A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs
In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full impl...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 21; no. 12; p. 3961 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
08.06.2021
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome. |
|---|---|
| AbstractList | In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome. In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome. |
| Author | De Venuto, Daniela Mezzina, Giovanni |
| AuthorAffiliation | Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70124 Bari, Italy; giovanni.mezzina@poliba.it |
| AuthorAffiliation_xml | – name: Department of Electrical and Information Engineering, Politecnico di Bari, Via E. Orabona, 4, 70124 Bari, Italy; giovanni.mezzina@poliba.it |
| Author_xml | – sequence: 1 givenname: Daniela orcidid: 0000-0003-4563-7614 surname: De Venuto fullname: De Venuto, Daniela – sequence: 2 givenname: Giovanni orcidid: 0000-0003-3927-8686 surname: Mezzina fullname: Mezzina, Giovanni |
| BookMark | eNplkktv1DAQgCNURB9w4B9Y4tIeQv2K41yQttulrFSVii5ny7Eni1eJvbWTSuXX42ULouVke_zNN9Z4josDHzwUxXuCPzLW4PNECaGsEeRVcUQ45aWkFB_8sz8sjlPaYEwZY_JNccg4xYRJclSEGbpzft1DuYpO9-iWYYwuYQQzhogudAKLgkd3j0MbevcznxaLK6S9RbNpDOBNsGDLU3J5Nr-5QWNAy2EbwwOg5eobuoXYhThobwA5jy7my_S2eN3pPsG7p_Wk-P55sZp_Ka-_Xi3ns-vScC7Gsmu0lW0lQNS41ozzSttKCt1RRiuMKyFoh2VT2driBmRVW8qhqQ1rW0NbY9lJsdx7bdAbtY1u0PFRBe3U70CIa6Xj6EwPyraiY6LKhXHHmaSSZXlNuNA53tYkuz7tXdupHcAa8GPU_TPp8xvvfqh1eFC59UJKlgWnT4IY7idIoxpcMtD32kOYkqIVl_n7WL1DP7xAN2GKPrdqR1VESs54ps73lIkhpQidMm7Uowu7-q5XBKvdYKi_g5Ezzl5k_Hn-_-wvISm0Xw |
| CitedBy_id | crossref_primary_10_3390_s25103102 crossref_primary_10_1088_1741_2552_ad430d crossref_primary_10_3390_app12168274 crossref_primary_10_1016_j_asej_2025_103436 crossref_primary_10_3389_frvir_2024_1433082 crossref_primary_10_1007_s00521_023_08329_y crossref_primary_10_3233_JIFS_219334 crossref_primary_10_3389_fnins_2023_1203059 crossref_primary_10_1038_s41598_025_87414_9 crossref_primary_10_1088_1742_6596_2024_1_012044 crossref_primary_10_1039_D4RA05560H crossref_primary_10_1109_JSEN_2022_3159475 |
| Cites_doi | 10.3390/s20092638 10.1109/TBME.2004.826702 10.1109/CVPRW.2014.79 10.1109/7333.948456 10.1109/BCI48061.2020.9061634 10.1109/ACCESS.2018.2833746 10.1007/s10994-019-05839-6 10.1016/j.mejo.2014.08.007 10.3390/s21051613 10.1111/psyp.13569 10.1007/978-1-4842-3516-4 10.1016/0013-4694(88)90149-6 10.1016/j.jneumeth.2007.03.005 10.1088/1741-2560/8/3/036006 10.1016/j.neucom.2017.08.039 10.1109/TPAMI.2010.125 10.1109/TBME.2008.915728 10.1016/j.jneumeth.2007.07.017 10.1186/s40537-019-0192-5 10.1016/j.bbe.2016.11.001 10.1109/IJCNN.2017.7966185 10.1109/TSMC.2021.3051136 10.3390/app10041546 10.1023/A:1013377811693 10.1109/JBHI.2021.3059686 10.1016/B978-0-12-819593-2.00002-9 10.1016/0031-3203(95)00067-4 10.1109/TNSRE.2013.2253125 10.24963/ijcai.2018/222 10.23919/DATE.2017.7927139 10.3389/fnhum.2018.00165 10.1155/2017/8163949 10.1109/ACCESS.2019.2919143 10.1080/01616412.2020.1866245 10.1109/TCPMT.2018.2810103 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21123961 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71 PMC8226883 10_3390_s21123961 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-f9ad8b56e6707a3445ad586af2325005662f0895d7d09e857d24e97c3bbc2bcd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666714300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:03 EDT 2025 Tue Nov 04 01:59:49 EST 2025 Wed Oct 01 14:43:29 EDT 2025 Tue Oct 07 07:27:26 EDT 2025 Sat Nov 29 07:17:49 EST 2025 Tue Nov 18 21:55:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-f9ad8b56e6707a3445ad586af2325005662f0895d7d09e857d24e97c3bbc2bcd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4563-7614 0000-0003-3927-8686 |
| OpenAccessLink | https://doaj.org/article/db6f365c440f43828362f7146a6f3b71 |
| PMID | 34201381 |
| PQID | 2545188434 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8226883 proquest_miscellaneous_2548396373 proquest_journals_2545188434 crossref_citationtrail_10_3390_s21123961 crossref_primary_10_3390_s21123961 |
| PublicationCentury | 2000 |
| PublicationDate | 20210608 |
| PublicationDateYYYYMMDD | 2021-06-08 |
| PublicationDate_xml | – month: 6 year: 2021 text: 20210608 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Ashraf (ref_38) 2020; 11 Allison (ref_1) 2020; 57 Ojala (ref_31) 1996; 29 ref_35 ref_34 Farwell (ref_8) 1988; 70 ref_11 ref_32 Ohletz (ref_42) 2001; 17 ref_19 Hoffmann (ref_29) 2008; 167 Johnson (ref_44) 2019; 6 Jin (ref_14) 2011; 8 ref_18 Bostanov (ref_16) 2004; 51 ref_37 Wen (ref_23) 2018; 6 Rakotomamonjy (ref_13) 2008; 55 Zhang (ref_6) 2021; 43 Uyar (ref_27) 2014; 243 Cecotti (ref_12) 2011; 33 Abootalebi (ref_9) 2017; 37 Annese (ref_30) 2018; 8 Liu (ref_10) 2018; 275 ref_25 ref_45 ref_22 ref_21 Zou (ref_33) 2020; 109 ref_41 Throckmorton (ref_15) 2013; 21 ref_40 Riccio (ref_17) 2018; 12 ref_3 ref_2 ref_28 Obermaier (ref_39) 2001; 9 ref_5 Srivastava (ref_36) 2014; 15 Rabaey (ref_43) 2014; 45 ref_4 Ditthapron (ref_24) 2019; 7 ref_7 Krusienski (ref_26) 2008; 167 Carabez (ref_20) 2017; 2017 |
| References_xml | – ident: ref_28 – ident: ref_41 doi: 10.3390/s20092638 – volume: 51 start-page: 1057 year: 2004 ident: ref_16 article-title: BCI competition 2003-data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826702 – ident: ref_32 doi: 10.1109/CVPRW.2014.79 – volume: 9 start-page: 283 year: 2001 ident: ref_39 article-title: Information transfer rate in a five-classes brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/7333.948456 – ident: ref_4 doi: 10.1109/BCI48061.2020.9061634 – volume: 6 start-page: 25399 year: 2018 ident: ref_23 article-title: Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833746 – volume: 11 start-page: 1 year: 2020 ident: ref_38 article-title: Machine learning shrewd approach for an imbalanced dataset conversion samples publication-title: J. Eng. Technol. (JET) – volume: 109 start-page: 467 year: 2020 ident: ref_33 article-title: Gradient descent optimizes over-parameterized deep ReLU networks publication-title: Mach. Learn. doi: 10.1007/s10994-019-05839-6 – volume: 45 start-page: 1585 year: 2014 ident: ref_43 article-title: RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data collection publication-title: Microelectron. J. doi: 10.1016/j.mejo.2014.08.007 – ident: ref_2 doi: 10.3390/s21051613 – ident: ref_11 – volume: 57 start-page: e13569 year: 2020 ident: ref_1 article-title: 30+ years of P300 brain–computer interfaces publication-title: Psychophysiology doi: 10.1111/psyp.13569 – ident: ref_40 doi: 10.1007/978-1-4842-3516-4 – volume: 70 start-page: 510 year: 1988 ident: ref_8 article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 167 start-page: 115 year: 2008 ident: ref_29 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.005 – ident: ref_37 – ident: ref_35 – volume: 8 start-page: 036006 year: 2011 ident: ref_14 article-title: An adaptive P300-based control system publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036006 – volume: 275 start-page: 288 year: 2018 ident: ref_10 article-title: Deep learning based on batch normalization for P300 signal detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.039 – volume: 33 start-page: 433 year: 2011 ident: ref_12 article-title: Convolutional neural networks for p300 detection with application to brain–computer interfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.125 – ident: ref_21 – volume: 55 start-page: 1147 year: 2008 ident: ref_13 article-title: BCI competition III: Dataset II-ensemble of SVMs for BCI P300 speller publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.915728 – volume: 167 start-page: 15 year: 2008 ident: ref_26 article-title: Toward enhanced P300 speller performance publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.07.017 – volume: 6 start-page: 27 year: 2019 ident: ref_44 article-title: Survey on deep learning with class imbalance publication-title: J. Big. Data doi: 10.1186/s40537-019-0192-5 – volume: 37 start-page: 365 year: 2017 ident: ref_9 article-title: Spatial and spatio-temporal filtering based on common spatial patterns and Max-SNR for detection of P300 component publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2016.11.001 – ident: ref_25 – ident: ref_34 doi: 10.1109/IJCNN.2017.7966185 – ident: ref_5 doi: 10.1109/TSMC.2021.3051136 – ident: ref_22 doi: 10.3390/app10041546 – volume: 17 start-page: 243 year: 2001 ident: ref_42 article-title: On-Chip Test for Mixed-Signal ASICs using Two-Mode Comparators with Bias-Programmable Reference Voltages publication-title: J. Electron. Test. doi: 10.1023/A:1013377811693 – ident: ref_18 doi: 10.1109/JBHI.2021.3059686 – ident: ref_7 doi: 10.1016/B978-0-12-819593-2.00002-9 – volume: 29 start-page: 51 year: 1996 ident: ref_31 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – volume: 243 start-page: 209 year: 2014 ident: ref_27 article-title: 1D-local binary pattern-based feature extraction for classification of epileptic EEG signals publication-title: Appl. Math. Comput. – volume: 21 start-page: 508 year: 2013 ident: ref_15 article-title: Bayesian Approach to Dynamically Controlling Data Collection in P300 Spellers publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2253125 – ident: ref_45 doi: 10.24963/ijcai.2018/222 – ident: ref_3 doi: 10.23919/DATE.2017.7927139 – volume: 12 start-page: 165 year: 2018 ident: ref_17 article-title: On the Relationship between Attention Processing and P300-Based Brain Computer Interface Control in Amyotrophic Lateral Sclerosis publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00165 – volume: 2017 start-page: 8163949 year: 2017 ident: ref_20 article-title: Convolutional Neural Networks with 3D Input for P300 Identification in Auditory Brain-Computer Interfaces publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/8163949 – volume: 7 start-page: 68415 year: 2019 ident: ref_24 article-title: Universal joint feature extraction for P300 EEG classification using multi-task autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919143 – ident: ref_19 – volume: 43 start-page: 336 year: 2021 ident: ref_6 article-title: Application of the P300 potential in cognitive impairment assessments after transient ischemic attack or minor stroke publication-title: Neurol. Res. doi: 10.1080/01616412.2020.1866245 – volume: 8 start-page: 1167 year: 2018 ident: ref_30 article-title: FPGA-Based Embedded Cyber-Physical Platform to Assess Gait and Postural Stability in Parkinson’s Disease publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. doi: 10.1109/TCPMT.2018.2810103 – volume: 15 start-page: 1929 year: 2014 ident: ref_36 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. |
| SSID | ssj0023338 |
| Score | 2.4360466 |
| Snippet | In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI),... In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain-computer interface (BCI),... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3961 |
| SubjectTerms | Accuracy autoencoder Automobile driving brain–computer interface (BCI) CNN Cognition & reasoning Competition Deep learning Discriminant analysis Electroencephalography Neural networks Neuromuscular diseases P300 Principal components analysis single-trial detection Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4QCH5bmiy4IM4rAcok3jV3xCbbcLK6GqYgvqLbJjGyqVZGlSJPj1zKRpu5EQF25JPEocjccz39j-hpA3wnpwXEaDBriKOMyNYHMBiwho31fggZKGrPrLRzWZpPO5nrYJt6rdVrmdE5uJ2pU55sjPAMggdxhn_N31jwirRuHqaltC4za5g2WzcZyr-R5wMcBfGzYhBtD-rAKwkzAt-x0f1FD1d-LL7u7IG-7m4sH_dvQhOWwDTTrYjIxH5JYvHpP7N-gHn5ByQK_gYumjGQ5DOmVxTM993STy6RD8m6NlQa9-fbflcvEb7sbj99QUjg7WdYkMmM676LR__nY0mdC6pJsMhaeXs090uj-RQBcFHY4uq6fk88V4NvoQtQUYohxQYh0FbVxqhfRSxcowzoVxIpUmQBgmkERUJiFOtXDKxdqnQrmEe61yZm2e2NyxI3JQlIV_RihETc4Ezp0xnLPEmtgGJQGcBtEPeaJ75HSrkixv2cmxSMYyA5SC2st22uuR1zvR6w0lx9-EhqjXnQCyaDcPytXXrDXKDI8gMingZ-OAC6IpePOgwHcYeG4VvORkq-KsNe0q2-u3R17tmsEocaXFFL5cNzIQeEqmWI-ozmjqdKjbUiy-NfTeELLJNGXH__74c3Ivwe01mBBKT8hBvVr7F-Ru_rNeVKuXjR38AaM8D6A priority: 102 providerName: ProQuest |
| Title | A Single-Trial P300 Detector Based on Symbolized EEG and Autoencoded-(1D)CNN to Improve ITR Performance in BCIs |
| URI | https://www.proquest.com/docview/2545188434 https://www.proquest.com/docview/2548396373 https://pubmed.ncbi.nlm.nih.gov/PMC8226883 https://doaj.org/article/db6f365c440f43828362f7146a6f3b71 |
| Volume | 21 |
| WOSCitedRecordID | wos000666714300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest - Health & Medical Complete保健、医学与药学数据库 customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKfIslQGcVgOEWnsxPax7WahEhtFuwWVU-TEjqhUktU2RYIDv52xk5ZGQuLCJUpsH5zxjGc-P74BeBMVBh2XkjgCjPsM50a0ucomEZBmzNEDhY6s-vNHnqZiuZTZQaoveyasowfuBOeuidE4KhkLKrtpJXDGrTjat8Lywt0eDwMud2Cqh1oUkVfHI0QR1L_bIMwJqYzHA-_jSPoHkeXwXOSBozl_CA_6CJFMup49glumfgz3D3gDn0AzIVf4sjb-wuoPyWgQkDPTuhV4MkXHpElTk6sf34pmvfqJX0nynqhak8m2bSx1pTbaPx2fvZ2lKWkb0i0tGDJfXJLsz1UCsqrJdDbfPIVP58li9sHvMyf4KKe49SuptCii2MQ84IoyFikdiVhVGD9Flv0TZRgIGWmuA2lExHXIjOQlLYoyLEpNn8FR3dTmORAMd7SqGNNKMUbDQgVFxWNElVU0rspQenC6k2he9rTiNrvFOkd4YYWf74Xvwet90-uOS-NvjaZ2WPYNLP21K0ClyHulyP-lFB6c7AY1721ykyMUtuxzjDIPXu2r0ZrsFomqTbN1bTBijCmnHvCBMgw6NKypV18dLzfGWrEQ9Ph__MELuBfa0zN2vUecwFF7szUv4W75vV1tbkZwmy-5e4oR3JkmaXY5cgaAz4tfCZZl84vsy2_q6Abr |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQAIeuCMKAwwCaTxES20njh8Q6m2sWokq1qG-BSe2oVJJRpOCxo_iN3KcS7tIiLc98JbEVhInn885ny_fQeiVF2twXFLAH2DcYWAboc8Zm0RA6C4HD0RKsepPEx6GwXwupjvod7MXxi6rbGxiaahVltgx8gMgMlY7jFH27uy7Y7NG2dnVJoVGBYtjff4TKFv-djyE__uakMPRbHDk1FkFnASoT-EYIVUQe772ucslZcyTygt8aSC28Kwypk-MGwhPceUKHXhcEaYFT2gcJyROFIX7XkFXwY5zS_b4fEvwKPC9Sr2IUuEe5ECuCBV-t-XzytQArXi2vRrzgns7vP2_fZg76FYdSONehfy7aEen99DNC_KK91HWwydwsNTOzHYzPKWui4e6KCcqcB_8t8JZik_Ov8XZcvELzkaj91imCvfWRWYVPpVWzn53-GYQhrjIcDUCo_F49hFPtzsu8CLF_cE4f4BOL6XFD9FumqX6EcIQFSppGFNSMkZJLN3YcB_It_G6JiGig_YbCERJrb5uk4AsI2BhFi3RBi0d9HJT9aySHPlbpb7F0aaCVQkvL2SrL1FtdCK7xZL6HjTWNXbCN4BoxXDwjRKuxxxustdAKqpNVx5t8dRBLzbFYHTsTJJMdbYu60Bg7VNOO4i30Nt6oXZJuvhaypdDSOoHAX3874c_R9ePZh8m0WQcHj9BN4hdSmQHv4I9tFus1vopupb8KBb56lnZBzH6fNnY_gM-z2vo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHULwwB1RGGAQSOMhamo7cfKAUK9QbVQRK2g8BSe2oVJJRpuCxk_j13GcpN0iId72wFsSW04cfz4X-_g7AM-9RKPikiGOABcOR9mIc87YJAKh7grUQLQkq_54KKbT4Pg4jHbg9-YsjA2r3MjEUlCrPLVr5B10ZCx3GGe8Y-qwiGg4fn3y3bEZpOxO6yadRgWRA336E9231avJEMf6BaXj0Wzw1qkzDDgpukGFY0KpgsTztS9cIRnnnlRe4EuDdoZnWTJ9atwg9JRQbqgDTyjKdShSliQpTVLFsN1LsIsmOact2I0m76JPW3ePofdXcRkxFrqdFbpalIV-t6EBy0QBDeu2GZt5TtmNb_zPv-kmXK9NbNKr5sQt2NHZbbh2jnjxDuQ9coQXC-3M7AQkEXNdMtRFuYVB-qjZFckzcnT6LckX8194Nxq9ITJTpLcucsv9qbRy9rvDl4PplBQ5qdZmNJnM3pPo7CwGmWekP5is7sKHC-nxPWhleabvA0F7UUnDuZKSc0YT6SZG-OiWG69rUhq2YX8DhzitedltepBFjP6ZRU68RU4bnm2rnlRkJH-r1LeY2law_OHlg3z5Ja7FUWwPXzLfw866xm4FB2jHGIFaU-LzRGAjext4xbVQW8Vn2GrD020xiiO7xyQzna_LOmhy-0ywNogGkhsf1CzJ5l9LYnM0Vv0gYA_-_fIncAUhHR9OpgcP4Sq1MUZ2VSzYg1axXOtHcDn9UcxXy8f1hCTw-aLB_Qeqq3Y3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Single-Trial+P300+Detector+Based+on+Symbolized+EEG+and+Autoencoded-%281D%29CNN+to+Improve+ITR+Performance+in+BCIs&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Daniela+De+Venuto&rft.au=Giovanni+Mezzina&rft.date=2021-06-08&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=12&rft.spage=3961&rft_id=info:doi/10.3390%2Fs21123961&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db6f365c440f43828362f7146a6f3b71 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |