A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection

One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 20; H. 18; S. 5139
Hauptverfasser: Lin, Huei-Yung, Dai, Jyun-Min, Wu, Lu-Ting, Chen, Li-Qi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 09.09.2020
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.
AbstractList One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.
One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques.
Author Chen, Li-Qi
Lin, Huei-Yung
Wu, Lu-Ting
Dai, Jyun-Min
AuthorAffiliation 2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan; jyunmin@godel.ee.ccu.edu.tw (J.-M.D.); luting@godel.ee.ccu.edu.tw (L.-T.W.); liqi@godel.ee.ccu.edu.tw (L.-Q.C.)
1 Department of Electrical Engineering, Advanced Institute of Manufacturing with High-Tech Innovation, National Chung Cheng University, Chiayu 621, Taiwan
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering, Advanced Institute of Manufacturing with High-Tech Innovation, National Chung Cheng University, Chiayu 621, Taiwan
– name: 2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan; jyunmin@godel.ee.ccu.edu.tw (J.-M.D.); luting@godel.ee.ccu.edu.tw (L.-T.W.); liqi@godel.ee.ccu.edu.tw (L.-Q.C.)
Author_xml – sequence: 1
  givenname: Huei-Yung
  orcidid: 0000-0002-6476-6625
  surname: Lin
  fullname: Lin, Huei-Yung
– sequence: 2
  givenname: Jyun-Min
  surname: Dai
  fullname: Dai, Jyun-Min
– sequence: 3
  givenname: Lu-Ting
  surname: Wu
  fullname: Wu, Lu-Ting
– sequence: 4
  givenname: Li-Qi
  surname: Chen
  fullname: Chen, Li-Qi
BookMark eNplkktvGyEURlGVqnm0i_4DpG7axSQ8Z4ZNJddp0kiRsuhriYC54-COIQGcKP--2E6rJt0A4p7vcHXFIdoLMQBCbyk55lyRk8wI7SXl6gU6oIKJpmeM7P1z3keHOS8JYZzz_hXa50zRVnXkAP2c4R8--xiaTybDgE-Tv4OEZzn7XExwgL8-5AIrfO_LNT6L6d6kAc_jNG1T2IQBX9VEMb98WOBTKOBKLbxGL0czZXjzuB-h72efv82_NJdX5xfz2WXjhGhLA4I4o4QEq4xsmTU92EHKtgc62n5UahgZ7ceWECdsy1RdCUguhBSdtKTjR-hi5x2iWeqb5FcmPehovN5exLTQJhXvJtBUgTSWi56BE6SjZrQjH1kvhm7obKuq6-POdbO2KxgchJLM9ET6tBL8tV7EO93JjshuI3j_KEjxdg256JXPDqbJBIjrrJkQjNHae1vRd8_QZVynUEe1pYholWSVOtlRLsWcE4za-WI2863v-0lTojcfQP_9ADXx4VniT_v_s78BCj6wQw
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129339
crossref_primary_10_3390_s24010249
crossref_primary_10_3390_electronics10243113
crossref_primary_10_3390_s21134428
crossref_primary_10_1177_21582440241266440
crossref_primary_10_3390_s23239295
crossref_primary_10_3390_s20236777
crossref_primary_10_1016_j_rineng_2024_103783
crossref_primary_10_3390_jimaging11020064
crossref_primary_10_1109_OJITS_2025_3563373
crossref_primary_10_3390_electronics10141665
crossref_primary_10_3390_s23094466
crossref_primary_10_1016_j_ifacol_2023_10_1262
crossref_primary_10_3390_en14238039
crossref_primary_10_3390_electronics12132989
crossref_primary_10_3390_electronics12020314
crossref_primary_10_3390_s23020789
crossref_primary_10_3390_s21093028
crossref_primary_10_1016_j_heliyon_2021_e08615
crossref_primary_10_1177_09544070241264596
crossref_primary_10_1109_JSEN_2023_3297205
crossref_primary_10_3390_app12178674
crossref_primary_10_3390_s22030794
crossref_primary_10_1109_TCSVT_2024_3468625
crossref_primary_10_1007_s11554_022_01213_3
crossref_primary_10_1109_ACCESS_2024_3446277
crossref_primary_10_3390_s22052024
crossref_primary_10_1016_j_procs_2024_04_267
crossref_primary_10_3390_en14164857
Cites_doi 10.1016/j.patcog.2015.12.010
10.1049/iet-its.2018.5256
10.1109/IVS.2019.8814056
10.1109/IVS.2014.6856491
10.1109/WITS.2019.8723741
10.1109/JSEN.2018.2832291
10.1016/j.imavis.2017.07.002
10.1109/LRA.2017.2660543
10.1109/IVS.2008.4621152
10.1016/j.trc.2014.10.009
10.1007/978-3-319-10578-9
10.1016/j.patcog.2017.08.014
10.1109/ICCSCE.2016.7893608
10.1109/ICIP.2019.8802963
10.1109/ICMLC.2011.6017010
10.1109/ICASSP.2016.7472011
10.1109/RVSP.2015.12
10.4271/2020-01-0138
10.5220/0005147807880793
10.3390/s19071728
10.1016/j.neucom.2018.01.092
10.1080/02533839.2019.1708801
10.1109/IAEAC.2017.8054409
10.1016/j.cviu.2019.03.001
10.1109/IVS.2017.7995773
10.1109/IVS.2017.7995766
10.1016/j.imavis.2007.04.004
10.1109/MITS.2017.2743165
10.1109/IVS.2014.6856447
10.1109/ICCE-TW46550.2019.8991755
10.1109/TVT.2014.2369522
10.1109/ISPACS48206.2019.8986310
10.1007/978-3-319-45243-2
10.1109/ICSAI.2017.8248385
10.1109/ICACCE.2018.8441758
10.1109/CCDC.2016.7531653
10.1109/APSIPA.2016.7820739
10.1109/CVPRW.2018.00022
10.1109/ICCE.2016.7430650
10.1109/TVT.2008.917220
10.1109/IVS.2017.7995762
10.1177/154193120504902217
10.1109/MCE.2018.2828440
10.1109/ROBIO.2014.7090499
10.1049/iet-its.2017.0143
10.1109/ICUFN.2016.7536983
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s20185139
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_19e5ab3482ec4071afbf3f284d7d7b69
PMC7570579
10_3390_s20185139
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-e40ca945eb9a562ba8ebd5568e1fb8f99df218f600c4b629c4b0e53445475b073
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000580202800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:27 EDT 2025
Tue Nov 04 01:59:09 EST 2025
Thu Oct 02 10:12:24 EDT 2025
Sat Nov 29 14:42:56 EST 2025
Sat Nov 29 07:18:30 EST 2025
Tue Nov 18 21:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-e40ca945eb9a562ba8ebd5568e1fb8f99df218f600c4b629c4b0e53445475b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This paper is an extended version of Jyun-Min Dai; Lu-Ting Wu; Huei-Yung Lin and Wen-Lung Tai, A driving assistance system with vision based vehicle detection techniques. In Proceedings of the 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Jeju, Korea, 13–16 December 2016.
ORCID 0000-0002-6476-6625
OpenAccessLink https://doaj.org/article/19e5ab3482ec4071afbf3f284d7d7b69
PMID 32916970
PQID 2442046952
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_19e5ab3482ec4071afbf3f284d7d7b69
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7570579
proquest_miscellaneous_2442214546
proquest_journals_2442046952
crossref_citationtrail_10_3390_s20185139
crossref_primary_10_3390_s20185139
PublicationCentury 2000
PublicationDate 20200909
PublicationDateYYYYMMDD 2020-09-09
PublicationDate_xml – month: 9
  year: 2020
  text: 20200909
  day: 9
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Kukkala (ref_1) 2018; 7
Narote (ref_20) 2018; 73
Khan (ref_10) 2019; 182
Niu (ref_17) 2016; 59
Lin (ref_11) 2008; 26
ref_54
ref_53
ref_52
ref_18
Heimberger (ref_14) 2017; 68
ref_16
ref_15
Ye (ref_48) 2018; 12
Li (ref_51) 2015; 51
ref_25
ref_24
ref_23
ref_22
ref_21
ref_29
ref_28
ref_27
ref_26
Woo (ref_44) 2017; 2
ref_36
Braunagel (ref_13) 2017; 9
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Song (ref_4) 2018; 18
ref_38
ref_37
Xing (ref_19) 2019; 13
Wu (ref_40) 2012; 2012
Rotter (ref_39) 2008; 57
Lin (ref_9) 2020; 43
ref_47
ref_46
ref_43
ref_42
ref_41
ref_3
ref_2
Brunetti (ref_12) 2018; 300
ref_49
Butakov (ref_5) 2015; 64
ref_8
ref_7
Mandalia (ref_45) 2005; 49
ref_6
References_xml – volume: 59
  start-page: 225
  year: 2016
  ident: ref_17
  article-title: Robust Lane Detection using Two-stage Feature Extraction with Curve Fitting
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.12.010
– volume: 13
  start-page: 55
  year: 2019
  ident: ref_19
  article-title: Dynamic integration and online evaluation of vision-based lane detection algorithms
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2018.5256
– ident: ref_21
  doi: 10.1109/IVS.2019.8814056
– ident: ref_46
  doi: 10.1109/IVS.2014.6856491
– ident: ref_32
  doi: 10.1109/WITS.2019.8723741
– volume: 18
  start-page: 5151
  year: 2018
  ident: ref_4
  article-title: Lane Detection and Classification for Forward Collision Warning System Based on Stereo Vision
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2832291
– volume: 68
  start-page: 88
  year: 2017
  ident: ref_14
  article-title: Computer vision in automated parking systems: Design, implementation and challenges
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.07.002
– volume: 2
  start-page: 1109
  year: 2017
  ident: ref_44
  article-title: Lane-Change Detection Based on Vehicle-Trajectory Prediction
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2660543
– ident: ref_47
  doi: 10.1109/IVS.2008.4621152
– ident: ref_42
– ident: ref_23
– volume: 51
  start-page: 19
  year: 2015
  ident: ref_51
  article-title: Vehicle detection based on And–Or Graph and Hybrid Image Templates for complex urban traffic conditions
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2014.10.009
– ident: ref_41
  doi: 10.1007/978-3-319-10578-9
– volume: 73
  start-page: 216
  year: 2018
  ident: ref_20
  article-title: A review of recent advances in lane detection and departure warning system
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.08.014
– ident: ref_31
  doi: 10.1109/ICCSCE.2016.7893608
– ident: ref_54
  doi: 10.1109/ICIP.2019.8802963
– ident: ref_27
– ident: ref_36
  doi: 10.1109/ICMLC.2011.6017010
– volume: 2012
  start-page: 506235
  year: 2012
  ident: ref_40
  article-title: A real-time embedded blind spot safety assistance system
  publication-title: Int. J. Veh. Technol.
– ident: ref_22
  doi: 10.1109/ICASSP.2016.7472011
– ident: ref_50
  doi: 10.1109/RVSP.2015.12
– ident: ref_30
  doi: 10.4271/2020-01-0138
– ident: ref_38
– ident: ref_34
  doi: 10.5220/0005147807880793
– ident: ref_52
  doi: 10.3390/s19071728
– volume: 300
  start-page: 17
  year: 2018
  ident: ref_12
  article-title: Computer vision and deep learning techniques for pedestrian detection and tracking: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.092
– volume: 43
  start-page: 300
  year: 2020
  ident: ref_9
  article-title: Improved traffic sign recognition for in-car cameras
  publication-title: J. Chin. Inst. Eng.
  doi: 10.1080/02533839.2019.1708801
– ident: ref_6
  doi: 10.1109/IAEAC.2017.8054409
– volume: 182
  start-page: 50
  year: 2019
  ident: ref_10
  article-title: A survey of advances in vision-based vehicle re-identification
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2019.03.001
– ident: ref_24
– ident: ref_3
  doi: 10.1109/IVS.2017.7995773
– ident: ref_26
  doi: 10.1109/IVS.2017.7995766
– volume: 26
  start-page: 1327
  year: 2008
  ident: ref_11
  article-title: Vehicle speed detection from a single motion blurred image
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.04.004
– volume: 9
  start-page: 10
  year: 2017
  ident: ref_13
  article-title: Ready for Take-Over? A New Driver Assistance System for an Automated Classification of Driver Take-Over Readiness
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2017.2743165
– ident: ref_37
  doi: 10.1109/IVS.2014.6856447
– ident: ref_53
  doi: 10.1109/ICCE-TW46550.2019.8991755
– volume: 64
  start-page: 4422
  year: 2015
  ident: ref_5
  article-title: Personalized Driver/Vehicle Lane Change Models for ADAS
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2369522
– ident: ref_8
  doi: 10.1109/ISPACS48206.2019.8986310
– ident: ref_16
  doi: 10.1007/978-3-319-45243-2
– ident: ref_33
  doi: 10.1109/ICSAI.2017.8248385
– ident: ref_29
  doi: 10.1109/ICACCE.2018.8441758
– ident: ref_49
  doi: 10.1109/CCDC.2016.7531653
– ident: ref_2
– ident: ref_7
  doi: 10.1109/APSIPA.2016.7820739
– ident: ref_15
  doi: 10.1109/CVPRW.2018.00022
– ident: ref_35
  doi: 10.1109/ICCE.2016.7430650
– volume: 57
  start-page: 2736
  year: 2008
  ident: ref_39
  article-title: Lane-Change Decision Aid System Based on Motion-Driven Vehicle Tracking
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2008.917220
– ident: ref_18
  doi: 10.1109/IVS.2017.7995762
– volume: 49
  start-page: 1965
  year: 2005
  ident: ref_45
  article-title: Using Support Vector Machines for Lane-Change Detection
  publication-title: Proc. Hum. Factors Ergon. Soc. Annu. Meet.
  doi: 10.1177/154193120504902217
– volume: 7
  start-page: 18
  year: 2018
  ident: ref_1
  article-title: Advanced Driver-Assistance Systems: A Path Toward Autonomous Vehicles
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2018.2828440
– ident: ref_43
– ident: ref_25
  doi: 10.1109/ROBIO.2014.7090499
– volume: 12
  start-page: 513
  year: 2018
  ident: ref_48
  article-title: Lane detection method based on lane structural analysis and CNNs
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2017.0143
– ident: ref_28
  doi: 10.1109/ICUFN.2016.7536983
SSID ssj0023338
Score 2.4699934
Snippet One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5139
SubjectTerms advanced driver assistance system
Algorithms
Cameras
forward collision warning
Identification
Investigations
lane change detection
Neural networks
overtaking vehicle identification
Parameter estimation
Roads & highways
Sensors
Traffic accidents & safety
Vehicles
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED60boZmaPoK4sYtmKJDFsG2KFrkVNh1jU5uhj68CXypDRBIjizn9_eOkh8Cii5dNIjUA7oj7z7y9H0AHzDiCZ0bGzk7dlEiTVADFBG3RiiDTqSdDWIT6XIpVyt10y64bdqyyt2cGCZqV1paIx9iGIoJy4n44_o-ItUo2l1tJTQewxOSzSY_T1cHwMURfzVsQhyh_XCDwQ4TDNIFP4pBgaq_k192qyOPws3i7H9f9Dk8axNNNm084wU88sVLOD2iH3wFP6fsR_i1PJphLHNsXlGRBkOLUVKJ3sAaPnNGi7VsUVZUYctoqSFcxXTh2FfScw6KVmzu61DXVbyG74vP3z59iVqhhcgiGqwjn4ysVonwRmnMh4yW3jiiJvPj3MhcKZdjJpBjbmQTM4kVHkde8ITIwITBSeIcekVZ-AtgcsSlU5LnCSFNbqXmOpYjbybeYpPtw_Xu02e2ZSEnMYy7DNEIWSnbW6kP7_dd1w31xt86zch--w7Elh1OlNWvrB182Vh5oQ3R-HhLABadM-c5BmaXutRM8CaDnSmzdghvsoMd-3C1b8bBRzsquvDltulDVO_JpA9px2s6L9RtKW5_BxrvVKT0J_Cbfz_8Ep7GBPFpD0sNoFdXW_8WTuxDfbup3gV__wPbrAyM
  priority: 102
  providerName: ProQuest
Title A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection
URI https://www.proquest.com/docview/2442046952
https://www.proquest.com/docview/2442214546
https://pubmed.ncbi.nlm.nih.gov/PMC7570579
https://doaj.org/article/19e5ab3482ec4071afbf3f284d7d7b69
Volume 20
WOSCitedRecordID wos000580202800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED60aYdmCPpIUCWpwQYdugiRRdEkxzixkQxxjKIPdxL4EhqgkAvbyZjfnjtKNiygQJYsHEhKoO5I3X3k8TuAL2jxhKmsS73r-7RQNmYDFCl3VmiLk8h4F5NNyMlEzWZ6upXqi2LCGnrgRnCnfR2EsUTBEhyBD3xxxSv8qXrppR3Eq3uZ1Gsw1UItjsir4RHiCOpPl2jm0LWgjOBb1ieS9Hc8y25c5JahGb-FvdZDZGfNyN7Bi1C_h90t3sAP8OuM_Yx3wtMhGiHPLhYUXcFQ1OQNohpZQ0TOaJeVjecLCo1ltEcQn2Km9uyGEjHHVFTsIqxiQFa9Dz_Go-_nl2mbISF1CONWaSgyZ3QhgtUGHRlrVLCeOMVCv7Kq0tpXaMIrdGpcYQe5xjILghfE4iUsru4D2KnndfgITGVcea14VRBE5E4ZbnKVBTsIDptcAl_XkitdSx9OWSz-lggjSMjlRsgJnGy6_ms4M_7XaUji33QgmutYgcovW-WXTyk_geO18sp27S1LdFhyQv0iT-DzphlXDR2FmDrM75o-xNFeDBKQHaV3BtRtqW__RP5tKSRd4T18ji84gjc5IXg6otLHsLNa3IVP8Nrdr26Xix68lDMZS9WDV8PRZPqtFyc6ltcPI6ybXl1Pfz8CFtMFbQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41BhJwGN-ibIBBIHGJlsZxYx8Q2ijVpo3CYUBvwV-BSSgZaQfiT-037n2dpGskxG0HLj3UbprEj98P-_XzALxAjyd0YWzk7NBFqTRBDVBE3BqhDIJIOxvEJrLpVM5m6uManHVnYaissrOJwVC7ytIa-Ta6oYRyOZG8OfkZkWoU7a52EhoNLA78n9-Yss1f749xfF8myeTd0du9qFUViCymPovIp7HVKhXeKI3O32jpjSMeLj8sjCyUcgW6vQIDAZuaUaLwM_aCp8R8JQzOCLzuFbiKdjyjZC-bXSR4HPO9hr2IcxVvz9G5YkBDOuQrPi9IA_Ti2X415op7m9z6317MbdhoA2m20yD_Dqz58i7cXKFXvAdfdtjncHQ-2kVf7di4piIUhoikoBnRzhq-dkaL0WxS1VRBzGgpJfyK6dKxD6RXHRS72NgvQt1aeR8-XcqTPYD1sir9Q2Ay5tIpyYuUMmlupeY6kbE3I2-xyQ7gVTfUuW1Z1kns40eO2RahIl-iYgDPl11PGmqRv3XaJbwsOxAbePiiqr_lrXHJh8oLbYimyFtK0HHyFbzAwMNlLjMjvMhWB528NVHz_AI3A3i2bEbjQjtGuvTVadOHqOzT0QCyHkp7N9RvKY-_B5ryTGR00vnRv__8KVzfO3p_mB_uTw824UZCyxm0X6e2YH1Rn_rHcM3-WhzP6ydhrjH4etkYPgc2UGlV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKUKw4I0IFBgQSGysOB47nlkg1BIiokLIgke7MvNyWwnZxUlB_Bpfx73jB7GE2HXBJovMxHHic18zd84BeIoRL1G5NoE1YxvEQns1wCTgRidSI4iUNV5sIl0sxMGBXG7Br_YsDLVVtj7RO2pbGlojH2EYiqiWS6JR3rRFLKezl6ffAlKQop3WVk6jhsi--_kDy7fVi_kUn_WzKJq9_vDqTdAoDAQGy6B14OLQKBknTkuFiYBWwmlLnFxunGuRS2lzDIE5JgUm1pNI4mvoEh4TC1ai0TrwuhdgG1PyOBrA9nL-bnnYlXscq7-ay4hzGY5WGGoxvSFV8o0I6IUCetltvzdzI9jNrv3Pf9N1uNqk2Gy3tokbsOWKm3Blg3jxFnzeZZ_8ofpgD6O4ZdOK2lMYYpXSabQDVjO5M1qmZrOyot5iRoss_lNMFZa9JyVrr-XFpm7tO9qK2_DxXH7ZHRgUZeHuAhMhF1YKnsdUY3MjFFeRCJ2eOINDZgjP28eemYZ_nWRAvmZYhxFCsg4hQ3jSTT2tSUf-NmmPsNNNIJ5w_0ZZHWWN28nG0iVKE4GRM1S6o1nmPMeUxKY21RO8yE4Lo6xxXqvsD4aG8LgbRrdDe0mqcOVZPYdI7uPJENIeYns31B8pTo49gXmapHQG-t6_v_wRXELoZm_ni_37cDmidQ7ayJM7MFhXZ-4BXDTf1yer6mFjeAy-nDeIfwPgAnOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Vision-Based+Driver+Assistance+System+with+Forward+Collision+and+Overtaking+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin%2C+Huei-Yung&rft.au=Dai%2C+Jyun-Min&rft.au=Wu%2C+Lu-Ting&rft.au=Chen%2C+Li-Qi&rft.date=2020-09-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=20&rft.issue=18&rft_id=info:doi/10.3390%2Fs20185139&rft_id=info%3Apmid%2F32916970&rft.externalDocID=PMC7570579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon