A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs

In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full impl...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 12; p. 3961
Main Authors: De Venuto, Daniela, Mezzina, Giovanni
Format: Journal Article
Language:English
Published: Basel MDPI AG 08.06.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.
AbstractList In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.
In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.
Author De Venuto, Daniela
Mezzina, Giovanni
AuthorAffiliation Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70124 Bari, Italy; giovanni.mezzina@poliba.it
AuthorAffiliation_xml – name: Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70124 Bari, Italy; giovanni.mezzina@poliba.it
Author_xml – sequence: 1
  givenname: Daniela
  orcidid: 0000-0003-4563-7614
  surname: De Venuto
  fullname: De Venuto, Daniela
– sequence: 2
  givenname: Giovanni
  orcidid: 0000-0003-3927-8686
  surname: Mezzina
  fullname: Mezzina, Giovanni
BookMark eNplkktv1DAQgCNURB9w4B9Y4tIeQv2K41yQttulrFSVii5ny7Eni1eJvbWTSuXX42ULouVke_zNN9Z4josDHzwUxXuCPzLW4PNECaGsEeRVcUQ45aWkFB_8sz8sjlPaYEwZY_JNccg4xYRJclSEGbpzft1DuYpO9-iWYYwuYQQzhogudAKLgkd3j0MbevcznxaLK6S9RbNpDOBNsGDLU3J5Nr-5QWNAy2EbwwOg5eobuoXYhThobwA5jy7my_S2eN3pPsG7p_Wk-P55sZp_Ka-_Xi3ns-vScC7Gsmu0lW0lQNS41ozzSttKCt1RRiuMKyFoh2VT2driBmRVW8qhqQ1rW0NbY9lJsdx7bdAbtY1u0PFRBe3U70CIa6Xj6EwPyraiY6LKhXHHmaSSZXlNuNA53tYkuz7tXdupHcAa8GPU_TPp8xvvfqh1eFC59UJKlgWnT4IY7idIoxpcMtD32kOYkqIVl_n7WL1DP7xAN2GKPrdqR1VESs54ps73lIkhpQidMm7Uowu7-q5XBKvdYKi_g5Ezzl5k_Hn-_-wvISm0Xw
CitedBy_id crossref_primary_10_3390_s25103102
crossref_primary_10_1088_1741_2552_ad430d
crossref_primary_10_3390_app12168274
crossref_primary_10_1016_j_asej_2025_103436
crossref_primary_10_3389_frvir_2024_1433082
crossref_primary_10_1007_s00521_023_08329_y
crossref_primary_10_3233_JIFS_219334
crossref_primary_10_3389_fnins_2023_1203059
crossref_primary_10_1038_s41598_025_87414_9
crossref_primary_10_1088_1742_6596_2024_1_012044
crossref_primary_10_1039_D4RA05560H
crossref_primary_10_1109_JSEN_2022_3159475
Cites_doi 10.3390/s20092638
10.1109/TBME.2004.826702
10.1109/CVPRW.2014.79
10.1109/7333.948456
10.1109/BCI48061.2020.9061634
10.1109/ACCESS.2018.2833746
10.1007/s10994-019-05839-6
10.1016/j.mejo.2014.08.007
10.3390/s21051613
10.1111/psyp.13569
10.1007/978-1-4842-3516-4
10.1016/0013-4694(88)90149-6
10.1016/j.jneumeth.2007.03.005
10.1088/1741-2560/8/3/036006
10.1016/j.neucom.2017.08.039
10.1109/TPAMI.2010.125
10.1109/TBME.2008.915728
10.1016/j.jneumeth.2007.07.017
10.1186/s40537-019-0192-5
10.1016/j.bbe.2016.11.001
10.1109/IJCNN.2017.7966185
10.1109/TSMC.2021.3051136
10.3390/app10041546
10.1023/A:1013377811693
10.1109/JBHI.2021.3059686
10.1016/B978-0-12-819593-2.00002-9
10.1016/0031-3203(95)00067-4
10.1109/TNSRE.2013.2253125
10.24963/ijcai.2018/222
10.23919/DATE.2017.7927139
10.3389/fnhum.2018.00165
10.1155/2017/8163949
10.1109/ACCESS.2019.2919143
10.1080/01616412.2020.1866245
10.1109/TCPMT.2018.2810103
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21123961
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71
PMC8226883
10_3390_s21123961
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-f9ad8b56e6707a3445ad586af2325005662f0895d7d09e857d24e97c3bbc2bcd3
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666714300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:03 EDT 2025
Tue Nov 04 01:59:49 EST 2025
Wed Oct 01 14:43:29 EDT 2025
Tue Oct 07 07:27:26 EDT 2025
Sat Nov 29 07:17:49 EST 2025
Tue Nov 18 21:55:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-f9ad8b56e6707a3445ad586af2325005662f0895d7d09e857d24e97c3bbc2bcd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4563-7614
0000-0003-3927-8686
OpenAccessLink https://doaj.org/article/db6f365c440f43828362f7146a6f3b71
PMID 34201381
PQID 2545188434
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8226883
proquest_miscellaneous_2548396373
proquest_journals_2545188434
crossref_citationtrail_10_3390_s21123961
crossref_primary_10_3390_s21123961
PublicationCentury 2000
PublicationDate 20210608
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 6
  year: 2021
  text: 20210608
  day: 8
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Ashraf (ref_38) 2020; 11
Allison (ref_1) 2020; 57
Ojala (ref_31) 1996; 29
ref_35
ref_34
Farwell (ref_8) 1988; 70
ref_11
ref_32
Ohletz (ref_42) 2001; 17
ref_19
Hoffmann (ref_29) 2008; 167
Johnson (ref_44) 2019; 6
Jin (ref_14) 2011; 8
ref_18
Bostanov (ref_16) 2004; 51
ref_37
Wen (ref_23) 2018; 6
Rakotomamonjy (ref_13) 2008; 55
Zhang (ref_6) 2021; 43
Uyar (ref_27) 2014; 243
Cecotti (ref_12) 2011; 33
Abootalebi (ref_9) 2017; 37
Annese (ref_30) 2018; 8
Liu (ref_10) 2018; 275
ref_25
ref_45
ref_22
ref_21
Zou (ref_33) 2020; 109
ref_41
Throckmorton (ref_15) 2013; 21
ref_40
Riccio (ref_17) 2018; 12
ref_3
ref_2
ref_28
Obermaier (ref_39) 2001; 9
ref_5
Srivastava (ref_36) 2014; 15
Rabaey (ref_43) 2014; 45
ref_4
Ditthapron (ref_24) 2019; 7
ref_7
Krusienski (ref_26) 2008; 167
Carabez (ref_20) 2017; 2017
References_xml – ident: ref_28
– ident: ref_41
  doi: 10.3390/s20092638
– volume: 51
  start-page: 1057
  year: 2004
  ident: ref_16
  article-title: BCI competition 2003-data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826702
– ident: ref_32
  doi: 10.1109/CVPRW.2014.79
– volume: 9
  start-page: 283
  year: 2001
  ident: ref_39
  article-title: Information transfer rate in a five-classes brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/7333.948456
– ident: ref_4
  doi: 10.1109/BCI48061.2020.9061634
– volume: 6
  start-page: 25399
  year: 2018
  ident: ref_23
  article-title: Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833746
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Machine learning shrewd approach for an imbalanced dataset conversion samples
  publication-title: J. Eng. Technol. (JET)
– volume: 109
  start-page: 467
  year: 2020
  ident: ref_33
  article-title: Gradient descent optimizes over-parameterized deep ReLU networks
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05839-6
– volume: 45
  start-page: 1585
  year: 2014
  ident: ref_43
  article-title: RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data collection
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2014.08.007
– ident: ref_2
  doi: 10.3390/s21051613
– ident: ref_11
– volume: 57
  start-page: e13569
  year: 2020
  ident: ref_1
  article-title: 30+ years of P300 brain–computer interfaces
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13569
– ident: ref_40
  doi: 10.1007/978-1-4842-3516-4
– volume: 70
  start-page: 510
  year: 1988
  ident: ref_8
  article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 167
  start-page: 115
  year: 2008
  ident: ref_29
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– ident: ref_37
– ident: ref_35
– volume: 8
  start-page: 036006
  year: 2011
  ident: ref_14
  article-title: An adaptive P300-based control system
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036006
– volume: 275
  start-page: 288
  year: 2018
  ident: ref_10
  article-title: Deep learning based on batch normalization for P300 signal detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.039
– volume: 33
  start-page: 433
  year: 2011
  ident: ref_12
  article-title: Convolutional neural networks for p300 detection with application to brain–computer interfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.125
– ident: ref_21
– volume: 55
  start-page: 1147
  year: 2008
  ident: ref_13
  article-title: BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.915728
– volume: 167
  start-page: 15
  year: 2008
  ident: ref_26
  article-title: Toward enhanced P300 speller performance
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.07.017
– volume: 6
  start-page: 27
  year: 2019
  ident: ref_44
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big. Data
  doi: 10.1186/s40537-019-0192-5
– volume: 37
  start-page: 365
  year: 2017
  ident: ref_9
  article-title: Spatial and spatio-temporal filtering based on common spatial patterns and Max-SNR for detection of P300 component
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2016.11.001
– ident: ref_25
– ident: ref_34
  doi: 10.1109/IJCNN.2017.7966185
– ident: ref_5
  doi: 10.1109/TSMC.2021.3051136
– ident: ref_22
  doi: 10.3390/app10041546
– volume: 17
  start-page: 243
  year: 2001
  ident: ref_42
  article-title: On-Chip Test for Mixed-Signal ASICs using Two-Mode Comparators with Bias-Programmable Reference Voltages
  publication-title: J. Electron. Test.
  doi: 10.1023/A:1013377811693
– ident: ref_18
  doi: 10.1109/JBHI.2021.3059686
– ident: ref_7
  doi: 10.1016/B978-0-12-819593-2.00002-9
– volume: 29
  start-page: 51
  year: 1996
  ident: ref_31
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00067-4
– volume: 243
  start-page: 209
  year: 2014
  ident: ref_27
  article-title: 1D-local binary pattern-based feature extraction for classification of epileptic EEG signals
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 508
  year: 2013
  ident: ref_15
  article-title: Bayesian Approach to Dynamically Controlling Data Collection in P300 Spellers
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2253125
– ident: ref_45
  doi: 10.24963/ijcai.2018/222
– ident: ref_3
  doi: 10.23919/DATE.2017.7927139
– volume: 12
  start-page: 165
  year: 2018
  ident: ref_17
  article-title: On the Relationship between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00165
– volume: 2017
  start-page: 8163949
  year: 2017
  ident: ref_20
  article-title: Convolutional Neural Networks with 3D Input for P300 Identification in Auditory Brain-Computer Interfaces
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/8163949
– volume: 7
  start-page: 68415
  year: 2019
  ident: ref_24
  article-title: Universal joint feature extraction for P300 EEG classification using multi-task autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919143
– ident: ref_19
– volume: 43
  start-page: 336
  year: 2021
  ident: ref_6
  article-title: Application of the P300 potential in cognitive impairment assessments after transient ischemic attack or minor stroke
  publication-title: Neurol. Res.
  doi: 10.1080/01616412.2020.1866245
– volume: 8
  start-page: 1167
  year: 2018
  ident: ref_30
  article-title: FPGA-Based Embedded Cyber-Physical Platform to Assess Gait and Postural Stability in Parkinson’s Disease
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
  doi: 10.1109/TCPMT.2018.2810103
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_36
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
SSID ssj0023338
Score 2.4360466
Snippet In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI),...
In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI),...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3961
SubjectTerms Accuracy
autoencoder
Automobile driving
brain–computer interface (BCI)
CNN
Cognition & reasoning
Competition
Deep learning
Discriminant analysis
Electroencephalography
Neural networks
Neuromuscular diseases
P300
Principal components analysis
single-trial detection
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4QAH3ojCggzisBysTez4kRNqu13YS1WxReot8nOpVJKlSZHg1zNO03YjIS7ckniSOBnbM9_Y_gah91IbQw23xFkHAIXblBhFcyIDIFxlNfgktk02IadTtVjksy7gVnfLKndjYjtQu8rGGPkpAJnIHZax7OP1DxKzRsXZ1S6Fxm10J6bNju1cLg6AiwH-2rIJMYD2pzWAHcpykfZsUEvV3_Mv-6sjb5ib84f_W9FH6EHnaOLhtmU8Rrd8-QTdv0E_-BRVQ3wJBytP5rEZ4hlLEnzmmzaQj0dg3xyuSnz567upVsvfcDaZfMK6dHi4aarIgOm8Iyfp2YfxdIqbCm8jFB5fzL_g2WFHAl6WeDS-qJ-hr-eT-fgz6RIwEAsosSEh104ZLryQidQsy7h2XAkdwA3jkURU0JConDvpktwrLh3NfC4tM8ZSYx17jo7KqvQvEIbfYRxjQWQuyRxNtbcp3OiCToKyNB2gk51KCtuxk8ckGasCUErUXrHX3gC924tebyk5_iY0inrdC0QW7fZCtb4quk5ZxC2ITHD42CTECVEF1jxIsB0arhsJDzneqbjounZdHPQ7QG_3xdAp40yLLn21aWXA8RRMsgGSvdbUq1C_pFx-a-m9wWUTSrGX_375K3SPxuU1MSCkjtFRs9741-iu_dks6_Wbth_8AdnVEYE
  priority: 102
  providerName: ProQuest
Title A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs
URI https://www.proquest.com/docview/2545188434
https://www.proquest.com/docview/2548396373
https://pubmed.ncbi.nlm.nih.gov/PMC8226883
https://doaj.org/article/db6f365c440f43828362f7146a6f3b71
Volume 21
WOSCitedRecordID wos000666714300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBHJZDRBInsXNsu1noYaNot0jlFPkVUakkaJsiwYHfzthJSyMhceFiJfZEsscz8Xx-fAZ4y4SUkUyUr5VGgJKo0Jc8ynxWI8LlSmBMotxlE6wo-GqVlUdXfdk9YT09cK84d0yMpomK46C2i1Yc_7g1Q_8WmC_d6fEoYNkeTA1QiyLy6nmEKIL691uEORHN0nA0-jiS_lFkOd4XeTTQXDyEB0OESKZ9zR7BLdM8hvtHvIFPoJ2Sa3zYGH9p7YeUNAjIuencDDyZ4cCkSduQ6x9fZbtZ_8S3PP9ARKPJdNe1lrpSG-2fhefv5kVBupb0UwuGLJZXpPxzlICsGzKbL7ZP4dNFvpx_9IebE3zUU9r5dSY0l0lqUhYwQeM4ETrhqagxfkos-yfqMOBZopkOMsMTpqPYZExRKVUklabP4KRpG_McSExjqSmt01gHsY5CYVSIH-paBDVXUejB2V6jlRpoxe3tFpsK4YVVfnVQvgdvDqLfei6NvwnNbLccBCz9tctAo6gGo6j-ZRQenO47tRp8clshFLbsc9ggD14fitGb7BKJaEy7czIYMaaUUQ_YyBhGFRqXNOsvjpcbY62Uc_rif7TgJdyL7O4ZO9_DT-Gku9mZV3BXfe_W25sJ3GYr5lI-gTuzvCivJs4BML38lWNeubgsP_8GLN8IzA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQIWvBEDBQwCqSyiJnYSOwuE5lU6aolGdJBmF_wKjDQkZZIBlY_iG7nOY6aRELsu2CWO4yTO8fU9fpyL0CsmpCQyUI5WGghKoDxHchI5LAWGy5UAn0RVwSZYHPP5PJruoN_tXhi7rLK1iZWh1rmyY-QHQGSsdphP_Xdn3x0bNcrOrrYhNGpYHJvzn0DZireTEfzf14QcjmfDI6eJKuAooD6lk0ZCcxmEJmQuE9T3A6EDHooUfIvAKmOGJHV5FGim3cjwgGnim4gpKqUiUmkK5V5BV8GOM0v22HxL8CjwvVq9iNLIPSiAXBEahV6nz6tCA3T82e5qzAvd2-Ht_61i7qBbjSON-zXy76Idk91DNy_IK95HeR-fwsHSODPbzPCUui4embKaqMAD6L81zjN8ev5N5svFLzgbj99jkWncX5e5VfjURjv73ujNMI5xmeN6BMbgyewjnm53XOBFhgfDSfEAfbqUL36IdrM8M48QhuqXmtI09LXra-IJozy4UafCTbkiXg_ttxBIVKO-boOALBNgYRYtyQYtPfRyk_Wslhz5W6aBxdEmg1UJrxLy1ZekMTqJ3WJJwwA-1k3thC8HbyVl0DcKSJcMCtlrIZU0pqtItnjqoReby2B07EySyEy-rvKAYx1SRnuIddDbeaHulWzxtZIvB5c05Jw-_vfDn6PrR7MPJ8nJJD5-gm4Qu5TIDn7xPbRbrtbmKbqmfpSLYvWsaoMYfb5sbP8BzTVtyQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGh9B44I4oDDAIpPEQNbGT2HlAqFeoBlXEijSegm8ZlUoy2hQ0fhq_juM0yRYJ8bYH3pLYuTj-fHw-X76D0AsmpCQyUI5WGghKoDxHchI5LAWGy5UAn0SVwSbYbMaPj6N4B_2u98LYZZW1TSwNtc6VHSPvAZGx2mE-9XtptSwiHk3enH53bAQpO9Nah9PYQuTQnP0E-rZ-PR1BXb8kZDKeD985VYQBRwENKpw0EprLIDQhc5mgvh8IHfBQpOBnBFYlMySpy6NAM-1GhgdME99ETFEpFZFKU3juFbQLLrlPOmg3nn6IPzd0jwL722oZURq5vTVQLUKj0Gv1gGWggJZ3216beaGzm9z8n3_TLXSjcrFxf9smbqMdk91B1y8IL95FeR8fwcHSOHPbAHFMXRePTFFOYeAB9Owa5xk-Ovsm8-XiF5yNx2-xyDTub4rcan9qo50Db_RqOJvhIsfbsRmDp_OPOD7fi4EXGR4Mp-t76NOllPg-6mR5Zh4gDFUhNaVp6GvX18QTRnlwo06Fm3JFvC46qOGQqEqX3YYHWSbAzyxykgY5XfS8yXq6FSP5W6aBxVSTweqHlxfy1UlSmaPEbr6kYQCFdVM7FczBj0kZ9JoCrksGD9mv4ZVURm2dnGOri541yWCO7ByTyEy-KfOAyx1SRruItZDc-qB2Srb4Wgqbg7Mack4f_vvlT9E1gHTyfjo7fIT2iF1jZEfF-D7qFKuNeYyuqh_FYr16UjVIjL5cNrj_AGhneBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single-Trial+P300+Detector+Based+on+Symbolized+EEG+and+Autoencoded-%281D%29CNN+to+Improve+ITR+Performance+in+BCIs&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Daniela+De+Venuto&rft.au=Giovanni+Mezzina&rft.date=2021-06-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft.spage=3961&rft_id=info:doi/10.3390%2Fs21123961&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon