“Zhores” — Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology
The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the are...
Uložené v:
| Vydané v: | Open Engineering (Warsaw) Ročník 9; číslo 1; s. 512 - 520 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
De Gruyter
01.01.2019
|
| Predmet: | |
| ISSN: | 2391-5439, 2391-5439 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7
in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech. |
|---|---|
| AbstractList | The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7
th
in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech. The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7th in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech. The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo Institute of Science and Technology (Skoltech) opens up new exciting opportunities for scientific discoveries in the institute especially in the areas of data-driven modeling, machine learning and artificial intelligence. This supercomputer utilizes the latest generation of Intel and NVidia processors to provide resources for the most compute intensive tasks of the Skoltech scientists working in digital pharma, predictive analytics, photonics, material science, image processing, plasma physics and many more. Currently it places 7 in the Russian and CIS TOP-50 (2019) supercomputer list. In this article we summarize the cluster properties and discuss the measured performance and usage modes of this new scientific instrument in Skoltech. |
| Author | Bykov, Andrey Gunin, Maksim Stefonishin, Daniil Rykovanov, Sergey Zacharov, Igor Pavlov, Sergey Panarin, Oleg Maliutin, Anton Fedorov, Maxim Arslanov, Rinat |
| Author_xml | – sequence: 1 givenname: Igor surname: Zacharov fullname: Zacharov, Igor email: i.zacharov@skoltech.ru organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 2 givenname: Rinat surname: Arslanov fullname: Arslanov, Rinat organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 3 givenname: Maksim surname: Gunin fullname: Gunin, Maksim organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 4 givenname: Daniil surname: Stefonishin fullname: Stefonishin, Daniil organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 5 givenname: Andrey surname: Bykov fullname: Bykov, Andrey organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 6 givenname: Sergey surname: Pavlov fullname: Pavlov, Sergey organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 7 givenname: Oleg surname: Panarin fullname: Panarin, Oleg organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 8 givenname: Anton surname: Maliutin fullname: Maliutin, Anton organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 9 givenname: Sergey surname: Rykovanov fullname: Rykovanov, Sergey organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation – sequence: 10 givenname: Maxim surname: Fedorov fullname: Fedorov, Maxim organization: Skolkovo Institute of Science and Technology (Skoltech), cluster for Computational and Data-Intensive Science and Engineering (CDISE), 143026 Moscow, Russian Federation |
| BookMark | eNp1UUtuFDEUbKEgEUKW7H0AGux2f8bsUMRnpEggJWyysZ7t1z2eeOyR25NodnMIlskBuNacBHcmkRAiK5dLVWW_V6-LIx88FsVbRt-zhjUf0A9lRZkoKW3Ei-K44oKVTc3F0V_4VXE6jktKKWt4Jzp2XPze7-6uFiHiuN_dk_3uF_mBCXoX1iMZN2uMOqzWm4SR9CESAwlKE-0NerIKBp31wzuyAr2wHolDiD4zBLwhEJPtrbbgiPUJnbMDeo35MiZwDk1G5OI6uOtwE8g8szbld0joyYW2D9Ip5hL1wgcXhu2b4mUPbsTTx_Ok-Pnl8-XZt_L8-9f52afzUtd1m0psNc7ErBOMITO1bg1XjYCaKoOVgb5tta6F0Qp1ZXjbgqGCQzdrqKmUaJCfFPNDrgmwlOtoVxC3MoCVD0SIg5xm0w4lcGFUrVrFRVd3PSjBFOcdE4LVmukpix-ydAzjGLGX2iZINvgUwTrJqJzKk7k8OZUnp_Kyq_zH9fSL5_QfD_pbcLkpg0PcbDOQy7CJPu_q_z6RqYr_AerMuN0 |
| CitedBy_id | crossref_primary_10_3390_rs15092347 crossref_primary_10_1109_ACCESS_2021_3138162 crossref_primary_10_1088_1751_8121_ac711a crossref_primary_10_3390_fluids8020077 crossref_primary_10_1109_ACCESS_2023_3309412 crossref_primary_10_1134_S1061933X22040135 crossref_primary_10_1093_nargab_lqab111 crossref_primary_10_1134_S0036024423110158 crossref_primary_10_1038_s41467_025_58391_4 crossref_primary_10_1371_journal_pone_0253835 crossref_primary_10_1007_s12043_024_02828_w crossref_primary_10_1016_j_chaos_2024_115197 crossref_primary_10_1051_e3sconf_202129104010 crossref_primary_10_3389_fdata_2024_1266031 crossref_primary_10_1016_j_molliq_2022_119525 crossref_primary_10_1515_jiip_2023_0075 crossref_primary_10_3390_jimaging8090234 crossref_primary_10_1016_j_actamat_2022_118383 crossref_primary_10_1103_PhysRevA_111_042625 crossref_primary_10_1109_ACCESS_2023_3300967 crossref_primary_10_1371_journal_pone_0273293 crossref_primary_10_1016_j_fluid_2020_112650 crossref_primary_10_1177_08853282231151822 crossref_primary_10_1016_j_colsurfa_2022_129443 crossref_primary_10_1007_s10598_022_09545_2 crossref_primary_10_25209_2079_3316_2021_12_2_73_103 crossref_primary_10_1088_2053_1583_ab9695 crossref_primary_10_1109_LCOMM_2020_3018541 crossref_primary_10_1007_s11242_024_02064_1 crossref_primary_10_3390_rs15184463 crossref_primary_10_1038_s41598_021_94082_y crossref_primary_10_1038_s41598_020_73824_4 crossref_primary_10_3390_ma13225256 crossref_primary_10_1134_S1063771024603054 crossref_primary_10_1007_s11548_022_02621_3 crossref_primary_10_1016_j_molliq_2025_127019 crossref_primary_10_3390_cryst11050486 crossref_primary_10_1016_j_carbon_2020_09_087 crossref_primary_10_1038_s41467_019_13357_1 crossref_primary_10_1109_TMI_2021_3119851 crossref_primary_10_3389_fenvs_2024_1412870 crossref_primary_10_3847_2041_8213_ad2450 crossref_primary_10_1002_smll_202104316 crossref_primary_10_1109_ACCESS_2023_3247342 crossref_primary_10_1109_TBME_2020_3021359 crossref_primary_10_3390_biom13081269 crossref_primary_10_1039_D2CP00698G crossref_primary_10_1134_S0021364021170021 crossref_primary_10_1109_ACCESS_2022_3190376 crossref_primary_10_3390_nano12040650 crossref_primary_10_1109_ACCESS_2025_3536004 crossref_primary_10_1038_s41550_023_02030_9 crossref_primary_10_1371_journal_pone_0282689 crossref_primary_10_1063_5_0213592 crossref_primary_10_1088_1367_2630_abb1dc crossref_primary_10_3390_nano13010023 crossref_primary_10_1016_j_colsurfa_2021_128026 crossref_primary_10_1016_j_jelechem_2024_118718 crossref_primary_10_1007_s10915_020_01388_6 crossref_primary_10_1109_ACCESS_2022_3161568 crossref_primary_10_1134_S106422692310011X crossref_primary_10_1038_s41598_025_94002_4 crossref_primary_10_3390_jmse11020404 crossref_primary_10_1109_ACCESS_2023_3234810 crossref_primary_10_1016_j_compfluid_2025_106577 crossref_primary_10_1016_j_carbon_2022_05_047 crossref_primary_10_1016_j_media_2021_102054 crossref_primary_10_1088_1361_648X_ac2b69 crossref_primary_10_1038_s41598_025_97059_3 crossref_primary_10_1016_j_jelechem_2024_118708 crossref_primary_10_1016_j_matchemphys_2024_129488 crossref_primary_10_3390_app13169112 crossref_primary_10_3390_rs14092281 crossref_primary_10_1007_s10598_020_09496_6 crossref_primary_10_3390_min10010042 crossref_primary_10_1002_cmtd_202100069 crossref_primary_10_3390_rs13112181 crossref_primary_10_1002_itl2_488 crossref_primary_10_1109_TGRS_2021_3121538 crossref_primary_10_1134_S0021364023603056 crossref_primary_10_1016_j_mtla_2023_101681 crossref_primary_10_3390_jmmp9020051 crossref_primary_10_1063_5_0025505 crossref_primary_10_1109_TWC_2021_3079632 crossref_primary_10_3390_fluids6110389 crossref_primary_10_1016_j_fluid_2020_112553 crossref_primary_10_1134_S0021364023604256 crossref_primary_10_1016_j_physa_2022_127785 crossref_primary_10_3390_math10203801 crossref_primary_10_1070_QEL17616 crossref_primary_10_1051_0004_6361_202348314 crossref_primary_10_3390_ma13030541 crossref_primary_10_3390_ma15093043 crossref_primary_10_1016_j_jcp_2022_111439 crossref_primary_10_1016_j_camwa_2021_01_018 crossref_primary_10_1145_3528223_3530140 crossref_primary_10_1109_LWC_2020_3029678 crossref_primary_10_1063_5_0253010 |
| Cites_doi | 10.1002/jcc.20291 10.26089/NumMet.v16r335 10.1109/MCSE.2018.2875367 10.14529/jsfi180204 10.1109/ICIS.2017.7960006 10.1109/PDSW-DISCS.2018.000-2 10.1038/s41586-019-1116-4 10.1016/0021-9991(90)90007-N 10.1016/B978-044451719-7/50059-7 10.1109/PADSW.2018.8644997 10.1016/j.laa.2009.07.024 10.26089/NumMet.v19r435 10.1103/PhysRevLett.122.204802 10.1016/j.softx.2015.06.001 10.1007/978-3-319-67946-4_1 10.1007/978-3-030-02465-9_35 10.1287/opre.9.3.383 10.1017/CBO9780511780516 10.1016/j.cpc.2017.11.002 10.1016/j.jcp.2014.11.003 10.1103/PhysRevLett.119.260601 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1515/eng-2019-0059 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2391-5439 |
| EndPage | 520 |
| ExternalDocumentID | oai_doaj_org_article_a39db4b6b39747fab91b33719914c1ce 10_1515_eng_2019_0059 10_1515_eng_2019_005991512 |
| GroupedDBID | 5VS AAFWJ ABFKT ACGFS ADBBV ADMLS AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV EBS EJD GROUPED_DOAJ KQ8 M~E OK1 QD8 Y2W AAYXX CITATION |
| ID | FETCH-LOGICAL-c446t-e6ce8987911e1d4c6d3b59a40bde2daf66cc49dcbec2d366ad093a7850d2b95e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000491158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2391-5439 |
| IngestDate | Fri Oct 03 12:51:54 EDT 2025 Tue Nov 18 22:40:57 EST 2025 Sat Nov 29 06:42:04 EST 2025 Sat Nov 29 01:30:33 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-e6ce8987911e1d4c6d3b59a40bde2daf66cc49dcbec2d366ad093a7850d2b95e3 |
| OpenAccessLink | https://doaj.org/article/a39db4b6b39747fab91b33719914c1ce |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a39db4b6b39747fab91b33719914c1ce crossref_citationtrail_10_1515_eng_2019_0059 crossref_primary_10_1515_eng_2019_0059 walterdegruyter_journals_10_1515_eng_2019_005991512 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Open Engineering (Warsaw) |
| PublicationYear | 2019 |
| Publisher | De Gruyter |
| Publisher_xml | – name: De Gruyter |
| References | Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. (j_eng-2019-0059_ref_033) 2005; 26 Matveev, S. A.; Krapivsky, P. L.; Smirnov, A. P.; Tyrtyshnikov, E. E.; Brilliantov, N. V. (j_eng-2019-0059_ref_017) 2017; 119 Lee, H.; Kang, I. S. (j_eng-2019-0059_ref_014) 1990; 91 Krapivsky, P. L.; Redner, S.; Ben-Naim, E. (j_eng-2019-0059_ref_013) 2010 Stefonishin, D. A.; Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_029) 2018; 19 McCalpin, J. D. (j_eng-2019-0059_ref_022) 1995 Sutmann, G. (j_eng-2019-0059_ref_031) 2002 Kates-Harbeck, J.; Svyatkovskiy, A.; Tang, W. (j_eng-2019-0059_ref_012) 2019; 568 Matveev, S. A.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_018) 2015; 282 Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. (j_eng-2019-0059_ref_007) 2015; 1 Matveev, S. A.; Stadnichuk, V. I.; Tyrtyshnikov, E. E.; Smirnov, A. P.; Ampilogova, N. V.; Brilliantov, N. V. (j_eng-2019-0059_ref_019) 2018a; 224 Little, J. D. (j_eng-2019-0059_ref_015) 1961; 9 Oseledets, I.; Tyrtyshnikov, E. (j_eng-2019-0059_ref_025) 2010; 432 Matveev, S. A. (j_eng-2019-0059_ref_016) 2015; 16 Sinitskiy, A. V.; Pande, V. S. (j_eng-2019-0059_ref_028) 2018 Qian, D.; Luan, Z. (j_eng-2019-0059_ref_026) 2018; 21 Matveev, S. A.; Zagidullin, R. R.; Smirnov, A. P.; Tyrtyshnikov, E. E. (j_eng-2019-0059_ref_021) 2018b; 5 Hey, A. J. G.; Tansley, S.; Tolle, K. M. (j_eng-2019-0059_ref_010) 2009; Vol. 1 2022042712141834955_j_eng-2019-0059_ref_016_w2aab3b7e1028b1b6b1ab2b1c16Aa 2022042712141834955_j_eng-2019-0059_ref_028_w2aab3b7e1028b1b6b1ab2b1c28Aa 2022042712141834955_j_eng-2019-0059_ref_011_w2aab3b7e1028b1b6b1ab2b1c11Aa 2022042712141834955_j_eng-2019-0059_ref_030_w2aab3b7e1028b1b6b1ab2b1c30Aa 2022042712141834955_j_eng-2019-0059_ref_003_w2aab3b7e1028b1b6b1ab2b1b3Aa 2022042712141834955_j_eng-2019-0059_ref_008_w2aab3b7e1028b1b6b1ab2b1b8Aa 2022042712141834955_j_eng-2019-0059_ref_023_w2aab3b7e1028b1b6b1ab2b1c23Aa 2022042712141834955_j_eng-2019-0059_ref_032_w2aab3b7e1028b1b6b1ab2b1c32Aa 2022042712141834955_j_eng-2019-0059_ref_018_w2aab3b7e1028b1b6b1ab2b1c18Aa 2022042712141834955_j_eng-2019-0059_ref_021_w2aab3b7e1028b1b6b1ab2b1c21Aa 2022042712141834955_j_eng-2019-0059_ref_033_w2aab3b7e1028b1b6b1ab2b1c33Aa 2022042712141834955_j_eng-2019-0059_ref_002_w2aab3b7e1028b1b6b1ab2b1b2Aa 2022042712141834955_j_eng-2019-0059_ref_014_w2aab3b7e1028b1b6b1ab2b1c14Aa 2022042712141834955_j_eng-2019-0059_ref_007_w2aab3b7e1028b1b6b1ab2b1b7Aa 2022042712141834955_j_eng-2019-0059_ref_020_w2aab3b7e1028b1b6b1ab2b1c20Aa 2022042712141834955_j_eng-2019-0059_ref_026_w2aab3b7e1028b1b6b1ab2b1c26Aa 2022042712141834955_j_eng-2019-0059_ref_017_w2aab3b7e1028b1b6b1ab2b1c17Aa 2022042712141834955_j_eng-2019-0059_ref_001_w2aab3b7e1028b1b6b1ab2b1b1Aa 2022042712141834955_j_eng-2019-0059_ref_006_w2aab3b7e1028b1b6b1ab2b1b6Aa 2022042712141834955_j_eng-2019-0059_ref_029_w2aab3b7e1028b1b6b1ab2b1c29Aa 2022042712141834955_j_eng-2019-0059_ref_015_w2aab3b7e1028b1b6b1ab2b1c15Aa 2022042712141834955_j_eng-2019-0059_ref_027_w2aab3b7e1028b1b6b1ab2b1c27Aa 2022042712141834955_j_eng-2019-0059_ref_005_w2aab3b7e1028b1b6b1ab2b1b5Aa 2022042712141834955_j_eng-2019-0059_ref_012_w2aab3b7e1028b1b6b1ab2b1c12Aa 2022042712141834955_j_eng-2019-0059_ref_024_w2aab3b7e1028b1b6b1ab2b1c24Aa 2022042712141834955_j_eng-2019-0059_ref_019_w2aab3b7e1028b1b6b1ab2b1c19Aa 2022042712141834955_j_eng-2019-0059_ref_010_w2aab3b7e1028b1b6b1ab2b1c10Aa 2022042712141834955_j_eng-2019-0059_ref_013_w2aab3b7e1028b1b6b1ab2b1c13Aa 2022042712141834955_j_eng-2019-0059_ref_034_w2aab3b7e1028b1b6b1ab2b1c34Aa 2022042712141834955_j_eng-2019-0059_ref_004_w2aab3b7e1028b1b6b1ab2b1b4Aa 2022042712141834955_j_eng-2019-0059_ref_009_w2aab3b7e1028b1b6b1ab2b1b9Aa 2022042712141834955_j_eng-2019-0059_ref_022_w2aab3b7e1028b1b6b1ab2b1c22Aa 2022042712141834955_j_eng-2019-0059_ref_025_w2aab3b7e1028b1b6b1ab2b1c25Aa 2022042712141834955_j_eng-2019-0059_ref_031_w2aab3b7e1028b1b6b1ab2b1c31Aa |
| References_xml | – volume: 16 start-page: 360 issue: 3 year: 2015 end-page: 368 ident: j_eng-2019-0059_ref_016 article-title: A parallel implementation of a fast method for solving the smoluchowski-type kinetic equations of aggregation and fragmentation processes publication-title: Vychislitel’nye Metody i Programmirovanie (in Russian) – volume: 5 start-page: 43 issue: 2 year: 2018b end-page: 54 ident: j_eng-2019-0059_ref_021 article-title: Parallel numerical algorithm for solving advection equation for coagulating particles publication-title: Supercomputing Frontiers and Innovations – year: 2018 ident: j_eng-2019-0059_ref_028 publication-title: Deep neural network computes electron densities and energies of a large set of organic molecules faster than density functional theory (dft) – volume: 224 start-page: 154 year: 2018a end-page: 163 ident: j_eng-2019-0059_ref_019 article-title: Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation–fragmentation models publication-title: Computer Physics Communications – volume: 9 start-page: 3 year: 1961 ident: j_eng-2019-0059_ref_015 article-title: A proof for the queueing formula: L = λ · W publication-title: Operations Research – volume: 568 start-page: 526 issue: 7753 year: 2019 ident: j_eng-2019-0059_ref_012 article-title: Predicting disruptive instabilities in controlled fusion plasmas through deep learning publication-title: Nature – volume: 1 start-page: 19 year: 2015 end-page: 25 ident: j_eng-2019-0059_ref_007 article-title: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – year: 2002 ident: j_eng-2019-0059_ref_031 publication-title: Classical molecular dynamics and parallel computing – volume: 19 start-page: 390 issue: 4 year: 2018 end-page: 404 ident: j_eng-2019-0059_ref_029 article-title: Tensor decompositions for solving the equations of mathematical models of aggregation with multiple collisions of particles publication-title: Vychislitel’nye Metody i Programmirovanie (in Russian) – volume: 119 start-page: 260601 issue: 26 year: 2017 ident: j_eng-2019-0059_ref_017 article-title: Oscillations in aggregation-shattering processes publication-title: Physical review letters – volume: 432 start-page: 70 issue: 1 year: 2010 end-page: 88 ident: j_eng-2019-0059_ref_025 article-title: TT-cross approximation for multidimensional arrays publication-title: Linear Algebra and its Applications – volume: 282 start-page: 23 year: 2015 end-page: 32 ident: j_eng-2019-0059_ref_018 article-title: A fast numerical method for the Cauchy problem for the Smoluchowski equation publication-title: Journal of Computational Physics – volume: 26 start-page: 1701 issue: 16 year: 2005 end-page: 1718 ident: j_eng-2019-0059_ref_033 article-title: Gromacs: fast, flexible, and free publication-title: Journal of computational chemistry – volume: 21 start-page: 6 issue: 1 year: 2018 end-page: 16 ident: j_eng-2019-0059_ref_026 article-title: High performance computing development in china: A brief review and perspectives publication-title: Computing in Science & Engineering – volume: 91 start-page: 110 issue: 1 year: 1990 end-page: 131 ident: j_eng-2019-0059_ref_014 article-title: Neural algorithm for solving differential equations publication-title: Journal of Computational Physics – year: 2010 ident: j_eng-2019-0059_ref_013 publication-title: A kinetic view of statistical physics – volume: Vol. 1 year: 2009 ident: j_eng-2019-0059_ref_010 publication-title: The fourth paradigm: data-intensive scientific discovery – start-page: 19 year: 1995 end-page: 25 ident: j_eng-2019-0059_ref_022 article-title: Memory bandwidth and machine balance in current high performance computers publication-title: IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter – ident: 2022042712141834955_j_eng-2019-0059_ref_031_w2aab3b7e1028b1b6b1ab2b1c31Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_033_w2aab3b7e1028b1b6b1ab2b1c33Aa doi: 10.1002/jcc.20291 – ident: 2022042712141834955_j_eng-2019-0059_ref_016_w2aab3b7e1028b1b6b1ab2b1c16Aa doi: 10.26089/NumMet.v16r335 – ident: 2022042712141834955_j_eng-2019-0059_ref_026_w2aab3b7e1028b1b6b1ab2b1c26Aa doi: 10.1109/MCSE.2018.2875367 – ident: 2022042712141834955_j_eng-2019-0059_ref_006_w2aab3b7e1028b1b6b1ab2b1b6Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_021_w2aab3b7e1028b1b6b1ab2b1c21Aa doi: 10.14529/jsfi180204 – ident: 2022042712141834955_j_eng-2019-0059_ref_034_w2aab3b7e1028b1b6b1ab2b1c34Aa doi: 10.1109/ICIS.2017.7960006 – ident: 2022042712141834955_j_eng-2019-0059_ref_030_w2aab3b7e1028b1b6b1ab2b1c30Aa doi: 10.1109/PDSW-DISCS.2018.000-2 – ident: 2022042712141834955_j_eng-2019-0059_ref_003_w2aab3b7e1028b1b6b1ab2b1b3Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_012_w2aab3b7e1028b1b6b1ab2b1c12Aa doi: 10.1038/s41586-019-1116-4 – ident: 2022042712141834955_j_eng-2019-0059_ref_014_w2aab3b7e1028b1b6b1ab2b1c14Aa doi: 10.1016/0021-9991(90)90007-N – ident: 2022042712141834955_j_eng-2019-0059_ref_008_w2aab3b7e1028b1b6b1ab2b1b8Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_011_w2aab3b7e1028b1b6b1ab2b1c11Aa doi: 10.1016/B978-044451719-7/50059-7 – ident: 2022042712141834955_j_eng-2019-0059_ref_024_w2aab3b7e1028b1b6b1ab2b1c24Aa doi: 10.1109/PADSW.2018.8644997 – ident: 2022042712141834955_j_eng-2019-0059_ref_005_w2aab3b7e1028b1b6b1ab2b1b5Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_025_w2aab3b7e1028b1b6b1ab2b1c25Aa doi: 10.1016/j.laa.2009.07.024 – ident: 2022042712141834955_j_eng-2019-0059_ref_002_w2aab3b7e1028b1b6b1ab2b1b2Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_029_w2aab3b7e1028b1b6b1ab2b1c29Aa doi: 10.26089/NumMet.v19r435 – ident: 2022042712141834955_j_eng-2019-0059_ref_022_w2aab3b7e1028b1b6b1ab2b1c22Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_027_w2aab3b7e1028b1b6b1ab2b1c27Aa doi: 10.1103/PhysRevLett.122.204802 – ident: 2022042712141834955_j_eng-2019-0059_ref_007_w2aab3b7e1028b1b6b1ab2b1b7Aa doi: 10.1016/j.softx.2015.06.001 – ident: 2022042712141834955_j_eng-2019-0059_ref_009_w2aab3b7e1028b1b6b1ab2b1b9Aa doi: 10.1007/978-3-319-67946-4_1 – ident: 2022042712141834955_j_eng-2019-0059_ref_004_w2aab3b7e1028b1b6b1ab2b1b4Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_032_w2aab3b7e1028b1b6b1ab2b1c32Aa doi: 10.1007/978-3-030-02465-9_35 – ident: 2022042712141834955_j_eng-2019-0059_ref_015_w2aab3b7e1028b1b6b1ab2b1c15Aa doi: 10.1287/opre.9.3.383 – ident: 2022042712141834955_j_eng-2019-0059_ref_001_w2aab3b7e1028b1b6b1ab2b1b1Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_028_w2aab3b7e1028b1b6b1ab2b1c28Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_023_w2aab3b7e1028b1b6b1ab2b1c23Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_010_w2aab3b7e1028b1b6b1ab2b1c10Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_013_w2aab3b7e1028b1b6b1ab2b1c13Aa doi: 10.1017/CBO9780511780516 – ident: 2022042712141834955_j_eng-2019-0059_ref_019_w2aab3b7e1028b1b6b1ab2b1c19Aa doi: 10.1016/j.cpc.2017.11.002 – ident: 2022042712141834955_j_eng-2019-0059_ref_020_w2aab3b7e1028b1b6b1ab2b1c20Aa – ident: 2022042712141834955_j_eng-2019-0059_ref_018_w2aab3b7e1028b1b6b1ab2b1c18Aa doi: 10.1016/j.jcp.2014.11.003 – ident: 2022042712141834955_j_eng-2019-0059_ref_017_w2aab3b7e1028b1b6b1ab2b1c17Aa doi: 10.1103/PhysRevLett.119.260601 |
| SSID | ssj0001537971 |
| Score | 2.5476615 |
| Snippet | The Petaflops supercomputer “Zhores” recently launched in the “Center for Computational and Data-Intensive Science and Engineering” (CDISE) of Skolkovo... |
| SourceID | doaj crossref walterdegruyter |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 512 |
| SubjectTerms | Computer Scalability Computing Clusters Energy Efficiency High Performance Computing High Speed Networks Parallel Computation |
| Title | “Zhores” — Petaflops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology |
| URI | https://www.degruyter.com/doi/10.1515/eng-2019-0059 https://doaj.org/article/a39db4b6b39747fab91b33719914c1ce |
| Volume | 9 |
| WOSCitedRecordID | wos000491158900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2391-5439 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537971 issn: 2391-5439 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2391-5439 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537971 issn: 2391-5439 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEeKp5ioSAfEKdGTdbOw8eCWnGAqhIgVVwiP8ZL1W2yyu4WcUH7Izi2P4C_tb-EGcddIgTiwiVKIsuJPON52OPvY-xFiW7PYxideAeQSEOQt7lOk1xLorXyPnUBMv9teXxcnZ6qkwHVF9WE9fDA_cDta6GckaYwgiJfr43KjBAlVexIm1kg64tRzyCZ6s8Hi1KVWQTVRJ-9D80ENYJO7ARc0oETClj922znS9ifdjDpll8XN_uhwc0c3WU7MT7kB_1_3WO3oLnPtgeogQ_Yj_Xq6tPnFvPk9eqar1ff-QkQCW87m_P5cgadjUwNHANSTiWgievIqPFAe4N97PGLUEMJPJJGTLhuHKfB6AEl-NkAqRMfMIScTsHhHX9_3k7P28uWb8oMeOt5NBGhm1-r9Q_Zx6PDD6_fJJFxIbGYFi4SKCxUqirRAkLmpC2cMLnSMjUOxk77orBWKmdR8GMnikK7VAldVnnqxkblIB6xraZt4DHjKKJMC2_QYDg5Jo51CRgeFLLypUkrO2J7NyKobYQjJ1aMaU1pCUoMp-2kJonVJLERe7lpPutxOP7W8BXJc9OI4LPDC1SqOipV_S-lGjHxmzbUcWrP__xVRYHTk__x6afsTq-mtMqzy7YW3RKesdv2cnE2754HLcfru2-HPwGopQoX |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CZhores%E2%80%9D+%E2%80%94+Petaflops+supercomputer+for+data-driven+modeling%2C+machine+learning+and+artificial+intelligence+installed+in+Skolkovo+Institute+of+Science+and+Technology&rft.jtitle=Open+Engineering+%28Warsaw%29&rft.au=Zacharov%2C+Igor&rft.au=Arslanov%2C+Rinat&rft.au=Gunin%2C+Maksim&rft.au=Stefonishin%2C+Daniil&rft.date=2019-01-01&rft.pub=De+Gruyter&rft.eissn=2391-5439&rft.volume=9&rft.issue=1&rft.spage=512&rft.epage=520&rft_id=info:doi/10.1515%2Feng-2019-0059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_eng_2019_005991512 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5439&client=summon |