5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate

In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parall...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics letters Ročník 55; číslo 2; s. 98 - 100
Hlavní autori: Plessky, V, Yandrapalli, S, Turner, P.J, Villanueva, L.G, Koskela, J, Hammond, R.B
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 24.01.2019
Predmet:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality-factors (Q) at resonance and anti-resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q-factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance-antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low-loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design.
AbstractList In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear-wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y-axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality-factors (Q) at resonance and anti-resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q-factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance-antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low-loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design.
In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear‐wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y‐axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality‐factors (Q) at resonance and anti‐resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q‐factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance‐antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low‐loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design.
In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO 3 , narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite standing shear‐wave bulk acoustic resonances (XBARs), by utilising lateral electric fields oriented parallel to the crystalline Y ‐axis and parallel to the plane of the platelet. The resonance frequency of ∼4800 MHz is determined mainly by the platelet thickness and only weakly depends on the electrode width and the pitch. Simulations show quality‐factors ( Q ) at resonance and anti‐resonance higher than 1000. Measurements of the first fabricated devices show a resonance Q ‐factor ∼300, strong piezoelectric coupling ∼25%, (indicated by the large Resonance‐antiResonance frequency spacing, ∼11%) and an impedance at resonance of a few ohms. The static capacitance of the devices, corresponds to the imaginary part of the impedance ∼100 Ω. This device opens the possibility for the development of low‐loss, wide band, RF filters in the 3–6 GHz range for 4th and 5th generation (4G/5G) mobile phones. XBARs can be produced using standard optical photolithography and MEMS processes. The 3rd, 5th, 7th, and 9th harmonics were observed, up to 38 GHz, and are also promising for high frequency filter design.
Author Turner, P.J
Hammond, R.B
Koskela, J
Villanueva, L.G
Plessky, V
Yandrapalli, S
Author_xml – sequence: 1
  givenname: V
  orcidid: 0000-0002-6651-6080
  surname: Plessky
  fullname: Plessky, V
  email: vplessky@resonant.com
  organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland
– sequence: 2
  givenname: S
  surname: Yandrapalli
  fullname: Yandrapalli, S
  organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland
– sequence: 3
  givenname: P.J
  surname: Turner
  fullname: Turner, P.J
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 4
  givenname: L.G
  surname: Villanueva
  fullname: Villanueva, L.G
