“Zhores” — Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology

The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the are...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Open Engineering (Warsaw) Ročník 9; číslo 1; s. 512 - 520
Hlavní autori: Zacharov, Igor, Arslanov, Rinat, Gunin, Maksim, Stefonishin, Daniil, Bykov, Andrey, Pavlov, Sergey, Panarin, Oleg, Maliutin, Anton, Rykovanov, Sergey, Fedorov, Maxim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: De Gruyter 01.01.2019
Predmet:
ISSN:2391-5439, 2391-5439
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7 in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech.
AbstractList The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7 th in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech.
The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7th in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech.
The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7 in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech.
Author Bykov, Andrey
Gunin, Maksim
Stefonishin, Daniil
Rykovanov, Sergey
Zacharov, Igor
Pavlov, Sergey
Panarin, Oleg
Maliutin, Anton
Fedorov, Maxim
Arslanov, Rinat
Author_xml – sequence: 1
  givenname: Igor
  surname: Zacharov
  fullname: Zacharov, Igor
  email: i.zacharov@skoltech.ru
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 2
  givenname: Rinat
  surname: Arslanov
  fullname: Arslanov, Rinat
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 3
  givenname: Maksim
  surname: Gunin
  fullname: Gunin, Maksim
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 4
  givenname: Daniil
  surname: Stefonishin
  fullname: Stefonishin, Daniil
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 5
  givenname: Andrey
  surname: Bykov
  fullname: Bykov, Andrey
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 6
  givenname: Sergey
  surname: Pavlov
  fullname: Pavlov, Sergey
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 7
  givenname: Oleg
  surname: Panarin
  fullname: Panarin, Oleg
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 8
  givenname: Anton
  surname: Maliutin
  fullname: Maliutin, Anton
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 9
  givenname: Sergey
  surname: Rykovanov
  fullname: Rykovanov, Sergey
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
– sequence: 10
  givenname: Maxim
  surname: Fedorov
  fullname: Fedorov, Maxim
  organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation
BookMark eNp1UUtuFDEUbKEgEUKW7H0AGux2f8bsUMRnpEggJWyysZ7t1z2eeOyR25NodnMIlskBuNacBHcmkRAiK5dLVWW_V6-LIx88FsVbRt-zhjUf0A9lRZkoKW3Ei-K44oKVTc3F0V_4VXE6jktKKWt4Jzp2XPze7-6uFiHiuN_dk_3uF_mBCXoX1iMZN2uMOqzWm4SR9CESAwlKE-0NerIKBp31wzuyAr2wHolDiD4zBLwhEJPtrbbgiPUJnbMDeo35MiZwDk1G5OI6uOtwE8g8szbld0joyYW2D9Ip5hL1wgcXhu2b4mUPbsTTx_Ok-Pnl8-XZt_L8-9f52afzUtd1m0psNc7ErBOMITO1bg1XjYCaKoOVgb5tta6F0Qp1ZXjbgqGCQzdrqKmUaJCfFPNDrgmwlOtoVxC3MoCVD0SIg5xm0w4lcGFUrVrFRVd3PSjBFOcdE4LVmukpix-ydAzjGLGX2iZINvgUwTrJqJzKk7k8OZUnp_Kyq_zH9fSL5_QfD_pbcLkpg0PcbDOQy7CJPu_q_z6RqYr_AerMuN0
CitedBy_id crossref_primary_10_3390_rs15092347
crossref_primary_10_1109_ACCESS_2021_3138162
crossref_primary_10_1088_1751_8121_ac711a
crossref_primary_10_3390_fluids8020077
crossref_primary_10_1109_ACCESS_2023_3309412
crossref_primary_10_1134_S1061933X22040135
crossref_primary_10_1093_nargab_lqab111
crossref_primary_10_1134_S0036024423110158
crossref_primary_10_1038_s41467_025_58391_4
crossref_primary_10_1371_journal_pone_0253835
crossref_primary_10_1007_s12043_024_02828_w
crossref_primary_10_1016_j_chaos_2024_115197
crossref_primary_10_1051_e3sconf_202129104010
crossref_primary_10_3389_fdata_2024_1266031
crossref_primary_10_1016_j_molliq_2022_119525
crossref_primary_10_1515_jiip_2023_0075
crossref_primary_10_3390_jimaging8090234
crossref_primary_10_1016_j_actamat_2022_118383
crossref_primary_10_1103_PhysRevA_111_042625
crossref_primary_10_1109_ACCESS_2023_3300967
crossref_primary_10_1371_journal_pone_0273293
crossref_primary_10_1016_j_fluid_2020_112650
crossref_primary_10_1177_08853282231151822
crossref_primary_10_1016_j_colsurfa_2022_129443
crossref_primary_10_1007_s10598_022_09545_2
crossref_primary_10_25209_2079_3316_2021_12_2_73_103
crossref_primary_10_1088_2053_1583_ab9695
crossref_primary_10_1109_LCOMM_2020_3018541
crossref_primary_10_1007_s11242_024_02064_1
crossref_primary_10_3390_rs15184463
crossref_primary_10_1038_s41598_021_94082_y
crossref_primary_10_1038_s41598_020_73824_4
crossref_primary_10_3390_ma13225256
crossref_primary_10_1134_S1063771024603054
crossref_primary_10_1007_s11548_022_02621_3
crossref_primary_10_1016_j_molliq_2025_127019
crossref_primary_10_3390_cryst11050486
crossref_primary_10_1016_j_carbon_2020_09_087
crossref_primary_10_1038_s41467_019_13357_1
crossref_primary_10_1109_TMI_2021_3119851
crossref_primary_10_3389_fenvs_2024_1412870
crossref_primary_10_3847_2041_8213_ad2450
crossref_primary_10_1002_smll_202104316
crossref_primary_10_1109_ACCESS_2023_3247342
crossref_primary_10_1109_TBME_2020_3021359
crossref_primary_10_3390_biom13081269
crossref_primary_10_1039_D2CP00698G
crossref_primary_10_1134_S0021364021170021
crossref_primary_10_1109_ACCESS_2022_3190376
crossref_primary_10_3390_nano12040650
crossref_primary_10_1109_ACCESS_2025_3536004
crossref_primary_10_1038_s41550_023_02030_9
crossref_primary_10_1371_journal_pone_0282689
crossref_primary_10_1063_5_0213592
crossref_primary_10_1088_1367_2630_abb1dc
crossref_primary_10_3390_nano13010023
crossref_primary_10_1016_j_colsurfa_2021_128026
crossref_primary_10_1016_j_jelechem_2024_118718
crossref_primary_10_1007_s10915_020_01388_6
crossref_primary_10_1109_ACCESS_2022_3161568
crossref_primary_10_1134_S106422692310011X
crossref_primary_10_1038_s41598_025_94002_4
crossref_primary_10_3390_jmse11020404
crossref_primary_10_1109_ACCESS_2023_3234810
crossref_primary_10_1016_j_compfluid_2025_106577
crossref_primary_10_1016_j_carbon_2022_05_047
crossref_primary_10_1016_j_media_2021_102054
crossref_primary_10_1088_1361_648X_ac2b69
crossref_primary_10_1038_s41598_025_97059_3
crossref_primary_10_1016_j_jelechem_2024_118708
crossref_primary_10_1016_j_matchemphys_2024_129488
crossref_primary_10_3390_app13169112
crossref_primary_10_3390_rs14092281
crossref_primary_10_1007_s10598_020_09496_6
crossref_primary_10_3390_min10010042
crossref_primary_10_1002_cmtd_202100069
crossref_primary_10_3390_rs13112181
crossref_primary_10_1002_itl2_488
crossref_primary_10_1109_TGRS_2021_3121538
crossref_primary_10_1134_S0021364023603056
crossref_primary_10_1016_j_mtla_2023_101681
crossref_primary_10_3390_jmmp9020051
crossref_primary_10_1063_5_0025505
crossref_primary_10_1109_TWC_2021_3079632
crossref_primary_10_3390_fluids6110389
crossref_primary_10_1016_j_fluid_2020_112553
crossref_primary_10_1134_S0021364023604256
crossref_primary_10_1016_j_physa_2022_127785
crossref_primary_10_3390_math10203801
crossref_primary_10_1070_QEL17616
crossref_primary_10_1051_0004_6361_202348314
crossref_primary_10_3390_ma13030541
crossref_primary_10_3390_ma15093043
crossref_primary_10_1016_j_jcp_2022_111439
crossref_primary_10_1016_j_camwa_2021_01_018
crossref_primary_10_1145_3528223_3530140
crossref_primary_10_1109_LWC_2020_3029678
crossref_primary_10_1063_5_0253010
Cites_doi 10.1002/jcc.20291
10.26089/NumMet.v16r335
10.1109/MCSE.2018.2875367
10.14529/jsfi180204
10.1109/ICIS.2017.7960006
10.1109/PDSW-DISCS.2018.000-2
10.1038/s41586-019-1116-4
10.1016/0021-9991(90)90007-N
10.1016/B978-044451719-7/50059-7
10.1109/PADSW.2018.8644997
10.1016/j.laa.2009.07.024
10.26089/NumMet.v19r435
10.1103/PhysRevLett.122.204802
10.1016/j.softx.2015.06.001
10.1007/978-3-319-67946-4_1
10.1007/978-3-030-02465-9_35
10.1287/opre.9.3.383
10.1017/CBO9780511780516
10.1016/j.cpc.2017.11.002
10.1016/j.jcp.2014.11.003
10.1103/PhysRevLett.119.260601
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/eng-2019-0059
DatabaseName CrossRef
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2391-5439
EndPage 520
ExternalDocumentID oai_doaj_org_article_a39db4b6b39747fab91b33719914c1ce
10_1515_eng_2019_0059
10_1515_eng_2019_005991512
GroupedDBID 5VS
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
EBS
EJD
GROUPED_DOAJ
KQ8
M~E
OK1
QD8
Y2W
AAYXX
CITATION
ID FETCH-LOGICAL-c446t-e6ce8987911e1d4c6d3b59a40bde2daf66cc49dcbec2d366ad093a7850d2b95e3
IEDL.DBID DOA
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2391-5439
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 18 22:40:57 EST 2025
Sat Nov 29 06:42:04 EST 2025
Sat Nov 29 01:30:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e6ce8987911e1d4c6d3b59a40bde2daf66cc49dcbec2d366ad093a7850d2b95e3
OpenAccessLink https://doaj.org/article/a39db4b6b39747fab91b33719914c1ce
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a39db4b6b39747fab91b33719914c1ce
crossref_citationtrail_10_1515_eng_2019_0059
crossref_primary_10_1515_eng_2019_0059
walterdegruyter_journals_10_1515_eng_2019_005991512
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Open Engineering (Warsaw)
PublicationYear 2019
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. (j_eng-2019-0059_ref_033) 2005; 26
Matveev, S. A.; Krapivsky, P. L.; Smirnov, A. P.; Tyrtyshnikov, E. E.; Brilliantov, N. V. (j_eng-2019-0059_ref_017) 2017; 119
Lee, H.; Kang, I. S. (j_eng-2019-0059_ref_014) 1990; 91
Krapivsky, P. L.; Redner, S.; Ben-Naim, E. (j_eng-2019-0059_ref_013) 2010
Stefonishin, D. A.; Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_029) 2018; 19
McCalpin, J. D. (j_eng-2019-0059_ref_022) 1995
Sutmann, G. (j_eng-2019-0059_ref_031) 2002
Kates-Harbeck, J.; Svyatkovskiy, A.; Tang, W. (j_eng-2019-0059_ref_012) 2019; 568
Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_018) 2015; 282
Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. (j_eng-2019-0059_ref_007) 2015; 1
Matveev, S. A.; Stadnichuk, V. I.; Tyrtyshnikov, E. E.; Smirnov, A. P.; Ampilogova, N. V.; Brilliantov, N. V. (j_eng-2019-0059_ref_019) 2018a; 224
Little, J. D. (j_eng-2019-0059_ref_015) 1961; 9
Oseledets, I.; Tyrtyshnikov, E. (j_eng-2019-0059_ref_025) 2010; 432
Matveev, S. A. (j_eng-2019-0059_ref_016) 2015; 16
Sinitskiy, A. V.; Pande, V. S. (j_eng-2019-0059_ref_028) 2018
Qian, D.; Luan, Z. (j_eng-2019-0059_ref_026) 2018; 21
Matveev, S. A.; Zagidullin, R. R.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_021) 2018b; 5
Hey, A. J. G.; Tansley, S.; Tolle, K. M. (j_eng-2019-0059_ref_010) 2009; Vol. 1
2022042712141834955_j_eng-2019-0059_ref_016_w2aab3b7e1028b1b6b1ab2b1c16Aa
2022042712141834955_j_eng-2019-0059_ref_028_w2aab3b7e1028b1b6b1ab2b1c28Aa
2022042712141834955_j_eng-2019-0059_ref_011_w2aab3b7e1028b1b6b1ab2b1c11Aa
2022042712141834955_j_eng-2019-0059_ref_030_w2aab3b7e1028b1b6b1ab2b1c30Aa
2022042712141834955_j_eng-2019-0059_ref_003_w2aab3b7e1028b1b6b1ab2b1b3Aa
2022042712141834955_j_eng-2019-0059_ref_008_w2aab3b7e1028b1b6b1ab2b1b8Aa
2022042712141834955_j_eng-2019-0059_ref_023_w2aab3b7e1028b1b6b1ab2b1c23Aa
2022042712141834955_j_eng-2019-0059_ref_032_w2aab3b7e1028b1b6b1ab2b1c32Aa
2022042712141834955_j_eng-2019-0059_ref_018_w2aab3b7e1028b1b6b1ab2b1c18Aa
2022042712141834955_j_eng-2019-0059_ref_021_w2aab3b7e1028b1b6b1ab2b1c21Aa
2022042712141834955_j_eng-2019-0059_ref_033_w2aab3b7e1028b1b6b1ab2b1c33Aa
2022042712141834955_j_eng-2019-0059_ref_002_w2aab3b7e1028b1b6b1ab2b1b2Aa
2022042712141834955_j_eng-2019-0059_ref_014_w2aab3b7e1028b1b6b1ab2b1c14Aa
2022042712141834955_j_eng-2019-0059_ref_007_w2aab3b7e1028b1b6b1ab2b1b7Aa
2022042712141834955_j_eng-2019-0059_ref_020_w2aab3b7e1028b1b6b1ab2b1c20Aa
2022042712141834955_j_eng-2019-0059_ref_026_w2aab3b7e1028b1b6b1ab2b1c26Aa
2022042712141834955_j_eng-2019-0059_ref_017_w2aab3b7e1028b1b6b1ab2b1c17Aa
2022042712141834955_j_eng-2019-0059_ref_001_w2aab3b7e1028b1b6b1ab2b1b1Aa
2022042712141834955_j_eng-2019-0059_ref_006_w2aab3b7e1028b1b6b1ab2b1b6Aa
2022042712141834955_j_eng-2019-0059_ref_029_w2aab3b7e1028b1b6b1ab2b1c29Aa
2022042712141834955_j_eng-2019-0059_ref_015_w2aab3b7e1028b1b6b1ab2b1c15Aa
2022042712141834955_j_eng-2019-0059_ref_027_w2aab3b7e1028b1b6b1ab2b1c27Aa
2022042712141834955_j_eng-2019-0059_ref_005_w2aab3b7e1028b1b6b1ab2b1b5Aa
2022042712141834955_j_eng-2019-0059_ref_012_w2aab3b7e1028b1b6b1ab2b1c12Aa
2022042712141834955_j_eng-2019-0059_ref_024_w2aab3b7e1028b1b6b1ab2b1c24Aa
2022042712141834955_j_eng-2019-0059_ref_019_w2aab3b7e1028b1b6b1ab2b1c19Aa
2022042712141834955_j_eng-2019-0059_ref_010_w2aab3b7e1028b1b6b1ab2b1c10Aa
2022042712141834955_j_eng-2019-0059_ref_013_w2aab3b7e1028b1b6b1ab2b1c13Aa
2022042712141834955_j_eng-2019-0059_ref_034_w2aab3b7e1028b1b6b1ab2b1c34Aa
2022042712141834955_j_eng-2019-0059_ref_004_w2aab3b7e1028b1b6b1ab2b1b4Aa
2022042712141834955_j_eng-2019-0059_ref_009_w2aab3b7e1028b1b6b1ab2b1b9Aa
2022042712141834955_j_eng-2019-0059_ref_022_w2aab3b7e1028b1b6b1ab2b1c22Aa
2022042712141834955_j_eng-2019-0059_ref_025_w2aab3b7e1028b1b6b1ab2b1c25Aa
2022042712141834955_j_eng-2019-0059_ref_031_w2aab3b7e1028b1b6b1ab2b1c31Aa
References_xml – volume: 16
  start-page: 360
  issue: 3
  year: 2015
  end-page: 368
  ident: j_eng-2019-0059_ref_016
  article-title: A parallel implementation of a fast method for solving the smoluchowski-type kinetic equations of aggregation and fragmentation processes
  publication-title: Vychislitel’nye Metody i Programmirovanie (in Russian)
– volume: 5
  start-page: 43
  issue: 2
  year: 2018b
  end-page: 54
  ident: j_eng-2019-0059_ref_021
  article-title: Parallel numerical algorithm for solving advection equation for coagulating particles
  publication-title: Supercomputing Frontiers and Innovations
– year: 2018
  ident: j_eng-2019-0059_ref_028
  publication-title: Deep neural network computes electron densities and energies of a large set of organic molecules faster than density functional theory (dft)
– volume: 224
  start-page: 154
  year: 2018a
  end-page: 163
  ident: j_eng-2019-0059_ref_019
  article-title: Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation–fragmentation models
  publication-title: Computer Physics Communications
– volume: 9
  start-page: 3
  year: 1961
  ident: j_eng-2019-0059_ref_015
  article-title: A proof for the queueing formula: L = λ · W
  publication-title: Operations Research
– volume: 568
  start-page: 526
  issue: 7753
  year: 2019
  ident: j_eng-2019-0059_ref_012
  article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning
  publication-title: Nature
– volume: 1
  start-page: 19
  year: 2015
  end-page: 25
  ident: j_eng-2019-0059_ref_007
  article-title: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– year: 2002
  ident: j_eng-2019-0059_ref_031
  publication-title: Classical molecular dynamics and parallel computing
– volume: 19
  start-page: 390
  issue: 4
  year: 2018
  end-page: 404
  ident: j_eng-2019-0059_ref_029
  article-title: Tensor decompositions for solving the equations of mathematical models of aggregation with multiple collisions of particles
  publication-title: Vychislitel’nye Metody i Programmirovanie (in Russian)
– volume: 119
  start-page: 260601
  issue: 26
  year: 2017
  ident: j_eng-2019-0059_ref_017
  article-title: Oscillations in aggregation-shattering processes
  publication-title: Physical review letters
– volume: 432
  start-page: 70
  issue: 1
  year: 2010
  end-page: 88
  ident: j_eng-2019-0059_ref_025
  article-title: TT-cross approximation for multidimensional arrays
  publication-title: Linear Algebra and its Applications
– volume: 282
  start-page: 23
  year: 2015
  end-page: 32
  ident: j_eng-2019-0059_ref_018
  article-title: A fast numerical method for the Cauchy problem for the Smoluchowski equation
  publication-title: Journal of Computational Physics
– volume: 26
  start-page: 1701
  issue: 16
  year: 2005
  end-page: 1718
  ident: j_eng-2019-0059_ref_033
  article-title: Gromacs: fast, flexible, and free
  publication-title: Journal of computational chemistry
– volume: 21
  start-page: 6
  issue: 1
  year: 2018
  end-page: 16
  ident: j_eng-2019-0059_ref_026
  article-title: High performance computing development in china: A brief review and perspectives
  publication-title: Computing in Science & Engineering
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  end-page: 131
  ident: j_eng-2019-0059_ref_014
  article-title: Neural algorithm for solving differential equations
  publication-title: Journal of Computational Physics
– year: 2010
  ident: j_eng-2019-0059_ref_013
  publication-title: A kinetic view of statistical physics
– volume: Vol. 1
  year: 2009
  ident: j_eng-2019-0059_ref_010
  publication-title: The fourth paradigm: data-intensive scientific discovery
– start-page: 19
  year: 1995
  end-page: 25
  ident: j_eng-2019-0059_ref_022
  article-title: Memory bandwidth and machine balance in current high performance computers
  publication-title: IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter
– ident: 2022042712141834955_j_eng-2019-0059_ref_031_w2aab3b7e1028b1b6b1ab2b1c31Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_033_w2aab3b7e1028b1b6b1ab2b1c33Aa
  doi: 10.1002/jcc.20291
– ident: 2022042712141834955_j_eng-2019-0059_ref_016_w2aab3b7e1028b1b6b1ab2b1c16Aa
  doi: 10.26089/NumMet.v16r335
– ident: 2022042712141834955_j_eng-2019-0059_ref_026_w2aab3b7e1028b1b6b1ab2b1c26Aa
  doi: 10.1109/MCSE.2018.2875367
– ident: 2022042712141834955_j_eng-2019-0059_ref_006_w2aab3b7e1028b1b6b1ab2b1b6Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_021_w2aab3b7e1028b1b6b1ab2b1c21Aa
  doi: 10.14529/jsfi180204
– ident: 2022042712141834955_j_eng-2019-0059_ref_034_w2aab3b7e1028b1b6b1ab2b1c34Aa
  doi: 10.1109/ICIS.2017.7960006
– ident: 2022042712141834955_j_eng-2019-0059_ref_030_w2aab3b7e1028b1b6b1ab2b1c30Aa
  doi: 10.1109/PDSW-DISCS.2018.000-2
– ident: 2022042712141834955_j_eng-2019-0059_ref_003_w2aab3b7e1028b1b6b1ab2b1b3Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_012_w2aab3b7e1028b1b6b1ab2b1c12Aa
  doi: 10.1038/s41586-019-1116-4
– ident: 2022042712141834955_j_eng-2019-0059_ref_014_w2aab3b7e1028b1b6b1ab2b1c14Aa
  doi: 10.1016/0021-9991(90)90007-N
– ident: 2022042712141834955_j_eng-2019-0059_ref_008_w2aab3b7e1028b1b6b1ab2b1b8Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_011_w2aab3b7e1028b1b6b1ab2b1c11Aa
  doi: 10.1016/B978-044451719-7/50059-7
– ident: 2022042712141834955_j_eng-2019-0059_ref_024_w2aab3b7e1028b1b6b1ab2b1c24Aa
  doi: 10.1109/PADSW.2018.8644997
– ident: 2022042712141834955_j_eng-2019-0059_ref_005_w2aab3b7e1028b1b6b1ab2b1b5Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_025_w2aab3b7e1028b1b6b1ab2b1c25Aa
  doi: 10.1016/j.laa.2009.07.024
– ident: 2022042712141834955_j_eng-2019-0059_ref_002_w2aab3b7e1028b1b6b1ab2b1b2Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_029_w2aab3b7e1028b1b6b1ab2b1c29Aa
  doi: 10.26089/NumMet.v19r435
– ident: 2022042712141834955_j_eng-2019-0059_ref_022_w2aab3b7e1028b1b6b1ab2b1c22Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_027_w2aab3b7e1028b1b6b1ab2b1c27Aa
  doi: 10.1103/PhysRevLett.122.204802
– ident: 2022042712141834955_j_eng-2019-0059_ref_007_w2aab3b7e1028b1b6b1ab2b1b7Aa
  doi: 10.1016/j.softx.2015.06.001
– ident: 2022042712141834955_j_eng-2019-0059_ref_009_w2aab3b7e1028b1b6b1ab2b1b9Aa
  doi: 10.1007/978-3-319-67946-4_1
– ident: 2022042712141834955_j_eng-2019-0059_ref_004_w2aab3b7e1028b1b6b1ab2b1b4Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_032_w2aab3b7e1028b1b6b1ab2b1c32Aa
  doi: 10.1007/978-3-030-02465-9_35
– ident: 2022042712141834955_j_eng-2019-0059_ref_015_w2aab3b7e1028b1b6b1ab2b1c15Aa
  doi: 10.1287/opre.9.3.383
– ident: 2022042712141834955_j_eng-2019-0059_ref_001_w2aab3b7e1028b1b6b1ab2b1b1Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_028_w2aab3b7e1028b1b6b1ab2b1c28Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_023_w2aab3b7e1028b1b6b1ab2b1c23Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_010_w2aab3b7e1028b1b6b1ab2b1c10Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_013_w2aab3b7e1028b1b6b1ab2b1c13Aa
  doi: 10.1017/CBO9780511780516
– ident: 2022042712141834955_j_eng-2019-0059_ref_019_w2aab3b7e1028b1b6b1ab2b1c19Aa
  doi: 10.1016/j.cpc.2017.11.002
– ident: 2022042712141834955_j_eng-2019-0059_ref_020_w2aab3b7e1028b1b6b1ab2b1c20Aa
– ident: 2022042712141834955_j_eng-2019-0059_ref_018_w2aab3b7e1028b1b6b1ab2b1c18Aa
  doi: 10.1016/j.jcp.2014.11.003
– ident: 2022042712141834955_j_eng-2019-0059_ref_017_w2aab3b7e1028b1b6b1ab2b1c17Aa
  doi: 10.1103/PhysRevLett.119.260601
SSID ssj0001537971
Score 2.5476615
Snippet The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 512
SubjectTerms Computer Scalability
Computing Clusters
Energy Efficiency
High Performance Computing
High Speed Networks
Parallel Computation
Title “Zhores” — Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology
URI https://www.degruyter.com/doi/10.1515/eng-2019-0059
https://doaj.org/article/a39db4b6b39747fab91b33719914c1ce
Volume 9
WOSCitedRecordID wos000491158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2391-5439
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537971
  issn: 2391-5439
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2391-5439
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537971
  issn: 2391-5439
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEeKp5ioSAfEKdGTdbOw8eCWnGAqhIgVVwiP8ZL1W2yyu4WcUH7Izi2P4C_tb-EGcddIgTiwiVKIsuJPON52OPvY-xFiW7PYxideAeQSEOQt7lOk1xLorXyPnUBMv9teXxcnZ6qkwHVF9WE9fDA_cDta6GckaYwgiJfr43KjBAlVexIm1kg64tRzyCZ6s8Hi1KVWQTVRJ-9D80ENYJO7ARc0oETClj922znS9ifdjDpll8XN_uhwc0c3WU7MT7kB_1_3WO3oLnPtgeogQ_Yj_Xq6tPnFvPk9eqar1ff-QkQCW87m_P5cgadjUwNHANSTiWgievIqPFAe4N97PGLUEMJPJJGTLhuHKfB6AEl-NkAqRMfMIScTsHhHX9_3k7P28uWb8oMeOt5NBGhm1-r9Q_Zx6PDD6_fJJFxIbGYFi4SKCxUqirRAkLmpC2cMLnSMjUOxk77orBWKmdR8GMnikK7VAldVnnqxkblIB6xraZt4DHjKKJMC2_QYDg5Jo51CRgeFLLypUkrO2J7NyKobYQjJ1aMaU1pCUoMp-2kJonVJLERe7lpPutxOP7W8BXJc9OI4LPDC1SqOipV_S-lGjHxmzbUcWrP__xVRYHTk__x6afsTq-mtMqzy7YW3RKesdv2cnE2754HLcfru2-HPwGopQoX
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CZhores%E2%80%9D+%E2%80%94+Petaflops+supercomputer+for+data-driven+modeling%2C+machine+learning+and+artificial+intelligence+installed+in+Skolkovo+Institute+of+Science+and+Technology&rft.jtitle=Open+Engineering+%28Warsaw%29&rft.au=Zacharov%2C+Igor&rft.au=Arslanov%2C+Rinat&rft.au=Gunin%2C+Maksim&rft.au=Stefonishin%2C+Daniil&rft.date=2019-01-01&rft.pub=De+Gruyter&rft.eissn=2391-5439&rft.volume=9&rft.issue=1&rft.spage=512&rft.epage=520&rft_id=info:doi/10.1515%2Feng-2019-0059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_eng_2019_005991512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5439&client=summon