5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate
In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parall...
Uložené v:
| Vydané v: | Electronics letters Ročník 55; číslo 2; s. 98 - 100 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
The Institution of Engineering and Technology
24.01.2019
|
| Predmet: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality-factors (Q) at resonance and anti-resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q-factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance-antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low-loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design. |
|---|---|
| AbstractList | In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality-factors (Q) at resonance and anti-resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q-factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance-antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low-loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design. In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear‐wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y‐axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality‐factors (Q) at resonance and anti‐resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q‐factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance‐antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low‐loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design. In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO 3 , narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear‐wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y ‐axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality‐factors ( Q ) at resonance and anti‐resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q ‐factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance‐antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low‐loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design. |
| Author | Turner, P.J Hammond, R.B Koskela, J Villanueva, L.G Plessky, V Yandrapalli, S |
| Author_xml | – sequence: 1 givenname: V orcidid: 0000-0002-6651-6080 surname: Plessky fullname: Plessky, V email: vplessky@resonant.com organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland – sequence: 2 givenname: S surname: Yandrapalli fullname: Yandrapalli, S organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland – sequence: 3 givenname: P.J surname: Turner fullname: Turner, P.J organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 4 givenname: L.G surname: Villanueva fullname: Villanueva, L.G organization: ANEMS Laboratory, EPFL, Lausanne, Switzerland – sequence: 5 givenname: J surname: Koskela fullname: Koskela, J organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland – sequence: 6 givenname: R.B surname: Hammond fullname: Hammond, R.B organization: Resonant Inc., Santa Barbara, CA, USA |
| BookMark | eNp9kE1LAzEQhoMoWGtv_oAcPFRwa7Kb3ewe29IPYUEQhd5CkmYxmiYlSa3117ulHkSspxmG55lh3gtwap1VAFxhNMCIVHfKDFKEywFNK3oCOjjLUVJhvDgFHYRwluS4IuegF4IWCBNMCkRwB7Aczuaf0PCoPDdml6gPqaNaQrExb8mWvyvoVXCWR-cD7C9Gw8dwAwUPLeIsjC_awvXeNioG6BpodDvbrKDVTrTjS3DWcBNU77t2wfN08jSeJ_XD7H48rBNJCEUJl5nMM4HztKCNpBVuyiLltCwRlSmvGik5KnFFRSEVlUrKYlnwtkcFEg0XJOuC9LBXeheCVw1r3-BROxs914ZhxPYpMWXYPiW2T6mVbn9Ja69X3O-O4fkB32qjdv-ybFLX6WiKCpyj1usfPK0ie3Ubb9skjp24_gOd1D82r5dN9gUNMJRV |
| CitedBy_id | crossref_primary_10_1134_S1063771021060051 crossref_primary_10_1002_admt_202301749 crossref_primary_10_1063_5_0182451 crossref_primary_10_1109_TUFFC_2025_3565505 crossref_primary_10_3390_mi11070630 crossref_primary_10_1109_TUFFC_2025_3595433 crossref_primary_10_1063_5_0196015 crossref_primary_10_1088_1361_6463_ad9c90 crossref_primary_10_1039_D5MH00917K crossref_primary_10_1016_j_sse_2022_108404 crossref_primary_10_3390_photonics11100895 crossref_primary_10_3390_pr10050912 crossref_primary_10_1109_LED_2022_3230911 crossref_primary_10_1109_LED_2023_3309672 crossref_primary_10_1109_JMEMS_2022_3143354 crossref_primary_10_1109_TUFFC_2023_3277342 crossref_primary_10_1109_LED_2023_3285813 crossref_primary_10_1063_5_0275691 crossref_primary_10_1016_j_mejo_2023_106007 crossref_primary_10_1109_TMTT_2019_2949808 crossref_primary_10_1109_LED_2025_3586647 crossref_primary_10_3390_mi12020141 crossref_primary_10_1109_TUFFC_2020_3011624 crossref_primary_10_1109_JMEMS_2021_3114627 crossref_primary_10_1109_LMWT_2025_3529017 crossref_primary_10_1109_JMEMS_2023_3282024 crossref_primary_10_1109_TMTT_2021_3079497 crossref_primary_10_1016_j_chip_2023_100058 crossref_primary_10_1109_JMEMS_2020_2967784 crossref_primary_10_1063_5_0233718 crossref_primary_10_3390_mi12091039 crossref_primary_10_1109_JMEMS_2020_3007590 crossref_primary_10_1063_5_0037771 crossref_primary_10_1109_TUFFC_2023_3255260 crossref_primary_10_1109_TED_2024_3467223 crossref_primary_10_1109_TED_2023_3297561 crossref_primary_10_1109_JMEMS_2020_2975557 crossref_primary_10_1109_TUFFC_2019_2944302 crossref_primary_10_1088_1402_4896_adb5d1 crossref_primary_10_3390_acoustics7030058 crossref_primary_10_3390_mi15111367 crossref_primary_10_1016_j_mejo_2025_106554 crossref_primary_10_3390_mi15121416 crossref_primary_10_3390_act12120457 crossref_primary_10_1088_1361_6463_ad3e06 crossref_primary_10_1109_JMEMS_2019_2922935 crossref_primary_10_1109_TMTT_2021_3049434 crossref_primary_10_1063_5_0158888 crossref_primary_10_1016_j_pnsc_2021_08_001 crossref_primary_10_1063_5_0196238 crossref_primary_10_1002_mop_34280 crossref_primary_10_1093_nsr_nwaa262 crossref_primary_10_1109_TED_2024_3421178 crossref_primary_10_1088_1361_6463_adea82 crossref_primary_10_1109_TUFFC_2020_2971196 crossref_primary_10_3390_mi14071341 crossref_primary_10_1063_5_0094364 crossref_primary_10_1088_1361_6439_acbfc2 crossref_primary_10_3390_mi12010005 crossref_primary_10_1038_s41378_020_00183_5 crossref_primary_10_1088_1361_6463_ac8687 crossref_primary_10_1109_JMEMS_2021_3092724 crossref_primary_10_1016_j_coco_2023_101502 crossref_primary_10_35848_1347_4065_ad1d1c crossref_primary_10_1049_ell2_12261 crossref_primary_10_1109_LMWT_2023_3301229 crossref_primary_10_35848_1347_4065_ad2653 crossref_primary_10_1063_5_0250773 crossref_primary_10_1049_el_2020_1922 crossref_primary_10_1088_1361_6439_ad7d15 crossref_primary_10_1016_j_cjph_2022_03_022 crossref_primary_10_1109_JMEMS_2020_2982775 crossref_primary_10_1109_TMTT_2022_3194554 crossref_primary_10_1016_j_apsusc_2024_160566 crossref_primary_10_35848_1347_4065_ad1e03 crossref_primary_10_1038_s41378_024_00776_4 crossref_primary_10_1109_JMEMS_2025_3540960 crossref_primary_10_35848_1347_4065_adf587 crossref_primary_10_1016_j_pquantelec_2025_100565 crossref_primary_10_1088_1361_6439_ac288f crossref_primary_10_3390_s20174978 crossref_primary_10_1109_TED_2023_3311773 crossref_primary_10_1109_TMTT_2022_3208213 crossref_primary_10_35848_1347_4065_adbbf9 crossref_primary_10_1109_TUFFC_2020_3049084 crossref_primary_10_1109_JMEMS_2025_3577619 crossref_primary_10_1109_TMTT_2020_3027694 crossref_primary_10_1016_j_sna_2025_116699 crossref_primary_10_1007_s44275_024_00005_0 crossref_primary_10_1049_el_2019_1658 crossref_primary_10_3390_electronics12132964 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2018.7297 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 100 |
| ExternalDocumentID | 10_1049_el_2018_7297 ELL2BF06150 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4470-ac3c53b15267fc791f862a78807c2a9fcca08197b6ce7cecc6d6a6ce060bfab43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457283900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:27:20 EST 2025 Wed Oct 29 21:14:36 EDT 2025 Wed Jan 22 16:59:10 EST 2025 Thu May 09 18:05:33 EDT 2019 Tue Jan 05 21:44:25 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Q-factor 4th generation mobile phones MEMS process resonance frequency micromechanical devices size 500.0 nm lithium niobate quality-factors low-loss filters laterally-excited bulk-wave resonators high frequency filter 5th generation mobile phones bulk acoustic wave devices frequency 5.0 GHz crystal resonators crystalline Y-axis resonance-antiresonance frequency spacing electrodes microwave resonators free-standing platelet piezoelectric coupling size 400 nm acoustic resonators lateral electric fields LiNbO3 lithium compounds resonance Q-factor photolithography narrow electrodes XBAR frequency 3.0 GHz to 6.0 GHz wide band filters optical photolithography microwave filters shear-wave bulk acoustic resonances RF filters |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4470-ac3c53b15267fc791f862a78807c2a9fcca08197b6ce7cecc6d6a6ce060bfab43 |
| Notes | S. Yandrapalli: Also with EPFL, Lausanne, Switzerland |
| ORCID | 0000-0002-6651-6080 |
| OpenAccessLink | http://infoscience.epfl.ch/record/263899 |
| PageCount | 3 |
| ParticipantIDs | wiley_primary_10_1049_el_2018_7297_ELL2BF06150 iet_journals_10_1049_el_2018_7297 crossref_citationtrail_10_1049_el_2018_7297 crossref_primary_10_1049_el_2018_7297 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-24 |
| PublicationDateYYYYMMDD | 2019-01-24 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Kadota, M.; Ogami, T. (C1) 2011; 50 2018 2017 2016 2011; 50 Takai T. (e_1_2_6_3_1) 2017 Yang Y. (e_1_2_6_4_1) 2018 Kadota M. (e_1_2_6_2_1) 2011; 50 Koskela J. (e_1_2_6_7_1) 2016 Plessky V. (e_1_2_6_5_1) 2017 e_1_2_6_6_1 |
| References_xml | – volume: 50 start-page: 1 issue: 78 year: 2011 end-page: 4 ident: C1 article-title: 5.4 GHz lamb wave resonator on LiNbO thin crystal plate and its application publication-title: Jpn. J. Appl. Phys. – year: 2018 – start-page: 1 year: 2016 end-page: 4 – start-page: 1 year: 2017 end-page: 5 – start-page: 1 year: 2017 end-page: 8 – volume: 50 start-page: 1 issue: 78 year: 2011 end-page: 4 article-title: 5.4 GHz lamb wave resonator on LiNbO thin crystal plate and its application publication-title: Jpn. J. Appl. Phys. – volume-title: Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators year: 2018 ident: e_1_2_6_4_1 – volume: 50 start-page: 1 issue: 78 year: 2011 ident: e_1_2_6_2_1 article-title: 5.4 GHz lamb wave resonator on LiNbO3 thin crystal plate and its application publication-title: Jpn. J. Appl. Phys. – start-page: 1 volume-title: FEM modeling of an entire 5‐IDT CRF/DMS filter year: 2017 ident: e_1_2_6_5_1 – start-page: 1 volume-title: I.H.P. SAW technology and its application to microacoustic components (invited) year: 2017 ident: e_1_2_6_3_1 – ident: e_1_2_6_6_1 – start-page: 1 volume-title: Hierarchical cascading in 2D FEM simulation of finite SAW devices with periodic block structure year: 2016 ident: e_1_2_6_7_1 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.6209617 |
| Snippet | In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite... In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite... In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO 3 , narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 98 |
| SubjectTerms | 4th generation mobile phones 5th generation mobile phones acoustic resonators bulk acoustic wave devices crystal resonators crystalline Y‐axis electrodes free‐standing platelet frequency 3.0 GHz to 6.0 GHz frequency 5.0 GHz high frequency filter lateral electric fields laterally‐excited bulk‐wave resonators LiNbO3 lithium compounds lithium niobate low‐loss filters MEMS process micromechanical devices microwave filters microwave resonators Microwave technology narrow electrodes optical photolithography photolithography piezoelectric coupling quality‐factors Q‐factor resonance frequency resonance Q‐factor resonance‐antiresonance frequency spacing RF filters shear‐wave bulk acoustic resonances size 400 nm size 500.0 nm wide band filters XBAR |
| Title | 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2018.7297 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2018.7297 |
| Volume | 55 |
| WOSCitedRecordID | wos000457283900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ49FAO5dFWLC8ZqUhUVSCJnXhzBMQCElqhqqh7i_yKNmrIrjZZ2nLqT-hP4LfwU_glzCRhYQ8gVb1Eecwkkcfj-cZjzxDySTLOLdhJxwN04GDgzJFSasc1AId9G3CjVVVsQnS77V4vumgm3HAvTJ0fYjLhhppRjdeo4FLVVUgA1KIQMXDgtfcAHYpZMu95rI2lG3x-MYkiwFBbFVdhgYtK3WsWvgP__nPuKZM0m9pyGqhWlqaz-L__uETeNRiTHtSdYpnM2HyFLDzLPPiemODu9uT0hmYSdyBn2e_7P3_tL434k6px9gMuf8prS8EZx-n1waigu73Dg6_FZ4p2z9BBTst-mtMhvgFkX9BBQgHS99PxFc1TGCVK-4Fcdo6_HZ06TcEFR3MuXEdqpgOmwKSHItEi8hLwdyQ4ya7QvowSkDYiCKFCbYUG4YcmlHDuhq5KpOLsI5nLB7ldJTRgvvFNpFjkMi4jK0OA8ooFRgvhaWFb5Mtjm8e6yUaORTGyuIqK8yi2WYxtF2PbtcjOhHpYZ-F4gW4bxBc3ali8QLM5RXN8_vQsHpqkRWqRvvoh4Dr3DztVOv21f2VYJ2_hPi5Tc3y-QebK0dhukjf6ukyL0VbVheH4_az7AJVp8sU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xU6n0QP_FltIaiUoglDYbOzE5QsV2EcuqqkDsLXJsR0SE7GqTBdpTH6GPwLPwKH2SziTplj1QqeotUWaSyOPxfDNjzwBsKC6ERTvptBEdOJQ4c5RS2nENwmHP-sLouGo2Ifv9ncEg_Nz0OaWzMHV9iGnAjTSjWq9JwSkgXTucgopkWsoctHfeIzyU87AoEGtQ74bTg_40jYBrbdVdhfsuafWg2fmO_B_ucs_YpPnUlrNItTI1ncf__ZNPYLlBmWy3nhZPYc7mz-DRndqDz8H4tzefut9YpugMcpZ9_fn9h73WhEBZPMnO8fZKXVqG7jgF2Ifjgm0O9na_FFuMLJ9hw5yVZ2nORvQGlH7BhglDUH-WTi5YnuI6UdoXcNLZP_7YdZqWC44WQrqO0lz7PEajHshEy7CdoMej0E12pfZUmKC8CUPIONBWahR_YAKF127gxomKBX8JC_kwtyvAfO4Zz4QxD10uVGhVgGA-5r7RUra1tC3Y_j3okW7qkVNbjCyq8uIijGwW0dhFNHYteDelHtV1OO6hW0f5RY0iFvfQrM3Q7Pf-PItGJmlBLdO_fgi5et5epyqo_-pfGd7Cw-7xUS_qHfQPV2EJaWjTmuOJ17BQjid2DR7oyzItxm-q-fwL9J32Dg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6xBaHlAMufKFDWSCCBVoEkduLm2MKWXVFVFQKpt8ixHW20Ia2atPyceAQegWfhUXgSZpJs2R4WCXFLlJkkmvF4vvHYMwBPFBfCop90PEQHDiXOHKWUdlyDcNi3gTA6qZtNyMmkP5tF07bPKZ2FaepDbBbcyDLq-ZoM3C5M2gScgopkWsoceP0XCA_lDlwWgfRoWPtiukkj4Fxbd1fhgUtWPWt3viP_y_PcWz5pJ7PVNlKtXc3oxn__5B5cb1EmGzTD4iZcssUtuHau9uBtMMHPH2-OvrJc0RnkPP_y69t3-1kTAmXJKj_F209qbRmG47TAPl-W7NlsOHhXPmfk-QybF6w6yQq2oDeg9ks2TxmC-pNs9ZEVGc4Tlb0DH0aH718dOW3LBUcLIV1Haa4DnqBTD2WqZeSlGPEoDJNdqX0VpahvwhAyCbWVGtUfmlDhtRu6SaoSwe9Cp5gX9h6wgPvGN1HCI5cLFVkVIphPeGC0lJ6WtgsHZ0KPdVuPnNpi5HGdFxdRbPOYZBeT7LrwdEO9aOpwXED3GPUXt4ZYXkDT26I5HP95FqP6utDo9K8fQq6xPxzVBfXv_yvDPlydvh7F4-PJ2wewiyS0Z83xxUPoVMuV7cEVva6ycvmoHs6_ARCJ9SU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5%C2%A0GHz+laterally%E2%80%90excited+bulk%E2%80%90wave+resonators+%28XBARs%29+based+on+thin+platelets+of+lithium+niobate&rft.jtitle=Electronics+letters&rft.au=Plessky%2C+V.&rft.au=Yandrapalli%2C+S.&rft.au=Turner%2C+P.J.&rft.au=Villanueva%2C+L.G.&rft.date=2019-01-24&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=55&rft.issue=2&rft.spage=98&rft.epage=100&rft_id=info:doi/10.1049%2Fel.2018.7297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2018_7297 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |