnB-vlrbun2CS6K_D3iXA9gvQeabf__vd8nW130SSetuTwgt1z5kNyd9knfHpEfuO7j6vtPzJ1c1Y5-PC2-VbUySM4qrKNzQMILmY81bU5UQyHuVGdFg1nAHOxxFDmEPSOSqtLSt4VnzlBMu0abCgG41AxMvCjp5A09nEKBnz-8X3r0whORi_IxOZ69-zKdB122hsBw8HCByMMcJm9GJYkLhYjHUmqXwzsy1imRC255EirNYQ5lo5xpHqlUKJ3D0dTqOH5CNsqqdDuEilBJZiUzZgzVE6U6jxMLI7piBhXr3IgEfWNlppMyx4wap1krwswyrOBsqOAReT3gz1oRjz8iX0LbDyDU3p5PFhnuQ8_NZZheAmivN42s6_F1xsBrjJE1mI7Ii-EwtB7-AaNKV10ARkK9SBgBAfO0NamhqFiglqCAizNvOX-50QwVM4Zvz_7lpF1yD7a5f54k98hGc37hnpM75rIp6vN934_gU6zkPtk8_DQ7XlwD2Z8fLg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagQxov3McKAwxC4oVoiePUzmPXUToRCoIN7c1ybGeLNCXTku2ZV972G_dLdk5uU4UQEkJVpdb5cql97HPs-vsOIW8duAgRwOgH3sn3uIRPGsJSjwmto9Q6kzapE34kYrmUh4fx1243IXJhWn2IYcENe0YzXmMHxwXp7RvVUPhRSCWHGBqm5DABWuNgS9GIrO1-mx8kN8q7ky6fPBce6rD2yo0-2169wopnun2M-yJ_DzpXY9jGCc3v_4fHf0DudREonbYm85DccsUjsj7rE789Jr9w78fVz0vMn1xWjn45yY_KShskaOXW0QUg4YXsx4rWx7qmEHvq07zGTGAOShxFHmHPiqS6sHQnb9gzFFOv0bpEAG43AzPPCzp9T3dncMPvex-XDTppyMh58YQczD_szxZel7HBMxy8nCcyP4MJnNFR5HwhwomUqcvgHRjrtMgEtzzydcphHmWDjKU80LHQaQZHY5uG4QYZFWXhNgkVvpbMSmbMBKoniNMsjCyM6poZVK1zY-L1raVMJ2eOWTVOVCvEzBRWsBoqeEzeDfjTVsjjj8g30PgDCPW3F9NEYRl6by79-AJAW71tqK7XV4qB55ggczAek9fDYWg9_BNGF648B4yEepEwCgLmaWtTw61CgXqCAi7OGtP5y4MqVM0Yvj37l5NekfXF_udEJXvLT8_JXSjnzfqS3CKj-uzcvSB3zEWdV2cvu251DV8sIiM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIODC-7G0gEFIXBo1cZy1c9xuWbZitazEQ71Zju3QSFWyatKeuXLjN_aXdMZ5VCuEkBCKIiXO5GWPZ8aJv28IeevARYgIrB94pzDgErY0hKUBE1onmXUm86kTvi3EcimPjtJVN5sQsTAtP8TwwQ17hrfX2MHd2uZ7V6yh8FIIJYcYGobkMAC6wRMwtEjuzFdXvLvjLps8FwGysPa8jSHb2zx_wy9dP8ZZkb-HnJsRrHdBs3v_4eHvk7td_EknrcI8INdc-ZDcnvZp3x6Rnzjz4-LHL8yeXNWOfjopvle1NgjPKqyjc5CEBbGPNW2OdUMh8tTrosE8YA5KHEUUYY-JpLq0dL_w2BmKiddoU6EATjYDJS9KOtmlB1O44efDD0svvfBQ5KJ8TL7O3n-ZzoMuX0NgOPi4QORhDsM3o5PEhULEYykzl8MaGeu0yAW3PAl1xmEUZaOcZTzSqdBZDkdTm8XxE7JVVqV7RqgItWRWMmPGUD1RmuVxYsGma2aQs86NSNC3ljIdmTnm1DhRLQ0zU1jBaqjgEXk3yK9bGo8_Sr6Bxh-EkH17PlkoLEPfzWWYnoPQTq8bquvztWLgN8aIG0xH5PVwGFoPf8Ho0lVnICOhXiTYQJB52urUcKtYIJuggIszrzp_eVCFnBnD3vN_OekVubU6mKnF4fLjNrkDxdx_XJI7ZKs5PXMvyE1z3hT16Uvfpy4BjvAgDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Mannose+Oligosaccharide+Hemimimetics+that+Recapitulate+the+Conformation+and+Binding+Mode+to+Concanavalin+A%2C+DC%E2%80%90SIGN+and+Langerin&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Herrera%E2%80%90Gonz%C3%A1lez%2C+Irene&rft.au=Gonz%C3%A1lez%E2%80%90Cuesta%2C+Manuel&rft.au=Th%C3%A9paut%2C+Michel&rft.au=Laigre%2C+Eug%C3%A9nie&rft.date=2024-01-08&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202303041&rft.externalDBID=10.1002%252Fchem.202303041&rft.externalDocID=CHEM202303041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon