Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter

This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 13; s. 4759
Hlavní autoři: Memon, Sufyan Ali, Park, Min-Seuk, Memon, Imran, Kim, Wan-Gu, Khan, Sajid, Shi, Yifang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 23.06.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.
AbstractList This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.
Author Memon, Sufyan Ali
Park, Min-Seuk
Memon, Imran
Shi, Yifang
Khan, Sajid
Kim, Wan-Gu
AuthorAffiliation 1 Department of Defense Systems Engineering, Sejong University, Seoul 05006, Korea; ms.park@sejong.ac.kr (M.-S.P.); kimwangu@sejong.ac.kr (W.-G.K.)
3 Department of Computer Science, IBA Sukkur University, Sukkur 65111, Pakistan; sajidkhan@iba-suk.edu.pk
4 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; syf2008@hdu.edu.cn
2 Department of Computer Science, Bahria University, Karachi Campus, Karachi 74200, Pakistan; imranmemon.bukc@bahria.edu.pk
AuthorAffiliation_xml – name: 4 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; syf2008@hdu.edu.cn
– name: 1 Department of Defense Systems Engineering, Sejong University, Seoul 05006, Korea; ms.park@sejong.ac.kr (M.-S.P.); kimwangu@sejong.ac.kr (W.-G.K.)
– name: 2 Department of Computer Science, Bahria University, Karachi Campus, Karachi 74200, Pakistan; imranmemon.bukc@bahria.edu.pk
– name: 3 Department of Computer Science, IBA Sukkur University, Sukkur 65111, Pakistan; sajidkhan@iba-suk.edu.pk
Author_xml – sequence: 1
  givenname: Sufyan Ali
  orcidid: 0000-0001-5592-9990
  surname: Memon
  fullname: Memon, Sufyan Ali
– sequence: 2
  givenname: Min-Seuk
  surname: Park
  fullname: Park, Min-Seuk
– sequence: 3
  givenname: Imran
  orcidid: 0000-0002-9325-4805
  surname: Memon
  fullname: Memon, Imran
– sequence: 4
  givenname: Wan-Gu
  surname: Kim
  fullname: Kim, Wan-Gu
– sequence: 5
  givenname: Sajid
  orcidid: 0000-0001-8561-1617
  surname: Khan
  fullname: Khan, Sajid
– sequence: 6
  givenname: Yifang
  orcidid: 0000-0003-1607-3629
  surname: Shi
  fullname: Shi, Yifang
BookMark eNplkcluFDEQhi0URBY48AYtcYHDEG_t5YIUjUiIlBFCDGfL7aXHg7s92O5IvD3dTEAknKr011d_larOwcmYRgfAawTfEyLhZcEYEcpb-QycIYrpSmAMT_7JT8F5KXsIMSFEvACnpBVQ4JadgS-bZIMPzjZfh5TqLox9cxX7lEPdDY1Pudlmbb4v8maKNRyiazZ6dNO9y4u41bl3tTRhbNZxqtXll-C517G4Vw_xAny7_rhdf1rdfb65XV_drQylrK6sJdAh7gyjqOMGIYyk5Z3kQgrpIOwI1Z7OQVoqMLTecAEtEdpgyDsjyQW4PfrapPfqkMOg80-VdFC_hZR7pXMNJjpFsJHWYOIlJVS6rus8FqZtrRDEt4zNXh-OXoepG5w1bqxZx0emjytj2Kk-3SuJmUR4Webtg0FOPyZXqhpCMS7G-VRpKgozwTlivIUz-uYJuk9THudTLRRDkmJOZ-rySJmcSsnOKxOqriEt80NUCKrl9erv6-eOd086_qz_P_sL3TWuTw
CitedBy_id crossref_primary_10_26599_TST_2024_9010083
crossref_primary_10_1109_ACCESS_2024_3394536
crossref_primary_10_1186_s13634_024_01144_0
Cites_doi 10.1109/AERO.2017.7943708
10.1049/iet-rsn.2013.0347
10.1109/TAES.2011.5751270
10.1049/iet-rsn.2014.0068
10.1002/0470045345
10.3390/s16122180
10.3390/s16060805
10.1109/TAES.2014.120257
10.1109/TAES.2017.2649978
10.1017/CBO9780511975837
10.1109/TSP.2010.2098401
10.1109/ACCESS.2020.3045933
10.1016/j.eswa.2021.114919
10.1049/iet-rsn.2017.0019
10.1109/TAES.2013.120107
10.1016/j.eswa.2019.112969
10.1109/TAES.2014.130327
10.1109/JSTSP.2013.2258322
10.1109/7.826308
10.3390/s18010269
10.1049/iet-rsn.2019.0075
10.1049/iet-rsn.2015.0509
10.3390/s19030741
10.1109/ICCAIS.2017.8217597
10.1016/0005-1098(95)98484-N
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22134759
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_32c9dc23f94349ebbbf28c55d883f566
PMC9269129
10_3390_s22134759
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: Grant No. 2022R1G1A101094611
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-dd30e17ec641b7c11219d7b978989e00b34af40b39d4820dfc780d38ac207bc93
IEDL.DBID 7X7
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824145700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 18:44:31 EDT 2025
Tue Nov 04 02:00:46 EST 2025
Fri Sep 05 11:50:54 EDT 2025
Tue Oct 07 07:42:56 EDT 2025
Sat Nov 29 07:12:06 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-dd30e17ec641b7c11219d7b978989e00b34af40b39d4820dfc780d38ac207bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9325-4805
0000-0001-5592-9990
0000-0003-1607-3629
0000-0001-8561-1617
OpenAccessLink https://www.proquest.com/docview/2686194274?pq-origsite=%requestingapplication%
PMID 35808256
PQID 2686194274
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_32c9dc23f94349ebbbf28c55d883f566
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269129
proquest_miscellaneous_2687716750
proquest_journals_2686194274
crossref_citationtrail_10_3390_s22134759
crossref_primary_10_3390_s22134759
PublicationCentury 2000
PublicationDate 20220623
PublicationDateYYYYMMDD 2022-06-23
PublicationDate_xml – month: 6
  year: 2022
  text: 20220623
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sathyan (ref_9) 2013; 7
Song (ref_7) 2015; 9
ref_13
ref_12
Memon (ref_26) 2017; 11
ref_30
Song (ref_23) 2011; 47
Evans (ref_6) 2015; 51
ref_17
Song (ref_10) 2014; 50
Shin (ref_11) 2020; 8
Memon (ref_18) 2020; 14
Memon (ref_25) 2016; 21
ref_24
Baum (ref_1) 2014; 15
Evans (ref_3) 1995; 31
ref_21
Koch (ref_15) 2000; 36
Kim (ref_22) 2021; 177
ref_2
Memon (ref_29) 2020; 141
ref_27
Salmond (ref_28) 1990; 1305
ref_5
Kim (ref_20) 2016; 10
ref_4
Nagappa (ref_16) 2017; 53
Kim (ref_19) 2015; 9
Song (ref_8) 2011; 59
Jason (ref_14) 2017; 41
References_xml – ident: ref_30
  doi: 10.1109/AERO.2017.7943708
– volume: 9
  start-page: 62
  year: 2015
  ident: ref_19
  article-title: Smoothing joint integrated probabilistic data association
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2013.0347
– volume: 47
  start-page: 1457
  year: 2011
  ident: ref_23
  article-title: Adaptive clutter measurement density estimation for improved target tracking
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2011.5751270
– volume: 9
  start-page: 10
  year: 2015
  ident: ref_7
  article-title: Multi-target tracking with state dependent detection
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2014.0068
– ident: ref_13
  doi: 10.1002/0470045345
– ident: ref_24
– ident: ref_4
  doi: 10.3390/s16122180
– ident: ref_21
  doi: 10.3390/s16060805
– volume: 50
  start-page: 1798
  year: 2014
  ident: ref_10
  article-title: Linear multitarget finite resolution tracking in clutter
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2014.120257
– volume: 53
  start-page: 201
  year: 2017
  ident: ref_16
  article-title: A Tractable Forward– Backward CPHD Smoother
  publication-title: IEEE Trans. Aeorsp. Electron. Sys.
  doi: 10.1109/TAES.2017.2649978
– ident: ref_2
  doi: 10.1017/CBO9780511975837
– volume: 1305
  start-page: 434
  year: 1990
  ident: ref_28
  article-title: Mixture Reduction Algorithms for Target Tracking in Clutter
  publication-title: Signal and Data Processing of Small Targets
– volume: 59
  start-page: 1063
  year: 2011
  ident: ref_8
  article-title: Target tracking with target state dependent detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2098401
– volume: 8
  start-page: 227161
  year: 2020
  ident: ref_11
  article-title: Multiple Sensor Linear Multi-Target Integrated Probabilistic Data Association for Ultra-Wide Band Radar
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3045933
– ident: ref_27
– volume: 177
  start-page: 114919
  year: 2021
  ident: ref_22
  article-title: Dynamic based trajectory estimation and tracking in an uncertain environment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114919
– volume: 11
  start-page: 1815
  year: 2017
  ident: ref_26
  article-title: Multi-scan smoothing for tracking manoeuvering target trajectory in heavy cluttered environment
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2017.0019
– volume: 41
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: Joint Probabilistic Data Association and Smoothing Applied to Multiple Space Object Tracking
  publication-title: J. Guid. Control Dyn.
– volume: 15
  start-page: 149
  year: 2014
  ident: ref_1
  article-title: Extended object tracking with random hypersurface models
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.120107
– volume: 141
  start-page: 112969
  year: 2020
  ident: ref_29
  article-title: Modified Smoothing Data Association for Target Tracking in Clutter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112969
– volume: 51
  start-page: 962
  year: 2015
  ident: ref_6
  article-title: JIPDA: Automatic target tracking avoiding track coalescence
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2014.130327
– volume: 7
  start-page: 448
  year: 2013
  ident: ref_9
  article-title: A Multiple Hypothesis Tracker for Multitarget Tracking with Multiple Simultaneous Measurements
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2013.2258322
– volume: 36
  start-page: 2
  year: 2000
  ident: ref_15
  article-title: Fixed-interval retrodiction approach to Bayesian IMM-MHT for maneuvering multiple targets
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.826308
– ident: ref_5
  doi: 10.3390/s18010269
– volume: 14
  start-page: 564
  year: 2020
  ident: ref_18
  article-title: Extended Smoothing Joint Data Association for Multi-target Tracking in Cluttered Environments
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2019.0075
– volume: 10
  start-page: 1270
  year: 2016
  ident: ref_20
  article-title: Multi-target multi-scan smoothing in clutter
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2015.0509
– ident: ref_17
  doi: 10.3390/s19030741
– ident: ref_12
  doi: 10.1109/ICCAIS.2017.8217597
– volume: 31
  start-page: 559
  year: 1995
  ident: ref_3
  article-title: Integrated probabilistic data association-finite resolution
  publication-title: Automatica
  doi: 10.1016/0005-1098(95)98484-N
– volume: 21
  start-page: 1
  year: 2016
  ident: ref_25
  article-title: Smoothing Data Association for Target Trajectory Estimation in Cluttered Environments
  publication-title: Eurasip J. Adv. Signal Process.
SSID ssj0023338
Score 2.3849819
Snippet This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT)...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4759
SubjectTerms Algorithms
Associations
component existence probabilities
false-track discrimination
Hypotheses
multi-maneuvering-targets
Probability
Random variables
Sensors
smoothing
Surveillance
target existence probabilities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-wwFD6IuPAuxCe3vojiwk0xTWLSLFUUF44oKrgrzaM6MLbizPj7PUk7wxQu3I2rQnoI6TlN833pyXcATpxFjuEkTakTKhWiUqmRZcjcKZ3l0rs8jweF79T9ff76qh8WSn2FnLBWHrh13BlnVjvLeBWEzLQ3xlQst-fn2AmvEIuEry9VekamOqrFkXm1OkIcSf3ZmAXhMhUESRdWnyjS30OW_bzIhYXmZh3WOoRILtqRbcCSrzfhz4Ju4BY8Dho3rBA8kqePBl2NjeRi9NYg0X__IAhDCS5BNmyCk0GXMEgGZe2n37ED8hzTv8dkWJOrUaxUvQ0vN9fPV7dpVxshDc6dpM5x6jPlrRSZURZRU6adMsgJda49pYaLshJ40U7gIu8qq3LqeB4UGZWxmu_Act3U_i8QYxkzJeJWaZXwFTWlo4ijMpGVmWfSJHA681lhO-HwUL9iVCCBCO4t5u5N4Hhu-tmqZfzL6DI4fm4QBK5jA4a96MJe_C_sCezPwlZ0s25cMJmHTRkk2gkczW_jfAk_QdDLzTTaKOSICJQSUL1w9wbUv1MP36PytmZSI0Da_Y0n2INVFo5SUJkyvg_Lk6-pP4AV-z0Zjr8O4-v8A8FI_T4
  priority: 102
  providerName: Directory of Open Access Journals
Title Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter
URI https://www.proquest.com/docview/2686194274
https://www.proquest.com/docview/2687716750
https://pubmed.ncbi.nlm.nih.gov/PMC9269129
https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566
Volume 22
WOSCitedRecordID wos000824145700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CjQMc-I0IjMogDlyiJXYWxye0TZ2GRKoCQyqnKP6RrVKXjKbdkb-d99y0a6Rpl10cybEcK-85_j775XsAn61BjmHTKIxsIsMkqWSo05Iid0prROpslvkfhb_L0SibTNS423Bru7DK9TfRf6htY2iPfJ-nGRFuJFFfr_6GlDWKTle7FBoPYZfSZpOfy8kN4RLIv1ZqQgKp_X7LSb5Mkizp1hrkpfp7-LIfHbm13Jw8u-9An8PTDmiyw5VnvIAHrn4JT7bkB1_Bj7yx0woxKPt12aDFsJIdzs6xs8XFJUM0y3AlM7SXzvIu7pDlZe2W174DduajyFs2rdnxzCe8fg2_T4Znx6dhl2IhJBstQmtF5GLpTJrEWhoEX7GyUiO1VJlyUaRFUlYJXpRNECvYysgssiIjYUepjRJvYKduavcWmDac6xLhb2pk4qpIlzZCOBYncRk7nuoAvqxfemE6_XFKgzErkIeQfYqNfQL4tGl6tRLduK3REVlu04B0sn1FMz8vumlXCG6UNVxUJIOnnNa64pk5OEAXFBUi2QD21kYsusnbFjcWDODj5jZOOzpLwbfcLH0biVQT8VYAsucvvQH179TTCy_grXiqEGe9u_vh7-Exp38tojTkYg92FvOl-wCPzPVi2s4H3tN9mQ1g92g4Gv8c-A0FLPN_Q6wbf8vHf_4D2MwReQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VBQk48I1wKbAgkLhYXe-6XvuAUClUrZpEIIKUm_F-uI2U2m2cFPGn-I3MbOw0kRC3HjhZslf22n6efc87-wbgjTWoMWzCQ25jFcZxqUKdFJS5U1gjE2fT1C8U7qnBIB2Nsi8b8LtbC0NplV1M9IHa1ob-ke-IJCXBjSLqw_lFSFWjaHa1K6GxgMWx-_UTJVvz_ugTvt-3Qhx8Hu4fhm1VgZC6NQutldxFypkkjrQyyDeizCqNaipLM8e5lnFRxrjJbIzDoy2NSrmVKXkZKm3IfAlD_g2M44rEnhpdCTyJem_hXiRlxncaQXZpimxQV8Y8Xxpgjc-uZ2OuDG8H9_63B3Mf7rZEmu0tkP8ANlz1EO6s2Cs-gq_92o5L5Njs21mNiMSdbG9ygp2fnZ4xZOsMR2pDcwWs3-ZVsn5RufmlPwEb-iz5ho0rtj_xBb0fw_druacnsFnVlXsKTBshdIH0PjEqdiXXheVIN6M4KiInEh3Au-4l56b1V6cyH5McdRbhIV_iIYDXy6bnC1ORvzX6SEhZNiAfcL-jnp7kbVjJpTCZNUKWZPOXOa11KVKzu4ufmCyRqQew3YEmb4NTk18hJoBXy8MYVmiuCJ9yPfdtFEpp5JMBqDV8rnVo_Ug1PvUG5ZlIMuSRW_---Eu4dTjs9_Le0eD4GdwWtK6EJ6GQ27A5m87dc7hpLmfjZvrCf2UMflw3ev8AJW9nMQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoTggW9EYIBBIPES1bG9OH5AaGxUVFurIoY0nkL8ka1Sl4x-DPHX-HVcp0loJMTbHniKlFiNmxxfnxNfnwvwyhrUGDamIbVChkLkMtRx5jN3Mmt47GySVBuFj-R4nJycqMkW_Gr2wvi0yiYmVoHalsZ_I--zOPGCG0VUP6_TIiYHg3cX30NfQcqvtDblNNYQOXQ_f6B8W7wdHuC7fs3Y4MPx_sewrjAQ-i4uQ2s5dZF0JhaRlga5R6Ss1KisVKIcpZqLLBd4UFbgVGlzIxNqeeJ9DaU23ogJw_82UnLBerA9GY4mX1u5x1H9rb2MOFe0v2DePE16U9SNGbAqFNBht93czI3JbnD7f35Md-BWTbHJ3npM3IUtV9yDmxvGi_fh06i00xzZN_l8XiJW8STZm51i55dn5wR5PME53PhVBDKqMy7JKCvc6rL6AXJc5c8vyLQg-7Oq1PcD-HIl_-kh9IqycI-AaMOYzpD4x0YKl1OdWYpENBJRFjkW6wDeNC88NbXzui8AMktRgXlspC02AnjZNr1Y2438rdF7j5q2gXcIr06U89O0DjgpZ0ZZw3juDQCV01rnLDG7uzj4eI4cPoCdBkBpHbYW6R_0BPCivYwBx68i4VMuV1UbiSIbmWYAsoPVToe6V4rpWWVdrliskGE-_vfNn8N1BG16NBwfPoEbzG84oXHI-A70lvOVewrXzOVyupg_q4ccgW9XDd_fi11xgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Smoothing+Algorithm+for+Tracking+Multiple+Maneuvering+Targets+in+Clutter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Memon%2C+Sufyan+Ali&rft.au=Park%2C+Min-Seuk&rft.au=Memon%2C+Imran&rft.au=Kim%2C+Wan-Gu&rft.date=2022-06-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=4759&rft_id=info:doi/10.3390%2Fs22134759&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22134759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon