High‐Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC‐SIGN and Langerin
The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylide...
Gespeichert in:
| Veröffentlicht in: | Chemistry : a European journal Jg. 30; H. 2; S. e202303041 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
08.01.2024
Wiley-VCH Verlag |
| Schlagworte: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
The “carbohydrate chemical mimicry” of sp2‐iminosugars enables the synthesis of high‐mannose‐type oligosaccharide analogs whose solution and lectin bound conformations match those of the natural partners. Upon multivalent presentation, enhanced affinities towards ConA, DC‐SIGN and langerin are achieved, with distinct selectivity profiles. |
|---|---|
| AbstractList | The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man 3 and Man 5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man 2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp 2 ‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The "carbohydrate chemical mimicry" exhibited by sp -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man and Man . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man3 and Man5. In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. The “carbohydrate chemical mimicry” of sp2‐iminosugars enables the synthesis of high‐mannose‐type oligosaccharide analogs whose solution and lectin bound conformations match those of the natural partners. Upon multivalent presentation, enhanced affinities towards ConA, DC‐SIGN and langerin are achieved, with distinct selectivity profiles. Abstract The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type oligosaccharides (HMOs) Man 3 and Man 5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6‐oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC‐SIGN, and langerin, by enzyme‐linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated “in line” heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man 2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding‐domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp 2 ‐iminosugar caps. As a proof of concept, the affinity and selectivity towards DC‐SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies. |
| Author | Thépaut, Michel García Fernández, José M. Laigre, Eugénie Nieto, Pedro M. González‐Cuesta, Manuel Rojo, Javier Fieschi, Franck Herrera‐González, Irene Renaudet, Olivier Goyard, David Ortiz Mellet, Carmen |
| Author_xml | – sequence: 1 givenname: Irene orcidid: 0000-0003-0575-3928 surname: Herrera‐González fullname: Herrera‐González, Irene organization: Université Grenoble Alpes, CNRS – sequence: 2 givenname: Manuel orcidid: 0000-0003-2778-9489 surname: González‐Cuesta fullname: González‐Cuesta, Manuel organization: University of Seville – sequence: 3 givenname: Michel orcidid: 0000-0003-4792-8271 surname: Thépaut fullname: Thépaut, Michel organization: Université Grenoble Alpes, CNRS, CEA – sequence: 4 givenname: Eugénie orcidid: 0000-0002-2004-8461 surname: Laigre fullname: Laigre, Eugénie organization: Université Grenoble Alpes, CNRS – sequence: 5 givenname: David orcidid: 0000-0002-6410-0866 surname: Goyard fullname: Goyard, David organization: Université Grenoble Alpes, CNRS – sequence: 6 givenname: Javier orcidid: 0000-0003-3173-3437 surname: Rojo fullname: Rojo, Javier organization: CSIC – Universidad de Sevilla – sequence: 7 givenname: José M. orcidid: 0000-0002-6827-0387 surname: García Fernández fullname: García Fernández, José M. organization: CSIC – Universidad de Sevilla – sequence: 8 givenname: Franck orcidid: 0000-0003-1194-8107 surname: Fieschi fullname: Fieschi, Franck organization: Institut Universitaire de France (IUF) – sequence: 9 givenname: Olivier orcidid: 0000-0003-4963-3848 surname: Renaudet fullname: Renaudet, Olivier organization: Université Grenoble Alpes, CNRS – sequence: 10 givenname: Pedro M. orcidid: 0000-0002-4074-9011 surname: Nieto fullname: Nieto, Pedro M. email: pedro.nieto@iiq.csic.es organization: CSIC – Universidad de Sevilla – sequence: 11 givenname: Carmen orcidid: 0000-0002-7676-7721 surname: Ortiz Mellet fullname: Ortiz Mellet, Carmen email: mellet@us.es organization: University of Seville |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37828571$$D View this record in MEDLINE/PubMed https://hal.univ-grenoble-alpes.fr/hal-04294809$$DView record in HAL |
| BookMark | eNqFkc1u1DAUhS1URKeFLUsUiQ1IZLAdJ46XQyhNpRkq8bO2bhxnxlViD7FT1B1bdjwjT4Jnpi1SJYQsy9L1d8699jlBR9ZZjdBzgucEY_pWbfQwp5hmOMOMPEIzklOSZrzIj9AMC8bTIs_EMTrx_gpjLIose4KOM17SMudkhn7WZr35_ePXCqx1XieXvVk7D0ptYDStTmo9mLh0MMonYQMh-aQVbE2Yegg6VnRSOdu5cYBgnE3Atsk7Y1tj18nKRYPgdoACC9fQG5ss3iTvq9jw88X5xz29BLvWo7FP0eMOeq-f3Z6n6OuHsy9VnS4vzy-qxTJVjHGS8g53pRAK8lxjzrOiLBvdxU1Uq4F3nLUsx9CwsqAt6WjDCAgOTRdvRdtk2Sl6ffDdQC-3oxlgvJEOjKwXS7mrYUYFK7G4JpF9dWC3o_s2aR_kYLzSfQ9Wu8lLWsYJSi6YiOjLB-iVm0YbXyKpIKRglO2pF7fU1Ay6ve9_F0gE2AFQo_N-1J1UJuy_Noxgekmw3OUud7nL-9yjbP5Aduf8T4E4CL6bXt_8h5ZVfbb6q_0DqhHBjA |
| CitedBy_id | crossref_primary_10_3762_bjoc_21_57 |
| Cites_doi | 10.1002/cplu.201600569 10.1002/chem.201903391 10.1002/chem.202101674 10.1002/chem.201405481 10.1046/j.1432-1327.1998.2580372.x 10.1002/anie.200502794 10.1039/C7TB00860K 10.1080/14756366.2022.2073444 10.1002/cbic.200800361 10.1126/science.1059820 10.1039/D2CS00736C 10.1021/jacs.1c10504 10.7717/peerj.3784 10.1021/bi00171a014 10.3390/ph13080179 10.1021/ja050934t 10.1039/D1MD00238D 10.1016/j.carres.2016.01.006 10.1016/S0092-8674(00)80694-7 10.1021/acschembio.7b00958 10.1021/acscentsci.2c01136 10.1007/s11030-010-9285-y 10.1021/acs.orglett.6b01899 10.1002/chem.201200279 10.3389/fimmu.2018.02754 10.1039/a705755e 10.1038/nm1541 10.1021/jacs.1c07235 10.1007/s10719-019-09865-3 10.1007/s10822-013-9644-8 10.1002/ejoc.200500071 10.1039/D0CC01135E 10.1021/jacs.1c06778 10.1038/s41577-018-0004-8 10.1016/j.bbagen.2015.04.004 10.1039/C4CC09709B 10.1002/cbic.201000323 10.1016/S0021-9258(18)50033-8 10.1016/0008-6215(93)87005-D 10.1007/s00418-016-1523-7 10.1021/cr500303t 10.1039/C7OB02286G 10.3390/v9030059 10.1074/jbc.M109.021204 10.1016/S0021-9258(18)88862-7 10.1021/acschembio.8b00875 10.1016/j.ejmech.2023.115390 10.3762/bjoc.6.90 10.1002/ejoc.202200113 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 10.1371/journal.pone.0076411 10.1021/acs.jmedchem.9b00153 10.1074/jbc.M609689200 10.1039/b920048g 10.1021/jo201797b 10.1002/anie.201701943 10.1039/C9SC06334J 10.1039/c2cs35424a 10.1021/ja00172a038 10.1039/c1ob05234a 10.1126/science.1066371 10.1021/jo015639f 10.1021/jo051503w 10.1016/j.jmb.2010.11.039 10.1021/acs.jmedchem.2c01948 10.1002/cbic.201000167 10.1021/ja3053305 10.1002/chem.201804505 10.1038/s42004-022-00679-3 10.1039/c0cc00446d 10.1007/s00249-011-0749-5 10.1021/acs.jmedchem.0c00908 10.1039/c1ob05573a 10.1002/jcc.540151111 10.1021/ja072944v 10.1093/protein/gzr016 10.1039/C2CS35219B 10.1002/jcc.540090409 10.1002/anie.200390233 10.1016/j.colsurfb.2017.09.035 10.2174/0929867328666210705143102 10.1016/j.carres.2007.08.015 10.1016/S1074-7613(02)00259-5 10.1021/ja411582t 10.1021/ja511529x 10.1002/anie.201505147 10.1002/1439-7633(20011001)2:10<777::AID-CBIC777>3.0.CO;2-C 10.1111/pim.12951 10.1002/anie.200351947 10.3390/ijms21155290 10.1093/glycob/8.2.173 10.1038/nsmb784 10.3390/nano10122517 10.1111/j.1749-6632.1974.tb53040.x 10.1093/glycob/9.6.539 10.1002/jcc.540120908 10.1006/jmre.1997.1110 10.1016/j.jmr.2006.06.009 10.1039/D1OB01150B 10.1002/cmdc.200700047 10.1016/j.bioorg.2022.106279 10.1021/cr000418f 10.1039/c2cc30773a 10.1039/D0OB00781A 10.1016/S1074-7613(02)00447-8 10.1038/s41467-022-31840-0 10.1039/C6OB00083E 10.1002/cbic.202000238 10.1002/jcc.21334 10.1016/j.carres.2003.11.013 10.1080/07328303.2011.590260 10.1021/acscentsci.9b00093 10.1039/D2CC00121G 10.1021/cb900216e 10.1039/D2CC04478A 10.1039/C5PY01283J 10.1021/jo034673m 10.1039/D0SC01744B |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH – notice: 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 1XC VOOES |
| DOI | 10.1002/chem.202303041 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | n/a |
| ExternalDocumentID | oai:HAL:hal-04294809v1 37828571 10_1002_chem_202303041 CHEM202303041 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions funderid: COST action GLYCONanoPROBES (CM18132) – fundername: French Infrastructure for Integrated Structural Biology funderid: ANR-10-INBS-05-02 – fundername: Agence Nationale de la Recherche funderid: ANR-15-IDEX-02; PRCI LectArray 19-CE18-0019-01 – fundername: HORIZON EUROPE Marie Sklodowska-Curie Actions funderid: 101130235 - Bicyclos – fundername: Ministerio de Universidades funderid: FPU17/03147 – fundername: Universidad de Sevilla funderid: Contrato de Acceso al Sistema Español de Ciencia y Tecnologia – fundername: Junta de Andalucía funderid: US-1380698; P20_00515 – fundername: European Research Council funderid: Consolidator Grant "LEGO" (647938) – fundername: Agencia Estatal de Investigación funderid: PID2019-105858RB-I00; PID2022-141034OB-C21; PID2021-124247OB-C21; PID2021-125094NB-I00; PID2020-118403GB-I00 – fundername: European Research Council grantid: Consolidator Grant "LEGO" (647938) |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RGC RWI WRC 7SR 8BQ 8FD JG9 K9. 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c4471-7f0f899ca55e0773688bef8be1cdea7f74d450ab4862d1f2b41a97abfdea9db33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001101820100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Tue Oct 14 20:53:11 EDT 2025 Fri Jul 11 08:45:03 EDT 2025 Tue Oct 07 07:04:25 EDT 2025 Wed Feb 19 02:08:35 EST 2025 Tue Nov 18 21:16:25 EST 2025 Sat Nov 29 07:20:48 EST 2025 Sun Jul 06 04:45:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | carbohydrates glycomimetics multivalency lectins high-mannose oligosaccharides |
| Language | English |
| License | Attribution 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4471-7f0f899ca55e0773688bef8be1cdea7f74d450ab4862d1f2b41a97abfdea9db33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4963-3848 0000-0002-4074-9011 0000-0003-2778-9489 0000-0002-2004-8461 0000-0003-3173-3437 0000-0003-4792-8271 0000-0002-7676-7721 0000-0002-6410-0866 0000-0003-0575-3928 0000-0002-6827-0387 0000-0003-1194-8107 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303041 |
| PMID | 37828571 |
| PQID | 2911642449 |
| PQPubID | 986340 |
| PageCount | 21 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04294809v1 proquest_miscellaneous_2877387949 proquest_journals_2911642449 pubmed_primary_37828571 crossref_citationtrail_10_1002_chem_202303041 crossref_primary_10_1002_chem_202303041 wiley_primary_10_1002_chem_202303041_CHEM202303041 |
| PublicationCentury | 2000 |
| PublicationDate | January 8, 2024 |
| PublicationDateYYYYMMDD | 2024-01-08 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 8, 2024 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
| References | 2002; 16 2010; 11 2002; 17 2017; 82 2016; 429 1991; 12 2007; 342 2012; 18 2020; 13 2020; 11 2020; 10 2013; 8 2014; 136 2022; 29 2020; 18 2018; 9 2011; 405 2023; 66 2015; 137 2019; 25 2017; 160 2022; 37 2008; 22 2005; 70 2007; 2 2004; 339 2010; 5 2003; 42 2010; 6 2010; 8 2023; 52 2010; 31 2019; 5 2007; 282 2015; 51 1992; 267 2015; 54 2019; 36 2015; 1850 1997 2021; 143 1998; 259 2016; 18 1985; 260 2007; 13 2016; 14 2020; 429 2011; 9 2018; 18 1993; 238 2023; 45 2010; 46 2006; 45 2015; 115 2022; 5 2005; 127 2017; 56 2022; 13 1974; 234 1994; 15 2000; 100 2020; 21 2012; 48 2006; 182 1990; 112 2017; 147 2018; 13 1998; 8 2017; 5 2022; 131 2021; 27 2013; 27 2020; 63 2020; 56 2011; 15 2017; 9 2001; 294 2001; 291 2002; 102 2020; 9 1994; 33 2011; 24 2009; 284 2007; 129 2015; 6 2013; 42 2011; 40 2011; 30 2001; 66 2012; 77 1999; 9 2022; 144 1998; 37 2004; 11 1997; 125 2021; 12 2023 2017; 15 2022 1988; 9 2005 2019; 62 2015; 21 2021; 19 2003; 68 2022; 58 2013; 135 2001; 2 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 Mnich M. E. (e_1_2_8_6_2) 2020; 11 e_1_2_8_132_1 e_1_2_8_5_2 e_1_2_8_117_1 e_1_2_8_41_2 e_1_2_8_87_2 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_60_2 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_109_2 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_2 e_1_2_8_120_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_2 e_1_2_8_29_2 Nagae M. (e_1_2_8_14_2) 2020; 429 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_2 e_1_2_8_37_2 e_1_2_8_79_2 e_1_2_8_90_2 e_1_2_8_94_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_129_1 e_1_2_8_102_1 e_1_2_8_71_2 e_1_2_8_125_1 e_1_2_8_28_2 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_89_2 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_3_2 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_115_2 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_2 e_1_2_8_134_1 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_13_1 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_51_2 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_1 Busold S. (e_1_2_8_7_2) 2020; 9 e_1_2_8_69_1 e_1_2_8_80_2 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_112_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_108_2 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_127_1 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_123_1 e_1_2_8_92_2 e_1_2_8_104_1 |
| References_xml | – volume: 6 start-page: 7666 year: 2015 end-page: 7683 publication-title: Polym. Chem. – volume: 284 start-page: 21229 year: 2009 end-page: 21240 publication-title: J. Biol. Chem. – volume: 182 start-page: 173 year: 2006 end-page: 177 publication-title: J. Magn. Reson. – volume: 21 start-page: 2999 year: 2020 end-page: 3025 publication-title: ChemBioChem – volume: 136 start-page: 2008 year: 2014 end-page: 2016 publication-title: J. Am. Chem. Soc. – volume: 429 start-page: 113 year: 2016 end-page: 122 publication-title: Carbohydr. Res. – volume: 9 start-page: 59 year: 2017 publication-title: Viruses – volume: 56 start-page: 7292 year: 2017 end-page: 7296 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 1849 year: 2010 end-page: 1860 publication-title: Org. Biomol. Chem. – volume: 46 start-page: 5328 year: 2010 publication-title: Chem. Commun. – volume: 27 start-page: 221 year: 2013 end-page: 234 publication-title: J. Comput. Aided Mol. Des. – volume: 115 start-page: 525 year: 2015 end-page: 561 publication-title: Chem. Rev. – volume: 13 start-page: 600 year: 2018 end-page: 608 publication-title: ACS Chem. Biol. – volume: 9 start-page: 2754 year: 2018 publication-title: Front. Immunol. – volume: 112 start-page: 6127 year: 1990 end-page: 6129 publication-title: J. Am.Chem. Soc. – volume: 18 start-page: 374 year: 2018 end-page: 389 publication-title: Nat. Rev. Immunol. – volume: 1850 start-page: 1457 year: 2015 end-page: 1465 publication-title: Biochim. Biophys. Acta – volume: 40 start-page: 1357 year: 2011 end-page: 1369 publication-title: Eur. Biophys. J. – volume: 12 start-page: 1985 year: 2021 end-page: 2000 publication-title: RSC Med. Chem. – volume: 42 start-page: 4746 year: 2013 end-page: 4773 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 4518 year: 2013 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 4100 year: 2015 end-page: 4110 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 458 year: 2011 end-page: 468 publication-title: J. Carbohydr. Chem. – volume: 66 start-page: 4768 year: 2023 end-page: 4783 publication-title: J. Med. Chem. – volume: 11 start-page: 134 year: 2020 publication-title: Front. Cell. Infect. Microbiol. – volume: 267 start-page: 22907 year: 1992 end-page: 22911 publication-title: J. Biol. Chem. – volume: 9 start-page: 2754 year: 2020 publication-title: Front. Immunol. – volume: 25 start-page: 3301 year: 2019 end-page: 3309 publication-title: Chem. Eur. J. – volume: 143 start-page: 17465 year: 2021 end-page: 17478 publication-title: J. Am. Chem. Soc. – volume: 259 start-page: 372 year: 1998 end-page: 386 publication-title: Eur. J. Biochem. – volume: 22 start-page: 2225 year: 2008 end-page: 22257 publication-title: ChemBioChem – volume: 9 start-page: 5778 year: 2011 end-page: 5786 publication-title: Org. Biomol. Chem. – volume: 10 start-page: 2517 year: 2020 publication-title: Nanomaterials – volume: 18 start-page: 4763 year: 2020 end-page: 4772 publication-title: Org. Biomol. Chem. – volume: 18 start-page: 8527 year: 2012 end-page: 8539 publication-title: Chem. Eur. J. – volume: 429 start-page: 147 year: 2020 end-page: 176 publication-title: Curr. Top. Microbiol. Immunol. – volume: 45 start-page: 2348 year: 2006 end-page: 2368 publication-title: Angew. Chem. Int. Ed. – volume: 339 start-page: 967 year: 2004 end-page: 973 publication-title: Carbohydr. Res. – volume: 11 start-page: 2453 year: 2010 end-page: 2464 publication-title: ChemBioChem – volume: 17 start-page: 653 year: 2002 end-page: 664 publication-title: Immunity – volume: 102 start-page: 555 year: 2002 end-page: 578 publication-title: Chem. Rev. – volume: 54 start-page: 11696 year: 2015 end-page: 11700 publication-title: Angew. Chem. Int. Ed. – volume: 8 year: 2013 publication-title: PLoS ONE – volume: 14 start-page: 2873 year: 2016 end-page: 2882 publication-title: Org. Biomol. Chem. – volume: 143 start-page: 18977 year: 2021 end-page: 18988 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 4054 year: 2022 publication-title: Nat. Commun. – volume: 19 start-page: 7013 year: 2021 end-page: 7023 publication-title: Org. Biomol. Chem. – volume: 5 start-page: 301 year: 2010 end-page: 312 publication-title: ACS Chem. Biol. – volume: 15 start-page: 1302 year: 1994 end-page: 1310 publication-title: J. Comput. Chem. – volume: 160 start-page: 281 year: 2017 end-page: 288 publication-title: Colloids Surf. B: Biointerfaces – volume: 129 start-page: 12780 year: 2007 end-page: 12785 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1173 year: 2022 end-page: 1192 publication-title: Curr. Med. Chem. – volume: 131 year: 2022 publication-title: Bioorg. Chem. – volume: 25 start-page: 14659 year: 2019 end-page: 14668 publication-title: Chem. Eur. J. – volume: 77 start-page: 1273 year: 2012 end-page: 1288 publication-title: J. Org. Chem. – volume: 27 start-page: 12395 year: 2021 end-page: 12409 publication-title: Chem Eur. J. – volume: 42 start-page: 864 year: 2003 end-page: 890 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 3816 year: 2015 end-page: 3819 publication-title: Chem. Commun. – volume: 100 start-page: 587 year: 2000 end-page: 597 publication-title: Cell – volume: 147 start-page: 223 year: 2017 end-page: 237 publication-title: Histochem. Cell Biol. – year: 2023 publication-title: Eur. J. Med. Chem. – volume: 21 start-page: 5290 year: 2020 publication-title: Int. J. Mol. Sci. – volume: 2 start-page: 777 year: 2001 end-page: 783 publication-title: ChemBioChem – volume: 58 start-page: 5136 year: 2022 end-page: 5139 publication-title: Chem. Commun. – volume: 12 start-page: 1110 year: 1991 end-page: 1117 publication-title: J. Comput. Chem. – volume: 9 start-page: 343 year: 1988 end-page: 355 publication-title: J. Comput. Chem. – volume: 48 start-page: 3733 year: 2012 end-page: 3735 publication-title: Chem. Commun. – volume: 5 start-page: 808 year: 2019 end-page: 820 publication-title: ACS Cent. Sci. – volume: 56 start-page: 5207 year: 2020 end-page: 5222 publication-title: Chem. Commun. – volume: 260 start-page: 6882 year: 1985 end-page: 6887 publication-title: J. Biol. Chem. – volume: 5 start-page: 6428 year: 2017 end-page: 6436 publication-title: J. Mater. Chem. B – volume: 37 start-page: 2755 year: 1998 end-page: 2794 publication-title: Angew. Chem. Int. Ed. – volume: 405 start-page: 1027 year: 2011 end-page: 1039 publication-title: J. Mol. Biol. – volume: 33 start-page: 1149 year: 1994 end-page: 1156 publication-title: Biochemistry. – year: 2022 publication-title: Eur. J. Org. Chem. – volume: 11 start-page: 591 year: 2004 end-page: 598 publication-title: Nat. Struct. Mol. Biol. – volume: 9 start-page: 539 year: 1999 end-page: 545 publication-title: Glycobiology – volume: 11 start-page: 3996 year: 2020 end-page: 4006 publication-title: Chem. Sci. – volume: 282 start-page: 4202 year: 2007 end-page: 4209 publication-title: J. Biol. Chem. – volume: 16 start-page: 135 year: 2002 end-page: 144 publication-title: Immunity – volume: 70 start-page: 9809 year: 2005 end-page: 9813 publication-title: J. Org. Chem. – volume: 36 start-page: 175 year: 2019 end-page: 183 publication-title: Glycoconjugate J. – volume: 11 start-page: 5227 year: 2020 end-page: 5237 publication-title: Chem. Sci. – volume: 125 start-page: 302 year: 1997 end-page: 324 publication-title: J. Magn. Reson. – volume: 82 start-page: 390 year: 2017 end-page: 398 publication-title: ChemPlusChem – volume: 13 start-page: 367 year: 2007 end-page: 371 publication-title: Nat. Med. – volume: 13 start-page: 179 year: 2020 publication-title: Pharmaceuticals – volume: 342 start-page: 2628 year: 2007 end-page: 2634 publication-title: Carbohydr.Res. – volume: 15 start-page: 347 year: 2011 end-page: 360 publication-title: Mol. Divers. – volume: 234 start-page: 283 year: 1974 end-page: 296 publication-title: Ann. N. Y. Acad. Sci. – volume: 2 start-page: 1030 year: 2007 end-page: 1036 publication-title: ChemMedChem – volume: 6 start-page: 801 year: 2010 end-page: 809 publication-title: Beilstein J. Org. Chem. – volume: 5 year: 2017 publication-title: PeerJ – volume: 13 start-page: 3229 year: 2018 end-page: 3235 publication-title: ACS Chem. Biol. – volume: 8 start-page: 173 year: 1998 end-page: 181 publication-title: Glycobiology – start-page: 709 year: 2023 end-page: 718 publication-title: ACS Cent. Sci. – volume: 135 start-page: 2518 year: 2013 end-page: 2529 publication-title: J. Am. Chem. Soc. – volume: 45 year: 2023 publication-title: Parasite Immunol. – volume: 58 start-page: 12086 year: 2022 end-page: 12089 publication-title: Chem. Commun. – volume: 238 start-page: 49 year: 1993 end-page: 73 publication-title: Carbohydr. Res. – volume: 291 start-page: 2357 year: 2001 end-page: 2364 publication-title: Science – volume: 127 start-page: 7970 year: 2005 end-page: 7971 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 832 year: 2022 end-page: 844 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3890 year: 2016 end-page: 3893 publication-title: Org. Lett. – volume: 66 start-page: 7604 year: 2001 end-page: 7614 publication-title: J. Org. Chem. – volume: 24 start-page: 659 year: 2011 end-page: 669 publication-title: Protein Eng. Des. Sel. – volume: 63 start-page: 8524 year: 2020 end-page: 8533 publication-title: J. Med. Chem. – volume: 31 start-page: 455 year: 2010 end-page: 461 publication-title: J. Comput. Chem. – volume: 5 start-page: 64 year: 2022 publication-title: Commun. Chem. – volume: 9 start-page: 3698 year: 2011 end-page: 3713 publication-title: Org. Biomol. Chem. – volume: 15 start-page: 8877 year: 2017 end-page: 8882 publication-title: Org Biomol Chem. – volume: 37 start-page: 1364 year: 2022 end-page: 1374 publication-title: J. Enzyme Inhib. Med. Chem. – volume: 42 start-page: 3938 year: 2003 end-page: 3941 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 536 year: 2023 end-page: 572 publication-title: Chem. Soc. Rev. – volume: 62 start-page: 2903 5832 year: 2005 2019 end-page: 2913 5843 publication-title: Eur. J. Org. Chem. J. Med. Chem. – volume: 294 start-page: 2163 year: 2001 end-page: 2166 publication-title: Science – volume: 68 start-page: 8890 year: 2003 end-page: 8901 publication-title: J. Org. Chem. – start-page: 1969 year: 1997 end-page: 1970 publication-title: Chem. Commun. – volume: 11 start-page: 1430 year: 2010 end-page: 1442 publication-title: ChemBioChem – volume: 21 start-page: 1978 year: 2015 end-page: 1991 publication-title: Chem. Eur. J. – ident: e_1_2_8_123_1 doi: 10.1002/cplu.201600569 – ident: e_1_2_8_74_2 doi: 10.1002/chem.201903391 – ident: e_1_2_8_132_1 doi: 10.1002/chem.202101674 – ident: e_1_2_8_80_2 doi: 10.1002/chem.201405481 – ident: e_1_2_8_103_1 doi: 10.1046/j.1432-1327.1998.2580372.x – ident: e_1_2_8_43_2 doi: 10.1002/anie.200502794 – ident: e_1_2_8_88_2 doi: 10.1039/C7TB00860K – ident: e_1_2_8_54_2 doi: 10.1080/14756366.2022.2073444 – ident: e_1_2_8_32_2 doi: 10.1002/cbic.200800361 – ident: e_1_2_8_42_2 doi: 10.1126/science.1059820 – ident: e_1_2_8_45_2 doi: 10.1039/D2CS00736C – ident: e_1_2_8_55_2 doi: 10.1021/jacs.1c10504 – ident: e_1_2_8_105_2 doi: 10.7717/peerj.3784 – ident: e_1_2_8_36_2 doi: 10.1021/bi00171a014 – ident: e_1_2_8_40_1 – ident: e_1_2_8_116_2 doi: 10.3390/ph13080179 – ident: e_1_2_8_83_2 doi: 10.1021/ja050934t – ident: e_1_2_8_69_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_66_1 – ident: e_1_2_8_12_2 doi: 10.1039/D1MD00238D – ident: e_1_2_8_94_1 doi: 10.1016/j.carres.2016.01.006 – ident: e_1_2_8_97_1 – ident: e_1_2_8_18_2 doi: 10.1016/S0092-8674(00)80694-7 – ident: e_1_2_8_73_2 doi: 10.1021/acschembio.7b00958 – ident: e_1_2_8_77_2 doi: 10.1021/acscentsci.2c01136 – ident: e_1_2_8_115_2 doi: 10.1007/s11030-010-9285-y – ident: e_1_2_8_61_2 doi: 10.1021/acs.orglett.6b01899 – ident: e_1_2_8_63_2 doi: 10.1002/chem.201200279 – ident: e_1_2_8_8_2 doi: 10.3389/fimmu.2018.02754 – ident: e_1_2_8_48_2 doi: 10.1039/a705755e – ident: e_1_2_8_19_1 doi: 10.1038/nm1541 – ident: e_1_2_8_22_2 doi: 10.1021/jacs.1c07235 – ident: e_1_2_8_106_2 doi: 10.1007/s10719-019-09865-3 – ident: e_1_2_8_137_1 doi: 10.1007/s10822-013-9644-8 – ident: e_1_2_8_65_1 doi: 10.1002/ejoc.200500071 – ident: e_1_2_8_90_2 doi: 10.1039/D0CC01135E – ident: e_1_2_8_81_2 doi: 10.1021/jacs.1c06778 – ident: e_1_2_8_2_2 doi: 10.1038/s41577-018-0004-8 – ident: e_1_2_8_15_2 doi: 10.1016/j.bbagen.2015.04.004 – ident: e_1_2_8_72_2 doi: 10.1039/C4CC09709B – ident: e_1_2_8_50_2 doi: 10.1002/cbic.201000323 – ident: e_1_2_8_37_2 doi: 10.1016/S0021-9258(18)50033-8 – ident: e_1_2_8_99_1 doi: 10.1016/0008-6215(93)87005-D – ident: e_1_2_8_3_2 doi: 10.1007/s00418-016-1523-7 – ident: e_1_2_8_44_2 doi: 10.1021/cr500303t – ident: e_1_2_8_127_1 doi: 10.1039/C7OB02286G – ident: e_1_2_8_114_1 – volume: 9 start-page: 2754 year: 2020 ident: e_1_2_8_7_2 publication-title: Front. Immunol. – ident: e_1_2_8_9_2 doi: 10.3390/v9030059 – ident: e_1_2_8_101_1 – ident: e_1_2_8_138_1 doi: 10.1074/jbc.M109.021204 – ident: e_1_2_8_25_1 – ident: e_1_2_8_82_1 – ident: e_1_2_8_112_1 doi: 10.1016/S0021-9258(18)88862-7 – ident: e_1_2_8_1_1 – ident: e_1_2_8_27_2 doi: 10.1021/acschembio.8b00875 – ident: e_1_2_8_47_1 – ident: e_1_2_8_107_1 – ident: e_1_2_8_16_1 – ident: e_1_2_8_57_2 doi: 10.1016/j.ejmech.2023.115390 – ident: e_1_2_8_96_1 doi: 10.3762/bjoc.6.90 – ident: e_1_2_8_35_1 – ident: e_1_2_8_76_2 doi: 10.1002/ejoc.202200113 – ident: e_1_2_8_41_2 doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – ident: e_1_2_8_62_2 doi: 10.1371/journal.pone.0076411 – ident: e_1_2_8_65_2 doi: 10.1021/acs.jmedchem.9b00153 – ident: e_1_2_8_33_2 doi: 10.1074/jbc.M609689200 – ident: e_1_2_8_84_2 doi: 10.1039/b920048g – ident: e_1_2_8_85_2 doi: 10.1021/jo201797b – ident: e_1_2_8_31_1 – ident: e_1_2_8_28_2 doi: 10.1002/anie.201701943 – ident: e_1_2_8_59_2 doi: 10.1039/C9SC06334J – ident: e_1_2_8_67_2 doi: 10.1039/c2cs35424a – ident: e_1_2_8_134_1 doi: 10.1021/ja00172a038 – ident: e_1_2_8_52_2 doi: 10.1039/c1ob05234a – ident: e_1_2_8_117_1 doi: 10.1126/science.1066371 – ident: e_1_2_8_49_2 doi: 10.1021/jo015639f – ident: e_1_2_8_93_1 doi: 10.1021/jo051503w – ident: e_1_2_8_104_1 – ident: e_1_2_8_119_1 doi: 10.1016/j.jmb.2010.11.039 – ident: e_1_2_8_58_2 doi: 10.1021/acs.jmedchem.2c01948 – ident: e_1_2_8_109_2 doi: 10.1002/cbic.201000167 – ident: e_1_2_8_71_2 doi: 10.1021/ja3053305 – ident: e_1_2_8_89_2 doi: 10.1002/chem.201804505 – ident: e_1_2_8_26_2 doi: 10.1038/s42004-022-00679-3 – ident: e_1_2_8_64_2 doi: 10.1039/c0cc00446d – ident: e_1_2_8_131_1 doi: 10.1007/s00249-011-0749-5 – ident: e_1_2_8_4_1 – ident: e_1_2_8_13_1 – ident: e_1_2_8_60_2 doi: 10.1021/acs.jmedchem.0c00908 – ident: e_1_2_8_141_1 doi: 10.1039/c1ob05573a – ident: e_1_2_8_100_1 doi: 10.1002/jcc.540151111 – ident: e_1_2_8_30_2 doi: 10.1021/ja072944v – ident: e_1_2_8_34_1 doi: 10.1093/protein/gzr016 – ident: e_1_2_8_86_2 doi: 10.1039/C2CS35219B – ident: e_1_2_8_98_1 doi: 10.1002/jcc.540090409 – ident: e_1_2_8_130_1 doi: 10.1002/anie.200390233 – ident: e_1_2_8_111_1 doi: 10.1016/j.colsurfb.2017.09.035 – ident: e_1_2_8_21_2 doi: 10.2174/0929867328666210705143102 – ident: e_1_2_8_126_1 doi: 10.1016/j.carres.2007.08.015 – ident: e_1_2_8_17_2 doi: 10.1016/S1074-7613(02)00259-5 – ident: e_1_2_8_87_2 doi: 10.1021/ja411582t – ident: e_1_2_8_24_2 doi: 10.1021/ja511529x – ident: e_1_2_8_53_2 doi: 10.1002/anie.201505147 – ident: e_1_2_8_124_1 doi: 10.1002/1439-7633(20011001)2:10<777::AID-CBIC777>3.0.CO;2-C – ident: e_1_2_8_20_1 – ident: e_1_2_8_5_2 doi: 10.1111/pim.12951 – ident: e_1_2_8_56_1 – ident: e_1_2_8_128_1 doi: 10.1002/anie.200351947 – ident: e_1_2_8_139_1 doi: 10.3390/ijms21155290 – ident: e_1_2_8_113_1 doi: 10.1093/glycob/8.2.173 – ident: e_1_2_8_118_1 doi: 10.1038/nsmb784 – ident: e_1_2_8_68_2 doi: 10.3390/nano10122517 – ident: e_1_2_8_110_1 doi: 10.1111/j.1749-6632.1974.tb53040.x – ident: e_1_2_8_38_2 doi: 10.1093/glycob/9.6.539 – ident: e_1_2_8_135_1 doi: 10.1002/jcc.540120908 – volume: 429 start-page: 147 year: 2020 ident: e_1_2_8_14_2 publication-title: Curr. Top. Microbiol. Immunol. – volume: 11 start-page: 134 year: 2020 ident: e_1_2_8_6_2 publication-title: Front. Cell. Infect. Microbiol. – ident: e_1_2_8_78_1 – ident: e_1_2_8_129_1 doi: 10.1006/jmre.1997.1110 – ident: e_1_2_8_133_1 doi: 10.1016/j.jmr.2006.06.009 – ident: e_1_2_8_91_2 doi: 10.1039/D1OB01150B – ident: e_1_2_8_70_2 doi: 10.1002/cmdc.200700047 – ident: e_1_2_8_120_1 doi: 10.1016/j.bioorg.2022.106279 – ident: e_1_2_8_108_2 doi: 10.1021/cr000418f – ident: e_1_2_8_79_2 doi: 10.1039/c2cc30773a – ident: e_1_2_8_125_1 doi: 10.1039/D0OB00781A – ident: e_1_2_8_140_1 doi: 10.1016/S1074-7613(02)00447-8 – ident: e_1_2_8_92_2 doi: 10.1038/s41467-022-31840-0 – ident: e_1_2_8_95_1 doi: 10.1039/C6OB00083E – ident: e_1_2_8_11_2 doi: 10.1002/cbic.202000238 – ident: e_1_2_8_136_1 doi: 10.1002/jcc.21334 – ident: e_1_2_8_102_1 doi: 10.1016/j.carres.2003.11.013 – ident: e_1_2_8_122_1 doi: 10.1080/07328303.2011.590260 – ident: e_1_2_8_23_2 doi: 10.1021/acscentsci.9b00093 – ident: e_1_2_8_75_2 doi: 10.1039/D2CC00121G – ident: e_1_2_8_29_2 doi: 10.1021/cb900216e – ident: e_1_2_8_46_1 doi: 10.1039/D2CC04478A – ident: e_1_2_8_121_1 doi: 10.1039/C5PY01283J – ident: e_1_2_8_51_2 doi: 10.1021/jo034673m – ident: e_1_2_8_39_1 doi: 10.1039/D0SC01744B |
| SSID | ssj0009633 |
| Score | 2.4710498 |
| Snippet | The “carbohydrate chemical mimicry” exhibited by sp2‐iminosugars has been utilized to develop practical syntheses for analogs of the branched high‐mannose‐type... The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched... The "carbohydrate chemical mimicry" exhibited by sp -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type... The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched... Abstract The “carbohydrate chemical mimicry” exhibited by sp 2 ‐iminosugars has been utilized to develop practical syntheses for analogs of the branched... |
| SourceID | hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202303041 |
| SubjectTerms | Binding Sites Carbohydrates Chemical Sciences Chemistry Concanavalin A Concanavalin A - metabolism Conformation Epitopes glycomimetics high-mannose oligosaccharides Humans Lectins Lectins, C-Type - metabolism Mannose Mannose - chemistry Mannose-Binding Lectins - chemistry Mimicry Monosaccharides multivalency NMR Nuclear magnetic resonance Oligosaccharides Oligosaccharides - chemistry Phytochemicals Surface plasmon resonance |
| Title | High‐Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC‐SIGN and Langerin |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202303041 https://www.ncbi.nlm.nih.gov/pubmed/37828571 https://www.proquest.com/docview/2911642449 https://www.proquest.com/docview/2877387949 https://hal.univ-grenoble-alpes.fr/hal-04294809 |
| Volume | 30 |
| WOSCitedRecordID | wos001101820100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgQ4KXjfvKxmQQEi9ESxyndh5LRylSVSZgqG-Rb2GRpmRasj3zyhu_cb9k5ziXUSGEBKpapcmXOLWPfY5Tf98h5JUDFyEiGP3AO4UBl7ClICwNmFAq0dYZ7VMnfF2I5VKuVunRLyz-Vh9ieOCGPcOP19jBla4PbkRD4TchkxxCaJiRw_xnM4JS0a4ZP7qR3R13yeS5CFCEtZdtDNnB-vlrbun2CS6K_D3iXA9gvQeabf__vd8nW130SSetuTwgt1z5kNyd9knfHpEfuO7j6vtPzJ1c1Y5-PC2-VbUySM4qrKNzQMILmY81bU5UQyHuVGdFg1nAHOxxFDmEPSOSqtLSt4VnzlBMu0abCgG41AxMvCjp5A09nEKBnz-8X3r0whORi_IxOZ69-zKdB122hsBw8HCByMMcJm9GJYkLhYjHUmqXwzsy1imRC255EirNYQ5lo5xpHqlUKJ3D0dTqOH5CNsqqdDuEilBJZiUzZgzVE6U6jxMLI7piBhXr3IgEfWNlppMyx4wap1krwswyrOBsqOAReT3gz1oRjz8iX0LbDyDU3p5PFhnuQ8_NZZheAmivN42s6_F1xsBrjJE1mI7Ii-EwtB7-AaNKV10ARkK9SBgBAfO0NamhqFiglqCAizNvOX-50QwVM4Zvz_7lpF1yD7a5f54k98hGc37hnpM75rIp6vN934_gU6zkPtk8_DQ7XlwD2Z8fLg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLagQxov3McKAwxC4oVoiePUzmPXUToRCoIN7c1ybGeLNCXTku2ZV972G_dLdk5uU4UQEkJVpdb5cql97HPs-vsOIW8duAgRwOgH3sn3uIRPGsJSjwmto9Q6kzapE34kYrmUh4fx1243IXJhWn2IYcENe0YzXmMHxwXp7RvVUPhRSCWHGBqm5DABWuNgS9GIrO1-mx8kN8q7ky6fPBce6rD2yo0-2169wopnun2M-yJ_DzpXY9jGCc3v_4fHf0DudREonbYm85DccsUjsj7rE789Jr9w78fVz0vMn1xWjn45yY_KShskaOXW0QUg4YXsx4rWx7qmEHvq07zGTGAOShxFHmHPiqS6sHQnb9gzFFOv0bpEAG43AzPPCzp9T3dncMPvex-XDTppyMh58YQczD_szxZel7HBMxy8nCcyP4MJnNFR5HwhwomUqcvgHRjrtMgEtzzydcphHmWDjKU80LHQaQZHY5uG4QYZFWXhNgkVvpbMSmbMBKoniNMsjCyM6poZVK1zY-L1raVMJ2eOWTVOVCvEzBRWsBoqeEzeDfjTVsjjj8g30PgDCPW3F9NEYRl6by79-AJAW71tqK7XV4qB55ggczAek9fDYWg9_BNGF648B4yEepEwCgLmaWtTw61CgXqCAi7OGtP5y4MqVM0Yvj37l5NekfXF_udEJXvLT8_JXSjnzfqS3CKj-uzcvSB3zEWdV2cvu251DV8sIiM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIODC-7G0gEFIXBo1cZy1c9xuWbZitazEQ71Zju3QSFWyatKeuXLjN_aXdMZ5VCuEkBCKIiXO5GWPZ8aJv28IeevARYgIrB94pzDgErY0hKUBE1onmXUm86kTvi3EcimPjtJVN5sQsTAtP8TwwQ17hrfX2MHd2uZ7V6yh8FIIJYcYGobkMAC6wRMwtEjuzFdXvLvjLps8FwGysPa8jSHb2zx_wy9dP8ZZkb-HnJsRrHdBs3v_4eHvk7td_EknrcI8INdc-ZDcnvZp3x6Rnzjz4-LHL8yeXNWOfjopvle1NgjPKqyjc5CEBbGPNW2OdUMh8tTrosE8YA5KHEUUYY-JpLq0dL_w2BmKiddoU6EATjYDJS9KOtmlB1O44efDD0svvfBQ5KJ8TL7O3n-ZzoMuX0NgOPi4QORhDsM3o5PEhULEYykzl8MaGeu0yAW3PAl1xmEUZaOcZTzSqdBZDkdTm8XxE7JVVqV7RqgItWRWMmPGUD1RmuVxYsGma2aQs86NSNC3ljIdmTnm1DhRLQ0zU1jBaqjgEXk3yK9bGo8_Sr6Bxh-EkH17PlkoLEPfzWWYnoPQTq8bquvztWLgN8aIG0xH5PVwGFoPf8Ho0lVnICOhXiTYQJB52urUcKtYIJuggIszrzp_eVCFnBnD3vN_OekVubU6mKnF4fLjNrkDxdx_XJI7ZKs5PXMvyE1z3hT16Uvfpy4BjvAgDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Mannose+Oligosaccharide+Hemimimetics+that+Recapitulate+the+Conformation+and+Binding+Mode+to+Concanavalin+A%2C+DC%E2%80%90SIGN+and+Langerin&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Herrera%E2%80%90Gonz%C3%A1lez%2C+Irene&rft.au=Gonz%C3%A1lez%E2%80%90Cuesta%2C+Manuel&rft.au=Th%C3%A9paut%2C+Michel&rft.au=Laigre%2C+Eug%C3%A9nie&rft.date=2024-01-08&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=30&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fchem.202303041&rft.externalDBID=10.1002%252Fchem.202303041&rft.externalDocID=CHEM202303041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |