EEG Fractal Analysis Reflects Brain Impairment after Stroke

Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize th...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 23; no. 5; p. 592
Main Authors: Rubega, Maria, Formaggio, Emanuela, Molteni, Franco, Guanziroli, Eleonora, Di Marco, Roberto, Baracchini, Claudio, Ermani, Mario, Ward, Nick S., Masiero, Stefano, Del Felice, Alessandra
Format: Journal Article
Language:English
Published: Basel MDPI AG 11.05.2021
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.
AbstractList Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.
Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches have demonstrated that a single metric can describe the complexity of seemingly random fluctuations of physiological signals. We hypothesize that fractal algorithms applied to electroencephalographic (EEG) signals may track brain impairment after stroke. Sixteen stroke survivors were studied in the hyperacute (<48 h) and in the acute phase (∼1 week after stroke), and 35 stroke survivors during the early subacute phase (from 8 days to 32 days and after ∼2 months after stroke): We compared resting-state EEG fractal changes using fractal measures (i.e., Higuchi Index, Tortuosity) with 11 healthy controls. Both Higuchi index and Tortuosity values were significantly lower after a stroke throughout the acute and early subacute stage compared to healthy subjects, reflecting a brain activity which is significantly less complex. These indices may be promising metrics to track behavioral changes in the very early stage after stroke. Our findings might contribute to the neurorehabilitation quest in identifying reliable biomarkers for a better tailoring of rehabilitation pathways.
Author Rubega, Maria
Molteni, Franco
Masiero, Stefano
Formaggio, Emanuela
Baracchini, Claudio
Del Felice, Alessandra
Ward, Nick S.
Guanziroli, Eleonora
Di Marco, Roberto
Ermani, Mario
AuthorAffiliation 2 Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845 Costa Masnaga, LC, Italy; franco56.molteni@gmail.com (F.M.); eleonora.guanziroli@gmail.com (E.G.)
4 Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK; n.ward@ucl.ac.uk
1 Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, PD, Italy; emanuela.formaggio@unipd.it (E.F.); roberto.dimarco@unipd.it (R.D.M.); stef.masiero@unipd.it (S.M.); alessandra.delfelice@unipd.it (A.D.F.)
5 Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, PD, Italy
3 Stroke Unit and Neurosonology Laboratory, Padova University Hospital, Via Giustiniani 3, 35128 Padova, PD, Italy; claudiobaracchini@gmail.com (C.B.); mario.ermani@unipd.it (M.E.)
AuthorAffiliation_xml – name: 3 Stroke Unit and Neurosonology Laboratory, Padova University Hospital, Via Giustiniani 3, 35128 Padova, PD, Italy; claudiobaracchini@gmail.com (C.B.); mario.ermani@unipd.it (M.E.)
– name: 5 Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, PD, Italy
– name: 4 Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK; n.ward@ucl.ac.uk
– name: 2 Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845 Costa Masnaga, LC, Italy; franco56.molteni@gmail.com (F.M.); eleonora.guanziroli@gmail.com (E.G.)
– name: 1 Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Giustiniani 3, 35128 Padova, PD, Italy; emanuela.formaggio@unipd.it (E.F.); roberto.dimarco@unipd.it (R.D.M.); stef.masiero@unipd.it (S.M.); alessandra.delfelice@unipd.it (A.D.F.)
Author_xml – sequence: 1
  givenname: Maria
  orcidid: 0000-0002-0744-3109
  surname: Rubega
  fullname: Rubega, Maria
– sequence: 2
  givenname: Emanuela
  orcidid: 0000-0002-3417-0388
  surname: Formaggio
  fullname: Formaggio, Emanuela
– sequence: 3
  givenname: Franco
  surname: Molteni
  fullname: Molteni, Franco
– sequence: 4
  givenname: Eleonora
  orcidid: 0000-0002-7512-5372
  surname: Guanziroli
  fullname: Guanziroli, Eleonora
– sequence: 5
  givenname: Roberto
  orcidid: 0000-0002-3644-352X
  surname: Di Marco
  fullname: Di Marco, Roberto
– sequence: 6
  givenname: Claudio
  surname: Baracchini
  fullname: Baracchini, Claudio
– sequence: 7
  givenname: Mario
  surname: Ermani
  fullname: Ermani, Mario
– sequence: 8
  givenname: Nick S.
  orcidid: 0000-0002-7688-9649
  surname: Ward
  fullname: Ward, Nick S.
– sequence: 9
  givenname: Stefano
  orcidid: 0000-0002-0361-4898
  surname: Masiero
  fullname: Masiero, Stefano
– sequence: 10
  givenname: Alessandra
  orcidid: 0000-0002-7694-1697
  surname: Del Felice
  fullname: Del Felice, Alessandra
BookMark eNplkd1rFDEQwINU7Ic--B8s-KIP1-ZrswmCUMu1HhQEP57DbHa25sxuziQn9L8316vF1qeEzG9-M5M5JgdznJGQ14yeCmHoGXJBW9oa_owcMWrMQgpKD_65H5LjnNeUcsGZekEOhaRKdoIfkffL5VVzmcAVCM35DOE2-9x8wTGgK7n5mMDPzWragE8TzqWBsWBqvpYUf-JL8nyEkPHV_XlCvl8uv118Wlx_vlpdnF8vnJSqLNApPYKjysgBallKdd_3XDvVSYUdOOAgQOgB6wgtjD3tzSD4qAVlshtQnJDV3jtEWNtN8hOkWxvB27uHmG4spOJdQKt6qaF1qKgbJeugZ51DzTozmFFKwarrw9612fYTDq7OlCA8kj6OzP6HvYm_rWYtraIqeHsvSPHXFnOxk88OQ4AZ4zZb3goljRFSVfTNE3Qdt6n-8R3FheRa7zo621MuxZwTjtb5AsXHXX0fLKN2t2T7sOSa8e5Jxt_2_2f_APmepYk
CitedBy_id crossref_primary_10_1088_1741_2552_aceaac
crossref_primary_10_1109_JSEN_2024_3363045
crossref_primary_10_1016_j_clinph_2025_2110822
crossref_primary_10_1016_j_ijhcs_2023_103202
crossref_primary_10_1371_journal_pone_0292864
crossref_primary_10_1371_journal_pone_0311558
crossref_primary_10_1109_TNSRE_2023_3273819
crossref_primary_10_3389_fneur_2022_1004677
crossref_primary_10_3390_mps4030048
crossref_primary_10_1016_j_inffus_2025_102936
crossref_primary_10_1371_journal_pone_0300806
crossref_primary_10_1007_s10548_023_00967_8
Cites_doi 10.4103/1673-5374.251331
10.2340/1650197771331
10.3389/fnhum.2017.00444
10.1161/01.STR.0000144649.49861.1d
10.1371/journal.pone.0223812
10.1016/0140-6736(91)93206-O
10.3390/e22010081
10.1007/s12975-019-00762-3
10.1016/j.jneumeth.2003.10.009
10.1016/j.bspc.2017.06.004
10.1109/TNSRE.2017.2744664
10.1177/1747493017711816
10.1016/j.clinph.2007.07.021
10.3389/fneur.2017.00471
10.1016/j.clinph.2005.06.011
10.1371/journal.pone.0100199
10.1177/1545968307305302
10.1212/WNL.37.7.1153
10.1109/10.966601
10.1177/1545968314562115
10.3390/e15010198
10.1016/0028-3932(71)90067-4
10.1109/EMBC.2015.7319309
10.1177/1545968320905797
10.1007/s004220050394
10.1186/s12984-016-0120-2
10.1155/2018/8105480
10.1016/0167-2789(88)90081-4
10.1109/IEMBS.2005.1616858
10.1119/1.13295
10.1167/iovs.11-7529
10.1049/htl.2014.0106
10.1109/TNNLS.2018.2791644
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e23050592
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_6b48a5ce60cf417ab17ce8179d9f4431
PMC8150817
10_3390_e23050592
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-ec68fac0694da647008bbb28c6746e7aca2a3a38de0595afb0b9d32f830147de3
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000653942800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:23:14 EDT 2025
Tue Nov 04 01:49:37 EST 2025
Fri Sep 05 13:11:33 EDT 2025
Fri Jul 25 12:06:20 EDT 2025
Sat Nov 29 07:13:16 EST 2025
Tue Nov 18 21:28:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-ec68fac0694da647008bbb28c6746e7aca2a3a38de0595afb0b9d32f830147de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3417-0388
0000-0002-7688-9649
0000-0002-0361-4898
0000-0002-3644-352X
0000-0002-0744-3109
0000-0002-7512-5372
0000-0002-7694-1697
OpenAccessLink https://doaj.org/article/6b48a5ce60cf417ab17ce8179d9f4431
PMID 34064732
PQID 2532342881
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_6b48a5ce60cf417ab17ce8179d9f4431
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8150817
proquest_miscellaneous_2536499346
proquest_journals_2532342881
crossref_citationtrail_10_3390_e23050592
crossref_primary_10_3390_e23050592
PublicationCentury 2000
PublicationDate 20210511
PublicationDateYYYYMMDD 2021-05-11
PublicationDate_xml – month: 5
  year: 2021
  text: 20210511
  day: 11
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bamford (ref_24) 1991; 337
Prabhakaran (ref_2) 2008; 22
Scarpa (ref_33) 2011; 52
Bernhardt (ref_3) 2017; 12
ref_11
Park (ref_5) 2016; 13
Accardo (ref_34) 1997; 77
ref_19
Gandolfi (ref_6) 2018; 2018
ref_18
Tavy (ref_9) 2004; 35
ref_16
Mammone (ref_15) 2018; 29
Finnigan (ref_26) 2007; 118
OIdfleld (ref_25) 1971; 9
(ref_23) 2017; 27
Bai (ref_31) 2017; 8
Delorme (ref_28) 2004; 134
Stam (ref_30) 2005; 116
Simons (ref_13) 2015; 2
Faes (ref_14) 2013; 15
Scarpa (ref_17) 2017; 38
Simpkins (ref_4) 2020; 11
ref_21
ref_20
Leyman (ref_27) 1975; 7
Winters (ref_1) 2015; 29
Higuchi (ref_32) 1988; 31
Saes (ref_29) 2020; 34
Zappasodi (ref_7) 2019; 14
Sun (ref_10) 2017; 11
Nuwer (ref_8) 1987; 37
Zhang (ref_22) 2001; 48
Zeng (ref_12) 2017; 25
References_xml – volume: 14
  start-page: 1237
  year: 2019
  ident: ref_7
  article-title: Longitudinal quantitative electroencephalographic study in mono-hemispheric stroke patients
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.251331
– volume: 7
  start-page: 13
  year: 1975
  ident: ref_27
  article-title: The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance
  publication-title: Scand. J. Rehabil. Med.
  doi: 10.2340/1650197771331
– volume: 11
  start-page: 444
  year: 2017
  ident: ref_10
  article-title: Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: A fuzzy approximate entropy analysis
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00444
– volume: 35
  start-page: 2489
  year: 2004
  ident: ref_9
  article-title: Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index
  publication-title: Stroke
  doi: 10.1161/01.STR.0000144649.49861.1d
– ident: ref_20
  doi: 10.1371/journal.pone.0223812
– volume: 337
  start-page: 1521
  year: 1991
  ident: ref_24
  article-title: Classification and natural history of clinically identifiable subtypes of cerebral infarction
  publication-title: Lancet
  doi: 10.1016/0140-6736(91)93206-O
– ident: ref_18
  doi: 10.3390/e22010081
– volume: 11
  start-page: 615
  year: 2020
  ident: ref_4
  article-title: Biomarker application for precision medicine in stroke
  publication-title: Transl. Stroke Res.
  doi: 10.1007/s12975-019-00762-3
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_28
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 38
  start-page: 168
  year: 2017
  ident: ref_17
  article-title: Hypoglycemia-induced EEG complexity changes in Type 1 diabetes assessed by fractal analysis algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.06.004
– volume: 25
  start-page: 2488
  year: 2017
  ident: ref_12
  article-title: A novel nonlinear dynamic method for stroke rehabilitation effect evaluation using eeg
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2744664
– volume: 12
  start-page: 444
  year: 2017
  ident: ref_3
  article-title: Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce
  publication-title: Int. J. Stroke
  doi: 10.1177/1747493017711816
– volume: 118
  start-page: 2525
  year: 2007
  ident: ref_26
  article-title: Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.07.021
– volume: 8
  start-page: 471
  year: 2017
  ident: ref_31
  article-title: A review of resting-state electroencephalography analysis in disorders of consciousness
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2017.00471
– volume: 116
  start-page: 2266
  year: 2005
  ident: ref_30
  article-title: Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.06.011
– ident: ref_11
  doi: 10.1371/journal.pone.0100199
– volume: 22
  start-page: 64
  year: 2008
  ident: ref_2
  article-title: Inter-individual variability in the capacity for motor recovery after ischemic stroke
  publication-title: Neurorehabilit. Neural Repair
  doi: 10.1177/1545968307305302
– volume: 37
  start-page: 1153
  year: 1987
  ident: ref_8
  article-title: Evaluation of stroke using EEG frequency analysis and topographic mapping
  publication-title: Neurology
  doi: 10.1212/WNL.37.7.1153
– volume: 48
  start-page: 1424
  year: 2001
  ident: ref_22
  article-title: EEG complexity as a measure of depth of anesthesia for patients
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.966601
– volume: 29
  start-page: 614
  year: 2015
  ident: ref_1
  article-title: Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke
  publication-title: Neurorehabilit. Neural Repair
  doi: 10.1177/1545968314562115
– volume: 15
  start-page: 198
  year: 2013
  ident: ref_14
  article-title: Compensated transfer entropy as a tool for reliably estimating information transfer in physiological time series
  publication-title: Entropy
  doi: 10.3390/e15010198
– volume: 9
  start-page: 97
  year: 1971
  ident: ref_25
  article-title: The assessment and analysis of handedness: The Edinburgh inventory
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(71)90067-4
– ident: ref_16
  doi: 10.1109/EMBC.2015.7319309
– volume: 34
  start-page: 389
  year: 2020
  ident: ref_29
  article-title: Is Resting-State EEG Longitudinally Associated With Recovery of Clinical Neurological Impairments Early Poststroke? A Prospective Cohort Study
  publication-title: Neurorehabilit. Neural Repair
  doi: 10.1177/1545968320905797
– volume: 77
  start-page: 339
  year: 1997
  ident: ref_34
  article-title: Use of the fractal dimension for the analysis of electroencephalographic time series
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050394
– volume: 13
  start-page: 21
  year: 2016
  ident: ref_5
  article-title: EEG response varies with lesion location in patients with chronic stroke
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0120-2
– volume: 2018
  start-page: 8105480
  year: 2018
  ident: ref_6
  article-title: Quantification of Upper Limb Motor Recovery and EEG Power Changes after Robot-Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study
  publication-title: Neural Plast.
  doi: 10.1155/2018/8105480
– volume: 31
  start-page: 277
  year: 1988
  ident: ref_32
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(88)90081-4
– ident: ref_21
  doi: 10.1109/IEMBS.2005.1616858
– ident: ref_19
  doi: 10.1119/1.13295
– volume: 52
  start-page: 6404
  year: 2011
  ident: ref_33
  article-title: Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.11-7529
– volume: 27
  start-page: 73
  year: 2017
  ident: ref_23
  article-title: Comparison of higuchi, katz and multiresolution box-counting fractal dimension algorithms for eeg waveform signals based on event-related potentials
  publication-title: Rev. EIA
– volume: 2
  start-page: 70
  year: 2015
  ident: ref_13
  article-title: Classification of Alzheimer’s disease from quadratic sample entropy of electroencephalogram
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2014.0106
– volume: 29
  start-page: 5122
  year: 2018
  ident: ref_15
  article-title: Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2791644
SSID ssj0023216
Score 2.3382866
Snippet Stroke is the commonest cause of disability. Novel treatments require an improved understanding of the underlying mechanisms of recovery. Fractal approaches...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 592
SubjectTerms Algorithms
Biomarkers
Brain
Brain research
Complexity
Datasets
EEG
Electroencephalography
Fractal analysis
Fractals
Hypoglycemia
Impairment
neurophysiology
neuroplasticity
Orthopedics
Rehabilitation
Standard deviation
Stroke
Tortuosity
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKy4ELtAJE6ENpxYFL1MR2bEccUIt2oZcKUZB6i_wYwwqUlOy2vx-P1xuIhHrpNR4p1sx4Xh5_Q8ibGoNwJ8oCMXBDgsJ90dQ1FKXRIb63tVXg47AJeXmprq-bz6ngtkxtlRubGA216y3WyE9pzSgLsbKq3t_8LnBqFN6uphEaj8gOoiRUsXXvaky4GK3EGk2IhdT-FEK4HRx-Qyc-KEL1T-LLaXfkP-5m_uyhG90lT1OgmZ-tNWOPbEH3nLybzT7mc3wYhUsJjyT_Ah6L98v8HOdF5BfBQiwGrBrmcYJ4frUa-p_wgnybz75--FSk8QmFDTneqgArlNcWX7Y6LbgM3t4YEwQgJBcgtdVUM82Ug8CTWntTmsYx6hVmWdIBe0m2u76DVyQvgyQdB-EdeC5UbWjpnXS-0ZZC07iMvN0wtLUJWxxHXPxqQ46BvG9H3mfkZCS9WQNq_I_oHKUyEiAGdvzQD9_bdKRaYbjStQVRWs8rqU0lLahgYFzjeYiLMnKwEVCbDuay_SudjByPy-FI4T2J7qC_jTQiJIKMi4zIiS5MNjRd6RY_Iji3QoD9Sr6-_-f75AnF5hiEga0OyPZquIVD8tjerRbL4Shq8R9LPf1r
  priority: 102
  providerName: ProQuest
Title EEG Fractal Analysis Reflects Brain Impairment after Stroke
URI https://www.proquest.com/docview/2532342881
https://www.proquest.com/docview/2536499346
https://pubmed.ncbi.nlm.nih.gov/PMC8150817
https://doaj.org/article/6b48a5ce60cf417ab17ce8179d9f4431
Volume 23
WOSCitedRecordID wos000653942800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAFgQBRWKqAOHCJNrEdP8SJohT2QFXtglROkR9jUYFS1Hb3uL-dmSStNhISFy45eOZgz9ia-ZzxN4y9rSgJj6rIiQMXAYpMua0qyAvvML8PVTCQumYTerEwq5Vd3mr1RTVhPT1wb7gz5aVxVQBVhCRL7XypAxjcRtEmKbsX1LzQ9gCmBqgleKl6HiGBoP4MMNHGUG_5KPp0JP2jzHJcF3kr0MwfsYdDhph96Gf2mN2B9gl7X9efsjm9aCLRQCSSXUCiW_ddNqNGD9k5Hu31lq77sq71d3a5325-wlP2bV5__fg5H_oe5AHB2T6HoExygZ6kRqekxjDtvUfLKS0VaBccd8IJEwGXVLnkC2-j4MkQPNIRxDN20m5aeM6yAl0QJagUIUllKs-LFHVM1gUO1sYJe3ewRxMGUnDqTfGrQXBApmuOppuwN0fV3z0Txt-UZmTUowKRV3cD6NJmcGnzL5dO2OnBJc1wonYNrwQXiJUMil8fxXgW6AeHa2Fz1ekoRHBCqgnTI1eOJjSWtOsfHau2IWb8Ur_4Hyt4yR5wqn0hltfylJ3st1fwit0P1_v1bjtld_XKTNm9Wb1YXky7jTulmtNL-t7UKFmef1l-_wNIavXj
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fa9RAEB5qFfTFH6gYrRpFwZfQZDfZzSIiVu_s0XqIrdC3uNkf9qgkNXdV_Kf8G53JJdGA-NYHX7NDsmQms99kZ78P4ElGINyKOCIOXCxQUh-pLHNRXGrE9yYzufOt2IScz_OjI_V-A372Z2GorbLPiW2itrWhf-TbLOOMI1bOk5enXyNSjaLd1V5CYx0We-7HdyzZli9mb9C_TxmbTg5f70adqkBksPRZRc6I3GtDBz6tFqnERbAsS5yXkKlwUhvNNNc8tw6RR6Z9GZfKcuZzKj6kdRzvewEuIoxgqm0VPBgKPM4SsWYv4lzF2w7hPQIMxUZrXisNMMKz427MP5a36bX_7cVch6sdkA5frSP_Bmy46iY8n0zehlM6-EVDHd9K-MF52pxYhjukhxHOMAMuGvorGrYK6eHBqqlP3C34eC7zvQ2bVV25OxDGGKk2dcJb51ORZyWLvZXWK22YU8oG8Kx3YGE67nSS8PhSYA1Fvi4GXwfweDA9XROG_M1oh6JgMCCO7_ZC3XwuupRRiDLNdWaciI1PE6nLRBqXYwK1yqeI-wLY6gOi6BLPsvgdDQE8GoYxZdA-kK5cfdbaCCx0eSoCkKPYG01oPFItjlvy8ZwEBBJ5998PfwiXdw_f7Rf7s_nePbjCqBGIKG-TLdhcNWfuPlwy31aLZfOg_YJC-HTekfkL50Bbuw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXYS48BAgAgsEBBKXqImd2I4QQizbQrVQVTyk5RQcP6ACJUvaBfHX-HXMpEkhEuK2B67xKLHiz-Nv7PF8APczIuFWxBHVwMUAJfVRnmUuikuN_N5kRjnfik3I-VwdHeWLHfjZ34WhtMreJ7aO2taG9sjHLOOMI1dWydh3aRGLg-mT468RKUjRSWsvp7GByKH78R3Dt9Xj2QGO9QPGppO3z15EncJAZDAMWkfOCOW1ocufVotU4oJYliX2UchUOKmNZpprrqxDFpJpX8ZlbjnzigIRaR3H956BXaTkKRvB7mL2avF-G-5xlohNLSPO83jskOwj3cjZYAVshQIG7HaYm_nHYje9-D__pktwoaPY4dPNnLgMO666Ao8mk-fhlK6EUVNXiSV87TwdW6zCfVLKCGfoG5cN7ZeGrXZ6-Gbd1J_dVXh3Kv29BqOqrtx1CGPEsE2d8Nb5VKisZLG30vpcG-by3AbwsB_MwnRV1Unc40uB0RWNe7Ed9wDubU2PN6VE_ma0T4jYGlD17_ZB3XwsOmdSiDJVOjNOxManidRlIo1T6Fpt7lNkhAHs9eAoOpe0Kn4jI4C722Z0JnRCpCtXn7Q2AkNgnooA5ACHgw4NW6rlp7YsuSJpgUTe-PfH78A5BGTxcjY_vAnnGWUIUS3cZA9G6-bE3YKz5tt6uWpud9MphA-nDc1frx5l8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG+Fractal+Analysis+Reflects+Brain+Impairment+after+Stroke&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Maria+Rubega&rft.au=Emanuela+Formaggio&rft.au=Franco+Molteni&rft.au=Eleonora+Guanziroli&rft.date=2021-05-11&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=23&rft.issue=5&rft.spage=592&rft_id=info:doi/10.3390%2Fe23050592&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b48a5ce60cf417ab17ce8179d9f4431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon