A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection
One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are ad...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 20; H. 18; S. 5139 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
09.09.2020
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques. |
|---|---|
| AbstractList | One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques. One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques. |
| Author | Chen, Li-Qi Lin, Huei-Yung Wu, Lu-Ting Dai, Jyun-Min |
| AuthorAffiliation | 2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan; jyunmin@godel.ee.ccu.edu.tw (J.-M.D.); luting@godel.ee.ccu.edu.tw (L.-T.W.); liqi@godel.ee.ccu.edu.tw (L.-Q.C.) 1 Department of Electrical Engineering, Advanced Institute of Manufacturing with High-Tech Innovation, National Chung Cheng University, Chiayu 621, Taiwan |
| AuthorAffiliation_xml | – name: 1 Department of Electrical Engineering, Advanced Institute of Manufacturing with High-Tech Innovation, National Chung Cheng University, Chiayu 621, Taiwan – name: 2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan; jyunmin@godel.ee.ccu.edu.tw (J.-M.D.); luting@godel.ee.ccu.edu.tw (L.-T.W.); liqi@godel.ee.ccu.edu.tw (L.-Q.C.) |
| Author_xml | – sequence: 1 givenname: Huei-Yung orcidid: 0000-0002-6476-6625 surname: Lin fullname: Lin, Huei-Yung – sequence: 2 givenname: Jyun-Min surname: Dai fullname: Dai, Jyun-Min – sequence: 3 givenname: Lu-Ting surname: Wu fullname: Wu, Lu-Ting – sequence: 4 givenname: Li-Qi surname: Chen fullname: Chen, Li-Qi |
| BookMark | eNplkktvGyEURlGVqnm0i_4DpG7axSQ8Z4ZNJddp0kiRsuhriYC54-COIQGcKP--2E6rJt0A4p7vcHXFIdoLMQBCbyk55lyRk8wI7SXl6gU6oIKJpmeM7P1z3keHOS8JYZzz_hXa50zRVnXkAP2c4R8--xiaTybDgE-Tv4OEZzn7XExwgL8-5AIrfO_LNT6L6d6kAc_jNG1T2IQBX9VEMb98WOBTKOBKLbxGL0czZXjzuB-h72efv82_NJdX5xfz2WXjhGhLA4I4o4QEq4xsmTU92EHKtgc62n5UahgZ7ceWECdsy1RdCUguhBSdtKTjR-hi5x2iWeqb5FcmPehovN5exLTQJhXvJtBUgTSWi56BE6SjZrQjH1kvhm7obKuq6-POdbO2KxgchJLM9ET6tBL8tV7EO93JjshuI3j_KEjxdg256JXPDqbJBIjrrJkQjNHae1vRd8_QZVynUEe1pYholWSVOtlRLsWcE4za-WI2863v-0lTojcfQP_9ADXx4VniT_v_s78BCj6wQw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129339 crossref_primary_10_3390_s24010249 crossref_primary_10_3390_electronics10243113 crossref_primary_10_3390_s21134428 crossref_primary_10_1177_21582440241266440 crossref_primary_10_3390_s23239295 crossref_primary_10_3390_s20236777 crossref_primary_10_1016_j_rineng_2024_103783 crossref_primary_10_3390_jimaging11020064 crossref_primary_10_1109_OJITS_2025_3563373 crossref_primary_10_3390_electronics10141665 crossref_primary_10_3390_s23094466 crossref_primary_10_1016_j_ifacol_2023_10_1262 crossref_primary_10_3390_en14238039 crossref_primary_10_3390_electronics12132989 crossref_primary_10_3390_electronics12020314 crossref_primary_10_3390_s23020789 crossref_primary_10_3390_s21093028 crossref_primary_10_1016_j_heliyon_2021_e08615 crossref_primary_10_1177_09544070241264596 crossref_primary_10_1109_JSEN_2023_3297205 crossref_primary_10_3390_app12178674 crossref_primary_10_3390_s22030794 crossref_primary_10_1109_TCSVT_2024_3468625 crossref_primary_10_1007_s11554_022_01213_3 crossref_primary_10_1109_ACCESS_2024_3446277 crossref_primary_10_3390_s22052024 crossref_primary_10_1016_j_procs_2024_04_267 crossref_primary_10_3390_en14164857 |
| Cites_doi | 10.1016/j.patcog.2015.12.010 10.1049/iet-its.2018.5256 10.1109/IVS.2019.8814056 10.1109/IVS.2014.6856491 10.1109/WITS.2019.8723741 10.1109/JSEN.2018.2832291 10.1016/j.imavis.2017.07.002 10.1109/LRA.2017.2660543 10.1109/IVS.2008.4621152 10.1016/j.trc.2014.10.009 10.1007/978-3-319-10578-9 10.1016/j.patcog.2017.08.014 10.1109/ICCSCE.2016.7893608 10.1109/ICIP.2019.8802963 10.1109/ICMLC.2011.6017010 10.1109/ICASSP.2016.7472011 10.1109/RVSP.2015.12 10.4271/2020-01-0138 10.5220/0005147807880793 10.3390/s19071728 10.1016/j.neucom.2018.01.092 10.1080/02533839.2019.1708801 10.1109/IAEAC.2017.8054409 10.1016/j.cviu.2019.03.001 10.1109/IVS.2017.7995773 10.1109/IVS.2017.7995766 10.1016/j.imavis.2007.04.004 10.1109/MITS.2017.2743165 10.1109/IVS.2014.6856447 10.1109/ICCE-TW46550.2019.8991755 10.1109/TVT.2014.2369522 10.1109/ISPACS48206.2019.8986310 10.1007/978-3-319-45243-2 10.1109/ICSAI.2017.8248385 10.1109/ICACCE.2018.8441758 10.1109/CCDC.2016.7531653 10.1109/APSIPA.2016.7820739 10.1109/CVPRW.2018.00022 10.1109/ICCE.2016.7430650 10.1109/TVT.2008.917220 10.1109/IVS.2017.7995762 10.1177/154193120504902217 10.1109/MCE.2018.2828440 10.1109/ROBIO.2014.7090499 10.1049/iet-its.2017.0143 10.1109/ICUFN.2016.7536983 |
| ContentType | Journal Article |
| Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s20185139 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_19e5ab3482ec4071afbf3f284d7d7b69 PMC7570579 10_3390_s20185139 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-e40ca945eb9a562ba8ebd5568e1fb8f99df218f600c4b629c4b0e53445475b073 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580202800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:04:27 EDT 2025 Tue Nov 04 01:59:09 EST 2025 Thu Oct 02 10:12:24 EDT 2025 Sat Nov 29 14:42:56 EST 2025 Sat Nov 29 07:18:30 EST 2025 Tue Nov 18 21:39:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-e40ca945eb9a562ba8ebd5568e1fb8f99df218f600c4b629c4b0e53445475b073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This paper is an extended version of Jyun-Min Dai; Lu-Ting Wu; Huei-Yung Lin and Wen-Lung Tai, A driving assistance system with vision based vehicle detection techniques. In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea, 13–16 December 2016. |
| ORCID | 0000-0002-6476-6625 |
| OpenAccessLink | https://doaj.org/article/19e5ab3482ec4071afbf3f284d7d7b69 |
| PMID | 32916970 |
| PQID | 2442046952 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_19e5ab3482ec4071afbf3f284d7d7b69 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570579 proquest_miscellaneous_2442214546 proquest_journals_2442046952 crossref_citationtrail_10_3390_s20185139 crossref_primary_10_3390_s20185139 |
| PublicationCentury | 2000 |
| PublicationDate | 20200909 |
| PublicationDateYYYYMMDD | 2020-09-09 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200909 day: 9 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Kukkala (ref_1) 2018; 7 Narote (ref_20) 2018; 73 Khan (ref_10) 2019; 182 Niu (ref_17) 2016; 59 Lin (ref_11) 2008; 26 ref_54 ref_53 ref_52 ref_18 Heimberger (ref_14) 2017; 68 ref_16 ref_15 Ye (ref_48) 2018; 12 Li (ref_51) 2015; 51 ref_25 ref_24 ref_23 ref_22 ref_21 ref_29 ref_28 ref_27 ref_26 Woo (ref_44) 2017; 2 ref_36 Braunagel (ref_13) 2017; 9 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Song (ref_4) 2018; 18 ref_38 ref_37 Xing (ref_19) 2019; 13 Wu (ref_40) 2012; 2012 Rotter (ref_39) 2008; 57 Lin (ref_9) 2020; 43 ref_47 ref_46 ref_43 ref_42 ref_41 ref_3 ref_2 Brunetti (ref_12) 2018; 300 ref_49 Butakov (ref_5) 2015; 64 ref_8 ref_7 Mandalia (ref_45) 2005; 49 ref_6 |
| References_xml | – volume: 59 start-page: 225 year: 2016 ident: ref_17 article-title: Robust Lane Detection using Two-stage Feature Extraction with Curve Fitting publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.12.010 – volume: 13 start-page: 55 year: 2019 ident: ref_19 article-title: Dynamic integration and online evaluation of vision-based lane detection algorithms publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2018.5256 – ident: ref_21 doi: 10.1109/IVS.2019.8814056 – ident: ref_46 doi: 10.1109/IVS.2014.6856491 – ident: ref_32 doi: 10.1109/WITS.2019.8723741 – volume: 18 start-page: 5151 year: 2018 ident: ref_4 article-title: Lane Detection and Classification for Forward Collision Warning System Based on Stereo Vision publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2832291 – volume: 68 start-page: 88 year: 2017 ident: ref_14 article-title: Computer vision in automated parking systems: Design, implementation and challenges publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.07.002 – volume: 2 start-page: 1109 year: 2017 ident: ref_44 article-title: Lane-Change Detection Based on Vehicle-Trajectory Prediction publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2660543 – ident: ref_47 doi: 10.1109/IVS.2008.4621152 – ident: ref_42 – ident: ref_23 – volume: 51 start-page: 19 year: 2015 ident: ref_51 article-title: Vehicle detection based on And–Or Graph and Hybrid Image Templates for complex urban traffic conditions publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.10.009 – ident: ref_41 doi: 10.1007/978-3-319-10578-9 – volume: 73 start-page: 216 year: 2018 ident: ref_20 article-title: A review of recent advances in lane detection and departure warning system publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.08.014 – ident: ref_31 doi: 10.1109/ICCSCE.2016.7893608 – ident: ref_54 doi: 10.1109/ICIP.2019.8802963 – ident: ref_27 – ident: ref_36 doi: 10.1109/ICMLC.2011.6017010 – volume: 2012 start-page: 506235 year: 2012 ident: ref_40 article-title: A real-time embedded blind spot safety assistance system publication-title: Int. J. Veh. Technol. – ident: ref_22 doi: 10.1109/ICASSP.2016.7472011 – ident: ref_50 doi: 10.1109/RVSP.2015.12 – ident: ref_30 doi: 10.4271/2020-01-0138 – ident: ref_38 – ident: ref_34 doi: 10.5220/0005147807880793 – ident: ref_52 doi: 10.3390/s19071728 – volume: 300 start-page: 17 year: 2018 ident: ref_12 article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.092 – volume: 43 start-page: 300 year: 2020 ident: ref_9 article-title: Improved traffic sign recognition for in-car cameras publication-title: J. Chin. Inst. Eng. doi: 10.1080/02533839.2019.1708801 – ident: ref_6 doi: 10.1109/IAEAC.2017.8054409 – volume: 182 start-page: 50 year: 2019 ident: ref_10 article-title: A survey of advances in vision-based vehicle re-identification publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2019.03.001 – ident: ref_24 – ident: ref_3 doi: 10.1109/IVS.2017.7995773 – ident: ref_26 doi: 10.1109/IVS.2017.7995766 – volume: 26 start-page: 1327 year: 2008 ident: ref_11 article-title: Vehicle speed detection from a single motion blurred image publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2007.04.004 – volume: 9 start-page: 10 year: 2017 ident: ref_13 article-title: Ready for Take-Over? A New Driver Assistance System for an Automated Classification of Driver Take-Over Readiness publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2017.2743165 – ident: ref_37 doi: 10.1109/IVS.2014.6856447 – ident: ref_53 doi: 10.1109/ICCE-TW46550.2019.8991755 – volume: 64 start-page: 4422 year: 2015 ident: ref_5 article-title: Personalized Driver/Vehicle Lane Change Models for ADAS publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2014.2369522 – ident: ref_8 doi: 10.1109/ISPACS48206.2019.8986310 – ident: ref_16 doi: 10.1007/978-3-319-45243-2 – ident: ref_33 doi: 10.1109/ICSAI.2017.8248385 – ident: ref_29 doi: 10.1109/ICACCE.2018.8441758 – ident: ref_49 doi: 10.1109/CCDC.2016.7531653 – ident: ref_2 – ident: ref_7 doi: 10.1109/APSIPA.2016.7820739 – ident: ref_15 doi: 10.1109/CVPRW.2018.00022 – ident: ref_35 doi: 10.1109/ICCE.2016.7430650 – volume: 57 start-page: 2736 year: 2008 ident: ref_39 article-title: Lane-Change Decision Aid System Based on Motion-Driven Vehicle Tracking publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2008.917220 – ident: ref_18 doi: 10.1109/IVS.2017.7995762 – volume: 49 start-page: 1965 year: 2005 ident: ref_45 article-title: Using Support Vector Machines for Lane-Change Detection publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet. doi: 10.1177/154193120504902217 – volume: 7 start-page: 18 year: 2018 ident: ref_1 article-title: Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2018.2828440 – ident: ref_43 – ident: ref_25 doi: 10.1109/ROBIO.2014.7090499 – volume: 12 start-page: 513 year: 2018 ident: ref_48 article-title: Lane detection method based on lane structural analysis and CNNs publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2017.0143 – ident: ref_28 doi: 10.1109/ICUFN.2016.7536983 |
| SSID | ssj0023338 |
| Score | 2.4699934 |
| Snippet | One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5139 |
| SubjectTerms | advanced driver assistance system Algorithms Cameras forward collision warning Identification Investigations lane change detection Neural networks overtaking vehicle identification Parameter estimation Roads & highways Sensors Traffic accidents & safety Vehicles |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED60boZmaPoK4sYtmKJDFsG2KFrkVNh1jU5uhj68CXypDRBIjizn9_eOkh8Cii5dNIjUA7oj7z7y9H0AHzDiCZ0bGzk7dlEiTVADFBG3RiiDTqSdDWIT6XIpVyt10y64bdqyyt2cGCZqV1paIx9iGIoJy4n44_o-ItUo2l1tJTQewxOSzSY_T1cHwMURfzVsQhyh_XCDwQ4TDNIFP4pBgaq_k192qyOPws3i7H9f9Dk8axNNNm084wU88sVLOD2iH3wFP6fsR_i1PJphLHNsXlGRBkOLUVKJ3sAaPnNGi7VsUVZUYctoqSFcxXTh2FfScw6KVmzu61DXVbyG74vP3z59iVqhhcgiGqwjn4ysVonwRmnMh4yW3jiiJvPj3MhcKZdjJpBjbmQTM4kVHkde8ITIwITBSeIcekVZ-AtgcsSlU5LnCSFNbqXmOpYjbybeYpPtw_Xu02e2ZSEnMYy7DNEIWSnbW6kP7_dd1w31xt86zch--w7Elh1OlNWvrB182Vh5oQ3R-HhLABadM-c5BmaXutRM8CaDnSmzdghvsoMd-3C1b8bBRzsquvDltulDVO_JpA9px2s6L9RtKW5_BxrvVKT0J_Cbfz_8Ep7GBPFpD0sNoFdXW_8WTuxDfbup3gV__wPbrAyM priority: 102 providerName: ProQuest |
| Title | A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection |
| URI | https://www.proquest.com/docview/2442046952 https://www.proquest.com/docview/2442214546 https://pubmed.ncbi.nlm.nih.gov/PMC7570579 https://doaj.org/article/19e5ab3482ec4071afbf3f284d7d7b69 |
| Volume | 20 |
| WOSCitedRecordID | wos000580202800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED60aYdmCPpIUCWpwQYdugiRRdEkxzixkQxxjKIPdxL4EhqgkAvbyZjfnjtKNiygQJYsHEhKoO5I3X3k8TuAL2jxhKmsS73r-7RQNmYDFCl3VmiLk8h4F5NNyMlEzWZ6upXqi2LCGnrgRnCnfR2EsUTBEhyBD3xxxSv8qXrppR3Eq3uZ1Gsw1UItjsir4RHiCOpPl2jm0LWgjOBb1ieS9Hc8y25c5JahGb-FvdZDZGfNyN7Bi1C_h90t3sAP8OuM_Yx3wtMhGiHPLhYUXcFQ1OQNohpZQ0TOaJeVjecLCo1ltEcQn2Km9uyGEjHHVFTsIqxiQFa9Dz_Go-_nl2mbISF1CONWaSgyZ3QhgtUGHRlrVLCeOMVCv7Kq0tpXaMIrdGpcYQe5xjILghfE4iUsru4D2KnndfgITGVcea14VRBE5E4ZbnKVBTsIDptcAl_XkitdSx9OWSz-lggjSMjlRsgJnGy6_ms4M_7XaUji33QgmutYgcovW-WXTyk_geO18sp27S1LdFhyQv0iT-DzphlXDR2FmDrM75o-xNFeDBKQHaV3BtRtqW__RP5tKSRd4T18ji84gjc5IXg6otLHsLNa3IVP8Nrdr26Xix68lDMZS9WDV8PRZPqtFyc6ltcPI6ybXl1Pfz8CFtMFbQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41BhJwGN-ibIBBIHGJlsZxYx8Q2ijVpo3CYUBvwV-BSSgZaQfiT-037n2dpGskxG0HLj3UbprEj98P-_XzALxAjyd0YWzk7NBFqTRBDVBE3BqhDIJIOxvEJrLpVM5m6uManHVnYaissrOJwVC7ytIa-Ta6oYRyOZG8OfkZkWoU7a52EhoNLA78n9-Yss1f749xfF8myeTd0du9qFUViCymPovIp7HVKhXeKI3O32jpjSMeLj8sjCyUcgW6vQIDAZuaUaLwM_aCp8R8JQzOCLzuFbiKdjyjZC-bXSR4HPO9hr2IcxVvz9G5YkBDOuQrPi9IA_Ti2X415op7m9z6317MbdhoA2m20yD_Dqz58i7cXKFXvAdfdtjncHQ-2kVf7di4piIUhoikoBnRzhq-dkaL0WxS1VRBzGgpJfyK6dKxD6RXHRS72NgvQt1aeR8-XcqTPYD1sir9Q2Ay5tIpyYuUMmlupeY6kbE3I2-xyQ7gVTfUuW1Z1kns40eO2RahIl-iYgDPl11PGmqRv3XaJbwsOxAbePiiqr_lrXHJh8oLbYimyFtK0HHyFbzAwMNlLjMjvMhWB528NVHz_AI3A3i2bEbjQjtGuvTVadOHqOzT0QCyHkp7N9RvKY-_B5ryTGR00vnRv__8KVzfO3p_mB_uTw824UZCyxm0X6e2YH1Rn_rHcM3-WhzP6ydhrjH4etkYPgc2UGlV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKw4I0IFBgQSGysOB47nlkg1BIiokLIgke7MvNyWwnZxUlB_Bpfx73jB7GE2HXBJovMxHHic18zd84BeIoRL1G5NoE1YxvEQns1wCTgRidSI4iUNV5sIl0sxMGBXG7Br_YsDLVVtj7RO2pbGlojH2EYiqiWS6JR3rRFLKezl6ffAlKQop3WVk6jhsi--_kDy7fVi_kUn_WzKJq9_vDqTdAoDAQGy6B14OLQKBknTkuFiYBWwmlLnFxunGuRS2lzDIE5JgUm1pNI4mvoEh4TC1ai0TrwuhdgG1PyOBrA9nL-bnnYlXscq7-ay4hzGY5WGGoxvSFV8o0I6IUCetltvzdzI9jNrv3Pf9N1uNqk2Gy3tokbsOWKm3Blg3jxFnzeZZ_8ofpgD6O4ZdOK2lMYYpXSabQDVjO5M1qmZrOyot5iRoss_lNMFZa9JyVrr-XFpm7tO9qK2_DxXH7ZHRgUZeHuAhMhF1YKnsdUY3MjFFeRCJ2eOINDZgjP28eemYZ_nWRAvmZYhxFCsg4hQ3jSTT2tSUf-NmmPsNNNIJ5w_0ZZHWWN28nG0iVKE4GRM1S6o1nmPMeUxKY21RO8yE4Lo6xxXqvsD4aG8LgbRrdDe0mqcOVZPYdI7uPJENIeYns31B8pTo49gXmapHQG-t6_v_wRXELoZm_ni_37cDmidQ7ayJM7MFhXZ-4BXDTf1yer6mFjeAy-nDeIfwPgAnOk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vision-Based+Driver+Assistance+System+with+Forward+Collision+and+Overtaking+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Huei-Yung&rft.au=Dai%2C+Jyun-Min&rft.au=Wu%2C+Lu-Ting&rft.au=Chen%2C+Li-Qi&rft.date=2020-09-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185139&rft_id=info%3Apmid%2F32916970&rft.externalDocID=PMC7570579 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |