Agro-residual biomass and disposable protective face mask: a merger for converting waste to plastic-fiber fuel via an integrative carbonization-pelletization framework
Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Ther...
Uloženo v:
| Vydáno v: | Biomass conversion and biorefinery Ročník 14; číslo 12; s. 12785 - 12806 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2024
|
| Témata: | |
| ISSN: | 2190-6815, 2190-6823 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NO
x
below the critical limits of 200 and 500 mg m
−3
, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy. |
|---|---|
| AbstractList | Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NO
below the critical limits of 200 and 500 mg m
, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy.
The online version contains supplementary material available at 10.1007/s13399-022-03285-4. Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NOx below the critical limits of 200 and 500 mg m−3, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy. Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NOx below the critical limits of 200 and 500 mg m-3, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy.Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NOx below the critical limits of 200 and 500 mg m-3, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy.The online version contains supplementary material available at 10.1007/s13399-022-03285-4.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13399-022-03285-4. Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NO x below the critical limits of 200 and 500 mg m −3 , respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy. |
| Author | da Silva, Rouverson Pereira Barbosa Júnior, Marcelo Rodrigues Lopes, Paulo Renato Matos Moreira, Bruno Rafael de Almeida Meneses, Mariana Dias Cruz, Victor Hugo |
| Author_xml | – sequence: 1 givenname: Bruno Rafael de Almeida surname: Moreira fullname: Moreira, Bruno Rafael de Almeida email: b.moreira@unesp.br organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp) – sequence: 2 givenname: Victor Hugo surname: Cruz fullname: Cruz, Victor Hugo organization: Department of Plant Production, School of Agricultural and Technological Sciences, São Paulo State University (Unesp) – sequence: 3 givenname: Marcelo Rodrigues surname: Barbosa Júnior fullname: Barbosa Júnior, Marcelo Rodrigues organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp) – sequence: 4 givenname: Mariana Dias surname: Meneses fullname: Meneses, Mariana Dias organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp) – sequence: 5 givenname: Paulo Renato Matos surname: Lopes fullname: Lopes, Paulo Renato Matos organization: Department of Plant Production, School of Agricultural and Technological Sciences, São Paulo State University (Unesp) – sequence: 6 givenname: Rouverson Pereira surname: da Silva fullname: da Silva, Rouverson Pereira organization: Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36124332$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1DAUtVARLaU_wAJ5ySbg1zgxC6Sq4iVVYgNry3Gug9vEDrYzFfwQv4k7M4yARVe-Vz4P-97zFJ2EGACh55S8ooS0rzPlXKmGMNYQzrpNIx6hM0YVaWTH-MmxpptTdJHzDSGE8ZZ3nDxBp1xSJjhnZ-jX5ZhikyD7YTUT7n2cTc7YhAEPPi8xm34CvKRYwBa_BeyMBVwxt2-wwTOkERJ2MWEbwxZS8WHEdyYXwCXiZaqVt43z_T1qhQlvvani2IcCYzI7RWtSH4P_WbsYmgWmCcqhwy6ZGe5iun2GHjszZbg4nOfo6_t3X64-NtefP3y6urxurBCyNCA7o8B1oq8z4W5oJeU9cYOSRhhwPeudEMq0oDZ2gNptpO2VtM5RNpAO-Dl6u9dd1n6GwUIoyUx6SX426YeOxut_b4L_pse41Uq0UkheBV4eBFL8vkIuevbZ1k-ZAHHNmrVUkk4x2lboi7-9jiZ_tlMBbA-wKeacwB0hlOj7FOh9CnRNgd6lQItK6v4jWV9206zv9dPDVL6n5uoT6mb1TVxTqPN-iPUbgCvNNQ |
| CitedBy_id | crossref_primary_10_1007_s13399_025_06645_y crossref_primary_10_1111_ppl_14447 crossref_primary_10_1007_s13399_023_04172_2 crossref_primary_10_1007_s10965_024_03946_0 crossref_primary_10_1007_s13399_024_05462_z crossref_primary_10_1007_s13399_024_06328_0 crossref_primary_10_1007_s10924_023_02898_8 |
| Cites_doi | 10.1016/j.energy.2019.116380 10.1016/j.renene.2020.04.116 10.1016/j.fuel.2020.118089 10.1016/j.eti.2022.102290 10.1016/j.rser.2021.111249 10.1016/j.jece.2021.106978 10.1007/s11356-021-13914-6 10.3389/fenrg.2019.00027 10.1007/s43615-021-00104-2 10.1016/j.fuproc.2013.02.011 10.1016/j.rser.2020.110502 10.1016/j.cej.2020.126658 10.1016/j.jhazmat.2021.127222 10.1038/s41598-021-83483-8 10.1016/j.apenergy.2017.12.084 10.1093/annweh/wxw022 10.1016/j.jaap.2021.105118 10.1016/j.tsep.2021.101135 10.1016/j.chemosphere.2021.129601 10.1002/ceat.201000400 10.1016/j.fuel.2004.02.006 10.1002/app.42202 10.1016/j.molliq.2020.115247 10.1016/j.scitotenv.2021.149911 10.1016/j.renene.2018.08.003 10.1007/s11356-019-07028-3 10.1016/j.scitotenv.2016.06.017 10.1016/j.pecs.2018.02.001 10.1016/j.fuel.2021.123017 10.1016/j.fuel.2013.02.064 10.1016/j.fuel.2020.119937 10.1016/j.resconrec.2020.105169 10.1016/j.renene.2022.03.152 10.1016/j.fuel.2016.07.047 10.3390/app11010020 10.1007/s10086-016-1606-z 10.1016/j.enconman.2009.12.017 10.1016/0961-9534(94)E0031-M 10.1002/app.48300 10.1016/j.biortech.2009.08.064 10.1021/ef2007722 10.1016/j.fuproc.2021.107094 10.1016/j.wasman.2020.09.009 10.3390/pr6080098 10.1016/j.energy.2021.120876 10.1016/j.biortech.2020.123900 10.1016/j.ccst.2021.100005 10.1016/j.resconrec.2021.105429 10.1016/j.cemconcomp.2018.10.005 10.1016/j.biombioe.2003.07.006 10.1016/j.renene.2018.01.118 10.1016/j.rser.2016.12.119 10.1016/j.psep.2018.03.016 10.1016/j.biombioe.2011.01.048 10.1016/j.envpol.2021.117060 10.1007/s12649-018-0260-7 10.1016/j.chemosphere.2021.132702 10.1016/j.wasman.2020.01.009 10.1016/j.susmat.2022.e00389 10.1186/s40068-020-00217-x 10.1016/j.fuel.2021.121644 10.1007/s13361-012-0415-x 10.1016/j.indcrop.2019.111529 10.1021/ef201282y 10.1177/0040517514551468 10.1007/s11581-021-03949-7 10.1098/rsta.2015.0202 10.1016/j.fuel.2015.12.006 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1007/s13399-022-03285-4 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2190-6823 |
| EndPage | 12806 |
| ExternalDocumentID | PMC9476463 36124332 10_1007_s13399_022_03285_4 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 0VY 203 29~ 2VQ 30V 4.4 406 408 409 96X AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ATHPR AUKKA AXYYD AYFIA AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ8 HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV S1Z S27 SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ~A9 AAYXX ABJCF AEUYN AFFHD AFKRA BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ M7P M7S PHGZM PHGZT PQGLB PTHSS NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c446t-e68a9ef84b3283fd7613b0fd96a4aefb2bf449a7e95cde2bf56cb96cff12d08e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854055100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2190-6815 |
| IngestDate | Tue Sep 30 16:39:13 EDT 2025 Thu Jul 10 18:45:45 EDT 2025 Thu Jan 02 22:37:30 EST 2025 Tue Nov 18 22:37:32 EST 2025 Sat Nov 29 08:02:27 EST 2025 Mon Jul 21 06:07:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Keywords | COVID-19 3-Ply face mask SARS-CoV-2 Waste-to-energy pathway Agricultural waste Plastic waste |
| Language | English |
| License | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-e68a9ef84b3283fd7613b0fd96a4aefb2bf449a7e95cde2bf56cb96cff12d08e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9476463 |
| PMID | 36124332 |
| PQID | 2716089217 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9476463 proquest_miscellaneous_2716089217 pubmed_primary_36124332 crossref_primary_10_1007_s13399_022_03285_4 crossref_citationtrail_10_1007_s13399_022_03285_4 springer_journals_10_1007_s13399_022_03285_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationSubtitle | Processing of Biogenic Material for Energy and Chemistry |
| PublicationTitle | Biomass conversion and biorefinery |
| PublicationTitleAbbrev | Biomass Conv. Bioref |
| PublicationTitleAlternate | Biomass Convers Biorefin |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | R Abejón (3285_CR49) 2018; 6 X Hu (3285_CR5) 2021; 27 I Obernberger (3285_CR43) 2004; 27 U Kleinhans (3285_CR59) 2018; 68 S Jung (3285_CR8) 2021; 405 A Bala-Litwiniak (3285_CR35) 2019; 10 SB Lee (3285_CR38) 2021; 283 A Nordin (3285_CR52) 1994; 6 HK Goering (3285_CR22) 1970 HB Sharma (3285_CR23) 2020; 118 LJR Nunes (3285_CR19) 2021; 11 3285_CR36 H Kawamoto (3285_CR57) 2017; 63 JN Smith (3285_CR66) 2012; 23 T Wang (3285_CR31) 2020; 316 A Farooq (3285_CR40) 2022; 423 MM Abdulmumini (3285_CR28) 2020; 157 NM Sigvardsen (3285_CR33) 2019; 95 T Ibn-Mohammed (3285_CR10) 2021; 164 A Anukam (3285_CR51) 2021; 148 MM Harussani (3285_CR13) 2022; 803 VEM Schmitt (3285_CR61) 2013; 109 N Kaliyan (3285_CR44) 2010; 101 S Pandey (3285_CR15) 2021; 11 YP Rago (3285_CR18) 2020; 277 A Aboulkas (3285_CR69) 2010; 51 X Cui (3285_CR45) 2021; 1 J Berghel (3285_CR50) 2013; 112 H MohdFaizal (3285_CR20) 2018; 122 S Sun (3285_CR41) 2021; 26 L Zhang (3285_CR42) 2021; 289 J Shang (3285_CR67) 2015; 132 SS Kolapkar (3285_CR17) 2022; 226 C Xie (3285_CR32) 2018; 212 T Zeng (3285_CR70) 2016; 184 KW Chew (3285_CR29) 2018; 116 A Brillard (3285_CR39) 2021; 306 L Wang (3285_CR62) 2011; 25 R Azargohar (3285_CR26) 2019; 132 IT Jolliffe (3285_CR37) 2016; 374 C Park (3285_CR47) 2021; 230 J Shojaeiarani (3285_CR30) 2019; 140 AV Bridgwater (3285_CR58) 2012; 38 M Sogancioglu (3285_CR16) 2020; 27 JL Míguez (3285_CR60) 2021; 141 I Anastopoulos (3285_CR11) 2021; 326 M Majewsky (3285_CR53) 2016; 568 G Toscano (3285_CR65) 2022; 313 TA Aragaw (3285_CR7) 2021; 10 3285_CR55 X Jiang (3285_CR56) 2012; 35 S Nam (3285_CR63) 2016; 86 SS Ray (3285_CR9) 2022; 26 R Miandad (3285_CR14) 2019; 7 Y Yu (3285_CR24) 2022; 190 Y Matsuzawa (3285_CR68) 2004; 83 AK Das (3285_CR4) 2021; 28 P Sommersacher (3285_CR48) 2012; 26 R Tao (3285_CR64) 2020; 137 S Park (3285_CR27) 2020; 190 AB Irez (3285_CR3) 2022; 31 S Dharmaraj (3285_CR54) 2021; 272 S Yousef (3285_CR1) 2021; 156 L Ali (3285_CR2) 2022; 10 U Svedberg (3285_CR46) 2017; 61 C Whittaker (3285_CR25) 2017; 71 S Zinchik (3285_CR21) 2020; 104 CW Purnomo (3285_CR12) 2021; 167 AM Smith (3285_CR34) 2016; 169 3285_CR6 |
| References_xml | – volume: 190 start-page: 116380 year: 2020 ident: 3285_CR27 publication-title: Energy doi: 10.1016/j.energy.2019.116380 – volume: 157 start-page: 911 year: 2020 ident: 3285_CR28 publication-title: Renew Energy doi: 10.1016/j.renene.2020.04.116 – volume: 277 start-page: 118089 year: 2020 ident: 3285_CR18 publication-title: Fuel doi: 10.1016/j.fuel.2020.118089 – volume: 26 start-page: 102290 year: 2022 ident: 3285_CR9 publication-title: Environ Technol doi: 10.1016/j.eti.2022.102290 – volume: 148 start-page: 111249 year: 2021 ident: 3285_CR51 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2021.111249 – volume: 10 start-page: 106978 year: 2022 ident: 3285_CR2 publication-title: J Environ Chem doi: 10.1016/j.jece.2021.106978 – volume: 28 start-page: 28993 year: 2021 ident: 3285_CR4 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-13914-6 – volume: 7 start-page: 27 year: 2019 ident: 3285_CR14 publication-title: Front Energy Res doi: 10.3389/fenrg.2019.00027 – ident: 3285_CR6 doi: 10.1007/s43615-021-00104-2 – volume: 112 start-page: 64 year: 2013 ident: 3285_CR50 publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2013.02.011 – volume: 141 start-page: 110502 year: 2021 ident: 3285_CR60 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110502 – volume: 405 start-page: 126658 year: 2021 ident: 3285_CR8 publication-title: Chem Eng Technol doi: 10.1016/j.cej.2020.126658 – volume: 423 start-page: 127222 year: 2022 ident: 3285_CR40 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2021.127222 – volume: 11 start-page: 3916 year: 2021 ident: 3285_CR15 publication-title: Sci Rep doi: 10.1038/s41598-021-83483-8 – volume: 212 start-page: 786 year: 2018 ident: 3285_CR32 publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.084 – volume: 61 start-page: 195 year: 2017 ident: 3285_CR46 publication-title: Ann Work Expo Health doi: 10.1093/annweh/wxw022 – volume: 156 start-page: 105118 year: 2021 ident: 3285_CR1 publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2021.105118 – volume: 26 start-page: 101135 year: 2021 ident: 3285_CR41 publication-title: Thermal Science and Engineering Progress doi: 10.1016/j.tsep.2021.101135 – volume: 272 start-page: 129601 year: 2021 ident: 3285_CR54 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129601 – volume: 35 start-page: 827 year: 2012 ident: 3285_CR56 publication-title: Chem Eng Technol doi: 10.1002/ceat.201000400 – volume: 83 start-page: 1675 year: 2004 ident: 3285_CR68 publication-title: Fuel doi: 10.1016/j.fuel.2004.02.006 – volume: 132 start-page: 34 year: 2015 ident: 3285_CR67 publication-title: J Appl Polym Sci doi: 10.1002/app.42202 – volume: 326 start-page: 115247 year: 2021 ident: 3285_CR11 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.115247 – volume: 803 start-page: 149911 year: 2022 ident: 3285_CR13 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149911 – volume: 132 start-page: 296 year: 2019 ident: 3285_CR26 publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.003 – volume: 27 start-page: 3871 year: 2020 ident: 3285_CR16 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-07028-3 – volume: 568 start-page: 507 year: 2016 ident: 3285_CR53 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.06.017 – volume: 68 start-page: 65 year: 2018 ident: 3285_CR59 publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.02.001 – volume: 313 start-page: 123017 year: 2022 ident: 3285_CR65 publication-title: Fuel doi: 10.1016/j.fuel.2021.123017 – volume: 109 start-page: 551 year: 2013 ident: 3285_CR61 publication-title: Fuel doi: 10.1016/j.fuel.2013.02.064 – volume: 289 start-page: 119937 year: 2021 ident: 3285_CR42 publication-title: Fuel doi: 10.1016/j.fuel.2020.119937 – volume: 164 start-page: 105169 year: 2021 ident: 3285_CR10 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2020.105169 – volume: 190 start-page: 1018 year: 2022 ident: 3285_CR24 publication-title: Renew Energy doi: 10.1016/j.renene.2022.03.152 – volume: 184 start-page: 689 year: 2016 ident: 3285_CR70 publication-title: Fuel doi: 10.1016/j.fuel.2016.07.047 – ident: 3285_CR55 – volume: 11 start-page: 20 year: 2021 ident: 3285_CR19 publication-title: Appl Sci doi: 10.3390/app11010020 – volume-title: Forage fiber analyses (apparatus, reagents, procedures, and some applications) year: 1970 ident: 3285_CR22 – volume: 63 start-page: 117 year: 2017 ident: 3285_CR57 publication-title: J Wood Sci doi: 10.1007/s10086-016-1606-z – volume: 51 start-page: 1363 year: 2010 ident: 3285_CR69 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.12.017 – volume: 6 start-page: 339 year: 1994 ident: 3285_CR52 publication-title: Biomass Bioenergy doi: 10.1016/0961-9534(94)E0031-M – volume: 137 start-page: 48300 year: 2020 ident: 3285_CR64 publication-title: J Appl Polym Sci doi: 10.1002/app.48300 – volume: 101 start-page: 1082 year: 2010 ident: 3285_CR44 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.08.064 – volume: 25 start-page: 5775 year: 2011 ident: 3285_CR62 publication-title: Energy Fuels doi: 10.1021/ef2007722 – volume: 226 start-page: 107094 year: 2022 ident: 3285_CR17 publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2021.107094 – volume: 118 start-page: 521 year: 2020 ident: 3285_CR23 publication-title: Waste Manage doi: 10.1016/j.wasman.2020.09.009 – volume: 6 start-page: 98 year: 2018 ident: 3285_CR49 publication-title: Processes doi: 10.3390/pr6080098 – volume: 230 start-page: 120876 year: 2021 ident: 3285_CR47 publication-title: Energy doi: 10.1016/j.energy.2021.120876 – volume: 316 start-page: 123900 year: 2020 ident: 3285_CR31 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.123900 – volume: 1 start-page: 100005 year: 2021 ident: 3285_CR45 publication-title: CCST doi: 10.1016/j.ccst.2021.100005 – volume: 167 start-page: 105429 year: 2021 ident: 3285_CR12 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2021.105429 – volume: 95 start-page: 25 year: 2019 ident: 3285_CR33 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2018.10.005 – volume: 27 start-page: 653 year: 2004 ident: 3285_CR43 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2003.07.006 – volume: 122 start-page: 419 year: 2018 ident: 3285_CR20 publication-title: Renew Energy doi: 10.1016/j.renene.2018.01.118 – volume: 71 start-page: 1 year: 2017 ident: 3285_CR25 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.12.119 – volume: 116 start-page: 780 year: 2018 ident: 3285_CR29 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2018.03.016 – volume: 38 start-page: 68 year: 2012 ident: 3285_CR58 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.048 – volume: 283 start-page: 117060 year: 2021 ident: 3285_CR38 publication-title: Environ Pollut doi: 10.1016/j.envpol.2021.117060 – volume: 10 start-page: 2193 year: 2019 ident: 3285_CR35 publication-title: Waste Biomass Valor doi: 10.1007/s12649-018-0260-7 – ident: 3285_CR36 doi: 10.1016/j.chemosphere.2021.132702 – volume: 104 start-page: 130 year: 2020 ident: 3285_CR21 publication-title: Waste Manage doi: 10.1016/j.wasman.2020.01.009 – volume: 31 start-page: e00389 year: 2022 ident: 3285_CR3 publication-title: SM&T doi: 10.1016/j.susmat.2022.e00389 – volume: 10 start-page: 8 year: 2021 ident: 3285_CR7 publication-title: Environ Syst Res doi: 10.1186/s40068-020-00217-x – volume: 306 start-page: 121644 year: 2021 ident: 3285_CR39 publication-title: Fuel doi: 10.1016/j.fuel.2021.121644 – volume: 23 start-page: 1579 year: 2012 ident: 3285_CR66 publication-title: J Am Soc Mass Spectrom doi: 10.1007/s13361-012-0415-x – volume: 140 start-page: 111529 year: 2019 ident: 3285_CR30 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2019.111529 – volume: 26 start-page: 380 year: 2012 ident: 3285_CR48 publication-title: Energy Fuels doi: 10.1021/ef201282y – volume: 86 start-page: 155 year: 2016 ident: 3285_CR63 publication-title: Text Res J doi: 10.1177/0040517514551468 – volume: 27 start-page: 2169 year: 2021 ident: 3285_CR5 publication-title: Ionics doi: 10.1007/s11581-021-03949-7 – volume: 374 start-page: 20150202 year: 2016 ident: 3285_CR37 publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2015.0202 – volume: 169 start-page: 135 year: 2016 ident: 3285_CR34 publication-title: Fuel doi: 10.1016/j.fuel.2015.12.006 |
| SSID | ssj0002373830 |
| Score | 2.3373058 |
| Snippet | Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12785 |
| SubjectTerms | Biotechnology Energy Original Original Article Renewable and Green Energy |
| Title | Agro-residual biomass and disposable protective face mask: a merger for converting waste to plastic-fiber fuel via an integrative carbonization-pelletization framework |
| URI | https://link.springer.com/article/10.1007/s13399-022-03285-4 https://www.ncbi.nlm.nih.gov/pubmed/36124332 https://www.proquest.com/docview/2716089217 https://pubmed.ncbi.nlm.nih.gov/PMC9476463 |
| Volume | 14 |
| WOSCitedRecordID | wos000854055100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2190-6823 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002373830 issn: 2190-6815 databaseCode: RSV dateStart: 20110301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RwgEOvKHhUQ0SN7CUdRwn5lYhKi6sKl7aW-Rnu6JKquxu-5P4m4y9yZalqBJcIllxJrFmbM_E830D8FqH3BSiDCyUec6EkzkzvhRMFtwL7ktjXZ6KTVTTaT2bqaMBFLYYs93HI8m0Ul-C3YoiIuYpeIoccCUTO3CTtrs6Fmz4_OX75s8Kj2Q9qcgIjzhpWU_KAS3zdzHbO9IVN_NqtuQfR6ZpJzq8939juA93B88TD9am8gBu-PYh3PmNj_AR_Dw47jtGAXhCaGGE5pNvjbp16OYxvyvirHCgdqBlEoO2HqnPj3eoMQE5eyQvGFMue-QnOMYLTXaEyw7PyE-nV7MQc1QwrPwpns81CceRsiJKtLo33QgOZfFoyC-HFoYxkewxfDv88PX9RzZUcmCWws0l87LWyodaGBp1EVxFToTJg1NSC-2D4SYIoXTlVWmdp1YprVHShjDhLq998QR22671e4DKFI5bV3JpjKilo3iIV2SGPigTU3oymIzabOxAcx6rbZw2lwTNUQkNKaFJSmhEBm82z5ytST6u7f1qNJKG5mI8YNGt71aLhlPwmdeKorwMnq6NZiOvIFcycsVlUG2Z06ZD5PnevtPOTxLftxKVFLLI4O1oVM2w0Cyu-cxn_9b9Odzm5K-ts-BewO6yX_mXcMueL-eLfh92qllN1-nRp_00234BL_EoJA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BQQIOvB_hOUjcwFLWcZyYW4WoiigrBAX1FvlZVlTZKpstP4m_ydibbFmKKsExijOJNWN7JjPfNwAvdMhNIcrAQpnnTDiZM-NLwWTBveC-NNblqdlENZ3WBwfq4wAKW4zV7mNKMu3Up2C3ooiIeQqeIgdcycRFuCToxIqM-Z8-f13_WeGRrCc1GeERJy3rSTmgZf4uZvNEOuNmnq2W_CNlmk6inRv_N4ebcH3wPHF7ZSq34IJvb8O13_gI78DP7cNuzigATwgtjNB88q1Rtw7dLNZ3RZwVDtQOtE1i0NYjjfn-GjUmIGeH5AVjqmWP_ASH-EOTHWE_x2Py0-nVLMQaFQxLf4QnM03CcaSsiBKt7sx8BIeymBry_XCFYSwkuwtfdt7uv9llQycHZinc7JmXtVY-1MLQrIvgKnIiTB6cklpoHww3QQilK69K6zxdldIaJW0IE-7y2hf3YKudt_4BoDKF49aVXBojaukoHuIVmaEPysSSngwmozYbO9Ccx24bR80pQXNUQkNKaJISGpHBy_UzxyuSj3NHPx-NpKG1GBMsuvXz5aLhFHzmtaIoL4P7K6NZyyvIlYxccRlUG-a0HhB5vjfvtLNvie9biUoKWWTwajSqZthoFud85sN_G_4Mruzuf9hr9t5N3z-Cq5x8t1VF3GPY6rulfwKX7Uk_W3RP02r7BSqqKRQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWgIAQP5Q6hXIzEG1jNOo4T960qrECgVSUu6lvka1lRJatstnwSv8mMk2y7FFVCPEZxnFgztmcy5xwT8kqH1GQiDyzkacqEkykzPhdMZtwL7nNjXRoPmyhms_LoSB2eY_FHtPtYkuw5DajSVHe7Cxd2z4hvWYbseUikUA8uZ-IquSYQSI_5-udv678sHIV74oEjHDnTspzkA3Pm791s7k4XQs6LyMk_yqdxV5re_v_x3CHbQ0RK93sXukuu-PoeuXVOp_A--bV_3DYMEvPI3KJI2YeYm-raUTdH3Bfyr-gg-QDLJw3aegptfuxRTSPBs6UQHdOIcUfdgmP6U4N_0a6hC4jf4dUsIHaFhpU_oadzDZ3TUcoCe7S6Nc1IGmVYMvLdcEXDCDB7QL5O3305eM-GEx6YhTS0Y16WWvlQCgOjzoIrILgwaXBKaqF9MNwEIZQuvMqt83CVS2uUtCFMuEtLnz0kW3VT-8eEKpM5bl3OpTGilA7yJF6Ae_qgDEJ9EjIZLVvZQf4cT-E4qc6Em9EIFRihikaoREJer59Z9OIfl7Z-OTpMBXMUCy-69s1qWXFIStNSQfaXkEe9A637yyDERA25hBQbrrVugPrfm3fq-feoA65EIYXMEvJmdLBqWICWl3zmk39r_oLcOHw7rT59mH3cITc5hHQ9UO4p2eralX9GrtvTbr5sn8eJ9xtmqDH4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agro-residual+biomass+and+disposable+protective+face+mask%3A+a+merger+for+converting+waste+to+plastic-fiber+fuel+via+an+integrative+carbonization-pelletization+framework&rft.jtitle=Biomass+conversion+and+biorefinery&rft.au=Moreira%2C+Bruno+Rafael+de+Almeida&rft.au=Cruz%2C+Victor+Hugo&rft.au=Barbosa+J%C3%BAnior%2C+Marcelo+Rodrigues&rft.au=Meneses%2C+Mariana+Dias&rft.date=2024-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2190-6815&rft.eissn=2190-6823&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1007%2Fs13399-022-03285-4&rft_id=info%3Apmid%2F36124332&rft.externalDocID=PMC9476463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-6815&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-6815&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-6815&client=summon |