  organization: ANEMS Laboratory, EPFL, Lausanne, Switzerland
– sequence: 5
  givenname: J
  surname: Koskela
  fullname: Koskela, J
  organization: Resonant Inc. and GVR Trade SA, a wholly owned subsidiary of Resonant, Gorgier, Switzerland
– sequence: 6
  givenname: R.B
  surname: Hammond
  fullname: Hammond, R.B
  organization: Resonant Inc., Santa Barbara, CA, USA
BookMark eNp9kE1LAzEQhoMoWGtv_oAcPFRwa7Kb3ewe29IPYUEQhd5CkmYxmiYlSa3117ulHkSspxmG55lh3gtwap1VAFxhNMCIVHfKDFKEywFNK3oCOjjLUVJhvDgFHYRwluS4IuegF4IWCBNMCkRwB7Aczuaf0PCoPDdml6gPqaNaQrExb8mWvyvoVXCWR-cD7C9Gw8dwAwUPLeIsjC_awvXeNioG6BpodDvbrKDVTrTjS3DWcBNU77t2wfN08jSeJ_XD7H48rBNJCEUJl5nMM4HztKCNpBVuyiLltCwRlSmvGik5KnFFRSEVlUrKYlnwtkcFEg0XJOuC9LBXeheCVw1r3-BROxs914ZhxPYpMWXYPiW2T6mVbn9Ja69X3O-O4fkB32qjdv-ybFLX6WiKCpyj1usfPK0ie3Ubb9skjp24_gOd1D82r5dN9gUNMJRV
CitedBy_id crossref_primary_10_1134_S1063771021060051
crossref_primary_10_1002_admt_202301749
crossref_primary_10_1063_5_0182451
crossref_primary_10_1109_TUFFC_2025_3565505
crossref_primary_10_3390_mi11070630
crossref_primary_10_1109_TUFFC_2025_3595433
crossref_primary_10_1063_5_0196015
crossref_primary_10_1088_1361_6463_ad9c90
crossref_primary_10_1039_D5MH00917K
crossref_primary_10_1016_j_sse_2022_108404
crossref_primary_10_3390_photonics11100895
crossref_primary_10_3390_pr10050912
crossref_primary_10_1109_LED_2022_3230911
crossref_primary_10_1109_LED_2023_3309672
crossref_primary_10_1109_JMEMS_2022_3143354
crossref_primary_10_1109_TUFFC_2023_3277342
crossref_primary_10_1109_LED_2023_3285813
crossref_primary_10_1063_5_0275691
crossref_primary_10_1016_j_mejo_2023_106007
crossref_primary_10_1109_TMTT_2019_2949808
crossref_primary_10_1109_LED_2025_3586647
crossref_primary_10_3390_mi12020141
crossref_primary_10_1109_TUFFC_2020_3011624
crossref_primary_10_1109_JMEMS_2021_3114627
crossref_primary_10_1109_LMWT_2025_3529017
crossref_primary_10_1109_JMEMS_2023_3282024
crossref_primary_10_1109_TMTT_2021_3079497
crossref_primary_10_1016_j_chip_2023_100058
crossref_primary_10_1109_JMEMS_2020_2967784
crossref_primary_10_1063_5_0233718
crossref_primary_10_3390_mi12091039
crossref_primary_10_1109_JMEMS_2020_3007590
crossref_primary_10_1063_5_0037771
crossref_primary_10_1109_TUFFC_2023_3255260
crossref_primary_10_1109_TED_2024_3467223
crossref_primary_10_1109_TED_2023_3297561
crossref_primary_10_1109_JMEMS_2020_2975557
crossref_primary_10_1109_TUFFC_2019_2944302
crossref_primary_10_1088_1402_4896_adb5d1
crossref_primary_10_3390_acoustics7030058
crossref_primary_10_3390_mi15111367
crossref_primary_10_1016_j_mejo_2025_106554
crossref_primary_10_3390_mi15121416
crossref_primary_10_3390_act12120457
crossref_primary_10_1088_1361_6463_ad3e06
crossref_primary_10_1109_JMEMS_2019_2922935
crossref_primary_10_1109_TMTT_2021_3049434
crossref_primary_10_1063_5_0158888
crossref_primary_10_1016_j_pnsc_2021_08_001
crossref_primary_10_1063_5_0196238
crossref_primary_10_1002_mop_34280
crossref_primary_10_1093_nsr_nwaa262
crossref_primary_10_1109_TED_2024_3421178
crossref_primary_10_1088_1361_6463_adea82
crossref_primary_10_1109_TUFFC_2020_2971196
crossref_primary_10_3390_mi14071341
crossref_primary_10_1063_5_0094364
crossref_primary_10_1088_1361_6439_acbfc2
crossref_primary_10_3390_mi12010005
crossref_primary_10_1038_s41378_020_00183_5
crossref_primary_10_1088_1361_6463_ac8687
crossref_primary_10_1109_JMEMS_2021_3092724
crossref_primary_10_1016_j_coco_2023_101502
crossref_primary_10_35848_1347_4065_ad1d1c
crossref_primary_10_1049_ell2_12261
crossref_primary_10_1109_LMWT_2023_3301229
crossref_primary_10_35848_1347_4065_ad2653
crossref_primary_10_1063_5_0250773
crossref_primary_10_1049_el_2020_1922
crossref_primary_10_1088_1361_6439_ad7d15
crossref_primary_10_1016_j_cjph_2022_03_022
crossref_primary_10_1109_JMEMS_2020_2982775
crossref_primary_10_1109_TMTT_2022_3194554
crossref_primary_10_1016_j_apsusc_2024_160566
crossref_primary_10_35848_1347_4065_ad1e03
crossref_primary_10_1038_s41378_024_00776_4
crossref_primary_10_1109_JMEMS_2025_3540960
crossref_primary_10_35848_1347_4065_adf587
crossref_primary_10_1016_j_pquantelec_2025_100565
crossref_primary_10_1088_1361_6439_ac288f
crossref_primary_10_3390_s20174978
crossref_primary_10_1109_TED_2023_3311773
crossref_primary_10_1109_TMTT_2022_3208213
crossref_primary_10_35848_1347_4065_adbbf9
crossref_primary_10_1109_TUFFC_2020_3049084
crossref_primary_10_1109_JMEMS_2025_3577619
crossref_primary_10_1109_TMTT_2020_3027694
crossref_primary_10_1016_j_sna_2025_116699
crossref_primary_10_1007_s44275_024_00005_0
crossref_primary_10_1049_el_2019_1658
crossref_primary_10_3390_electronics12132964
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2018.7297
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 100
ExternalDocumentID 10_1049_el_2018_7297
ELL2BF06150
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4470-ac3c53b15267fc791f862a78807c2a9fcca08197b6ce7cecc6d6a6ce060bfab43
IEDL.DBID 24P
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457283900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:27:20 EST 2025
Wed Oct 29 21:14:36 EDT 2025
Wed Jan 22 16:59:10 EST 2025
Thu May 09 18:05:33 EDT 2019
Tue Jan 05 21:44:25 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Q-factor
4th generation mobile phones
MEMS process
resonance frequency
micromechanical devices
size 500.0 nm
lithium niobate
quality-factors
low-loss filters
laterally-excited bulk-wave resonators
high frequency filter
5th generation mobile phones
bulk acoustic wave devices
frequency 5.0 GHz
crystal resonators
crystalline Y-axis
resonance-antiresonance frequency spacing
electrodes
microwave resonators
free-standing platelet
piezoelectric coupling
size 400 nm
acoustic resonators
lateral electric fields
LiNbO3
lithium compounds
resonance Q-factor
photolithography
narrow electrodes
XBAR
frequency 3.0 GHz to 6.0 GHz
wide band filters
optical photolithography
microwave filters
shear-wave bulk acoustic resonances
RF filters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4470-ac3c53b15267fc791f862a78807c2a9fcca08197b6ce7cecc6d6a6ce060bfab43
Notes S. Yandrapalli: Also with EPFL, Lausanne, Switzerland
ORCID 0000-0002-6651-6080
OpenAccessLink http://infoscience.epfl.ch/record/263899
PageCount 3
ParticipantIDs wiley_primary_10_1049_el_2018_7297_ELL2BF06150
iet_journals_10_1049_el_2018_7297
crossref_citationtrail_10_1049_el_2018_7297
crossref_primary_10_1049_el_2018_7297
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2019-01-24
PublicationDateYYYYMMDD 2019-01-24
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-24
  day: 24
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Kadota, M.; Ogami, T. (C1) 2011; 50
2018
2017
2016
2011; 50
Takai T. (e_1_2_6_3_1) 2017
Yang Y. (e_1_2_6_4_1) 2018
Kadota M. (e_1_2_6_2_1) 2011; 50
Koskela J. (e_1_2_6_7_1) 2016
Plessky V. (e_1_2_6_5_1) 2017
e_1_2_6_6_1
References_xml – volume: 50
  start-page: 1
  issue: 78
  year: 2011
  end-page: 4
  ident: C1
  article-title: 5.4 GHz lamb wave resonator on LiNbO thin crystal plate and its application
  publication-title: Jpn. J. Appl. Phys.
– year: 2018
– start-page: 1
  year: 2016
  end-page: 4
– start-page: 1
  year: 2017
  end-page: 5
– start-page: 1
  year: 2017
  end-page: 8
– volume: 50
  start-page: 1
  issue: 78
  year: 2011
  end-page: 4
  article-title: 5.4 GHz lamb wave resonator on LiNbO thin crystal plate and its application
  publication-title: Jpn. J. Appl. Phys.
– volume-title: Toward Ka band acoustics: lithium niobate asymmetrical mode piezoelectric MEMS resonators
  year: 2018
  ident: e_1_2_6_4_1
– volume: 50
  start-page: 1
  issue: 78
  year: 2011
  ident: e_1_2_6_2_1
  article-title: 5.4 GHz lamb wave resonator on LiNbO3 thin crystal plate and its application
  publication-title: Jpn. J. Appl. Phys.
– start-page: 1
  volume-title: FEM modeling of an entire 5‐IDT CRF/DMS filter
  year: 2017
  ident: e_1_2_6_5_1
– start-page: 1
  volume-title: I.H.P. SAW technology and its application to microacoustic components (invited)
  year: 2017
  ident: e_1_2_6_3_1
– ident: e_1_2_6_6_1
– start-page: 1
  volume-title: Hierarchical cascading in 2D FEM simulation of finite SAW devices with periodic block structure
  year: 2016
  ident: e_1_2_6_7_1
SSID ssib014146041
ssj0012997
Score 2.6209617
Snippet In a free-standing 400-nm-thick platelet of crystalline ZY-LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite...
In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO3, narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite...
In a free‐standing 400‐nm‐thick platelet of crystalline ZY‐LiNbO 3 , narrow electrodes (500 nm) placed periodically with a pitch of a few microns can eXcite...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms 4th generation mobile phones
5th generation mobile phones
acoustic resonators
bulk acoustic wave devices
crystal resonators
crystalline Y‐axis
electrodes
free‐standing platelet
frequency 3.0 GHz to 6.0 GHz
frequency 5.0 GHz
high frequency filter
lateral electric fields
laterally‐excited bulk‐wave resonators
LiNbO3
lithium compounds
lithium niobate
low‐loss filters
MEMS process
micromechanical devices
microwave filters
microwave resonators
Microwave technology
narrow electrodes
optical photolithography
photolithography
piezoelectric coupling
quality‐factors
Q‐factor
resonance frequency
resonance Q‐factor
resonance‐antiresonance frequency spacing
RF filters
shear‐wave bulk acoustic resonances
size 400 nm
size 500.0 nm
wide band filters
XBAR
Title 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate
URI http://digital-library.theiet.org/content/journals/10.1049/el.2018.7297
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2018.7297
Volume 55
WOSCitedRecordID wos000457283900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZ49FAO5dFWLC8ZqUhUVSCJnXhzBMQCElqhqqh7i_yKNmrIrjZZ2nLqT-hP4LfwU_glzCRhYQ8gVb1Eecwkkcfj-cZjzxDySTLOLdhJxwN04GDgzJFSasc1AId9G3CjVVVsQnS77V4vumgm3HAvTJ0fYjLhhppRjdeo4FLVVUgA1KIQMXDgtfcAHYpZMu95rI2lG3x-MYkiwFBbFVdhgYtK3WsWvgP__nPuKZM0m9pyGqhWlqaz-L__uETeNRiTHtSdYpnM2HyFLDzLPPiemODu9uT0hmYSdyBn2e_7P3_tL434k6px9gMuf8prS8EZx-n1waigu73Dg6_FZ4p2z9BBTst-mtMhvgFkX9BBQgHS99PxFc1TGCVK-4Fcdo6_HZ06TcEFR3MuXEdqpgOmwKSHItEi8hLwdyQ4ya7QvowSkDYiCKFCbYUG4YcmlHDuhq5KpOLsI5nLB7ldJTRgvvFNpFjkMi4jK0OA8ooFRgvhaWFb5Mtjm8e6yUaORTGyuIqK8yi2WYxtF2PbtcjOhHpYZ-F4gW4bxBc3ali8QLM5RXN8_vQsHpqkRWqRvvoh4Dr3DztVOv21f2VYJ2_hPi5Tc3y-QebK0dhukjf6ukyL0VbVheH4_az7AJVp8sU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7xU6n0QP_FltIaiUoglDYbOzE5QsV2EcuqqkDsLXJsR0SE7GqTBdpTH6GPwLPwKH2SziTplj1QqeotUWaSyOPxfDNjzwBsKC6ERTvptBEdOJQ4c5RS2nENwmHP-sLouGo2Ifv9ncEg_Nz0OaWzMHV9iGnAjTSjWq9JwSkgXTucgopkWsoctHfeIzyU87AoEGtQ74bTg_40jYBrbdVdhfsuafWg2fmO_B_ucs_YpPnUlrNItTI1ncf__ZNPYLlBmWy3nhZPYc7mz-DRndqDz8H4tzefut9YpugMcpZ9_fn9h73WhEBZPMnO8fZKXVqG7jgF2Ifjgm0O9na_FFuMLJ9hw5yVZ2nORvQGlH7BhglDUH-WTi5YnuI6UdoXcNLZP_7YdZqWC44WQrqO0lz7PEajHshEy7CdoMej0E12pfZUmKC8CUPIONBWahR_YAKF127gxomKBX8JC_kwtyvAfO4Zz4QxD10uVGhVgGA-5r7RUra1tC3Y_j3okW7qkVNbjCyq8uIijGwW0dhFNHYteDelHtV1OO6hW0f5RY0iFvfQrM3Q7Pf-PItGJmlBLdO_fgi5et5epyqo_-pfGd7Cw-7xUS_qHfQPV2EJaWjTmuOJ17BQjid2DR7oyzItxm-q-fwL9J32Dg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6xBaHlAMufKFDWSCCBVoEkduLm2MKWXVFVFQKpt8ixHW20Ia2atPyceAQegWfhUXgSZpJs2R4WCXFLlJkkmvF4vvHYMwBPFBfCop90PEQHDiXOHKWUdlyDcNi3gTA6qZtNyMmkP5tF07bPKZ2FaepDbBbcyDLq-ZoM3C5M2gScgopkWsoceP0XCA_lDlwWgfRoWPtiukkj4Fxbd1fhgUtWPWt3viP_y_PcWz5pJ7PVNlKtXc3oxn__5B5cb1EmGzTD4iZcssUtuHau9uBtMMHPH2-OvrJc0RnkPP_y69t3-1kTAmXJKj_F209qbRmG47TAPl-W7NlsOHhXPmfk-QybF6w6yQq2oDeg9ks2TxmC-pNs9ZEVGc4Tlb0DH0aH718dOW3LBUcLIV1Haa4DnqBTD2WqZeSlGPEoDJNdqX0VpahvwhAyCbWVGtUfmlDhtRu6SaoSwe9Cp5gX9h6wgPvGN1HCI5cLFVkVIphPeGC0lJ6WtgsHZ0KPdVuPnNpi5HGdFxdRbPOYZBeT7LrwdEO9aOpwXED3GPUXt4ZYXkDT26I5HP95FqP6utDo9K8fQq6xPxzVBfXv_yvDPlydvh7F4-PJ2wewiyS0Z83xxUPoVMuV7cEVva6ycvmoHs6_ARCJ9SU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5%C2%A0GHz+laterally%E2%80%90excited+bulk%E2%80%90wave+resonators+%28XBARs%29+based+on+thin+platelets+of+lithium+niobate&rft.jtitle=Electronics+letters&rft.au=Plessky%2C+V.&rft.au=Yandrapalli%2C+S.&rft.au=Turner%2C+P.J.&rft.au=Villanueva%2C+L.G.&rft.date=2019-01-24&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=55&rft.issue=2&rft.spage=98&rft.epage=100&rft_id=info:doi/10.1049%2Fel.2018.7297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2018_7297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon