Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter
This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. Th...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 13; p. 4759 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
23.06.2022
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. |
|---|---|
| AbstractList | This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms.This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT) tracking environment. We contribute to tackling unknown dynamics of the multi-maneuvering-targets (MMT) using the standard kinematic model. This work is referred to as smoothing MMT using the JITS (MMT-sJITS). The existing FIsJITS algorithm is computationally more complex to solve for the MMT situation because it enumerates a substantial number of measurement-to-track assignments and calculates their posteriori probabilities globally. The MMT-sJITS updates a current target track by assuming the joint (common) measurements detected by neighbor tracks are modified clutters (or pretended spurious measurements). Thus, target measurement concealed by a joint measurement is optimally estimated based on measurement density of the modified clutter. This reduces computational complexity and provides improved tracking performance. The MMT-sJITS generates forward tracks and backward tracks using the measurements collected by a sensor such as a radar. The forward and backward multi-tracks state predictions are fused to obtain priori smoothing multi-track state prediction, as well as their component existence probabilities. This calculates the smoothing estimate required to compute the forward JITS state estimate, which reinforces the MMT tracking efficiently. Monte Carlo simulation is used to verify best false-track discrimination (FTD) analysis in comparison with existing multi-targets tracking algorithms. |
| Author | Memon, Sufyan Ali Park, Min-Seuk Memon, Imran Shi, Yifang Khan, Sajid Kim, Wan-Gu |
| AuthorAffiliation | 1 Department of Defense Systems Engineering, Sejong University, Seoul 05006, Korea; ms.park@sejong.ac.kr (M.-S.P.); kimwangu@sejong.ac.kr (W.-G.K.) 3 Department of Computer Science, IBA Sukkur University, Sukkur 65111, Pakistan; sajidkhan@iba-suk.edu.pk 4 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; syf2008@hdu.edu.cn 2 Department of Computer Science, Bahria University, Karachi Campus, Karachi 74200, Pakistan; imranmemon.bukc@bahria.edu.pk |
| AuthorAffiliation_xml | – name: 4 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; syf2008@hdu.edu.cn – name: 1 Department of Defense Systems Engineering, Sejong University, Seoul 05006, Korea; ms.park@sejong.ac.kr (M.-S.P.); kimwangu@sejong.ac.kr (W.-G.K.) – name: 2 Department of Computer Science, Bahria University, Karachi Campus, Karachi 74200, Pakistan; imranmemon.bukc@bahria.edu.pk – name: 3 Department of Computer Science, IBA Sukkur University, Sukkur 65111, Pakistan; sajidkhan@iba-suk.edu.pk |
| Author_xml | – sequence: 1 givenname: Sufyan Ali orcidid: 0000-0001-5592-9990 surname: Memon fullname: Memon, Sufyan Ali – sequence: 2 givenname: Min-Seuk surname: Park fullname: Park, Min-Seuk – sequence: 3 givenname: Imran orcidid: 0000-0002-9325-4805 surname: Memon fullname: Memon, Imran – sequence: 4 givenname: Wan-Gu surname: Kim fullname: Kim, Wan-Gu – sequence: 5 givenname: Sajid orcidid: 0000-0001-8561-1617 surname: Khan fullname: Khan, Sajid – sequence: 6 givenname: Yifang orcidid: 0000-0003-1607-3629 surname: Shi fullname: Shi, Yifang |
| BookMark | eNplkcluFDEQhi0URBY48AYtcYHDEG_t5YIUjUiIlBFCDGfL7aXHg7s92O5IvD3dTEAknKr011d_larOwcmYRgfAawTfEyLhZcEYEcpb-QycIYrpSmAMT_7JT8F5KXsIMSFEvACnpBVQ4JadgS-bZIMPzjZfh5TqLox9cxX7lEPdDY1Pudlmbb4v8maKNRyiazZ6dNO9y4u41bl3tTRhbNZxqtXll-C517G4Vw_xAny7_rhdf1rdfb65XV_drQylrK6sJdAh7gyjqOMGIYyk5Z3kQgrpIOwI1Z7OQVoqMLTecAEtEdpgyDsjyQW4PfrapPfqkMOg80-VdFC_hZR7pXMNJjpFsJHWYOIlJVS6rus8FqZtrRDEt4zNXh-OXoepG5w1bqxZx0emjytj2Kk-3SuJmUR4Webtg0FOPyZXqhpCMS7G-VRpKgozwTlivIUz-uYJuk9THudTLRRDkmJOZ-rySJmcSsnOKxOqriEt80NUCKrl9erv6-eOd086_qz_P_sL3TWuTw |
| CitedBy_id | crossref_primary_10_26599_TST_2024_9010083 crossref_primary_10_1109_ACCESS_2024_3394536 crossref_primary_10_1186_s13634_024_01144_0 |
| Cites_doi | 10.1109/AERO.2017.7943708 10.1049/iet-rsn.2013.0347 10.1109/TAES.2011.5751270 10.1049/iet-rsn.2014.0068 10.1002/0470045345 10.3390/s16122180 10.3390/s16060805 10.1109/TAES.2014.120257 10.1109/TAES.2017.2649978 10.1017/CBO9780511975837 10.1109/TSP.2010.2098401 10.1109/ACCESS.2020.3045933 10.1016/j.eswa.2021.114919 10.1049/iet-rsn.2017.0019 10.1109/TAES.2013.120107 10.1016/j.eswa.2019.112969 10.1109/TAES.2014.130327 10.1109/JSTSP.2013.2258322 10.1109/7.826308 10.3390/s18010269 10.1049/iet-rsn.2019.0075 10.1049/iet-rsn.2015.0509 10.3390/s19030741 10.1109/ICCAIS.2017.8217597 10.1016/0005-1098(95)98484-N |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22134759 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_32c9dc23f94349ebbbf28c55d883f566 PMC9269129 10_3390_s22134759 |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: Grant No. 2022R1G1A101094611 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-dd30e17ec641b7c11219d7b978989e00b34af40b39d4820dfc780d38ac207bc93 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824145700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:44:31 EDT 2025 Tue Nov 04 02:00:46 EST 2025 Fri Sep 05 11:50:54 EDT 2025 Tue Oct 07 07:42:56 EDT 2025 Sat Nov 29 07:12:06 EST 2025 Tue Nov 18 21:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-dd30e17ec641b7c11219d7b978989e00b34af40b39d4820dfc780d38ac207bc93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9325-4805 0000-0001-5592-9990 0000-0003-1607-3629 0000-0001-8561-1617 |
| OpenAccessLink | https://www.proquest.com/docview/2686194274?pq-origsite=%requestingapplication% |
| PMID | 35808256 |
| PQID | 2686194274 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32c9dc23f94349ebbbf28c55d883f566 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269129 proquest_miscellaneous_2687716750 proquest_journals_2686194274 crossref_citationtrail_10_3390_s22134759 crossref_primary_10_3390_s22134759 |
| PublicationCentury | 2000 |
| PublicationDate | 20220623 |
| PublicationDateYYYYMMDD | 2022-06-23 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220623 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Sathyan (ref_9) 2013; 7 Song (ref_7) 2015; 9 ref_13 ref_12 Memon (ref_26) 2017; 11 ref_30 Song (ref_23) 2011; 47 Evans (ref_6) 2015; 51 ref_17 Song (ref_10) 2014; 50 Shin (ref_11) 2020; 8 Memon (ref_18) 2020; 14 Memon (ref_25) 2016; 21 ref_24 Baum (ref_1) 2014; 15 Evans (ref_3) 1995; 31 ref_21 Koch (ref_15) 2000; 36 Kim (ref_22) 2021; 177 ref_2 Memon (ref_29) 2020; 141 ref_27 Salmond (ref_28) 1990; 1305 ref_5 Kim (ref_20) 2016; 10 ref_4 Nagappa (ref_16) 2017; 53 Kim (ref_19) 2015; 9 Song (ref_8) 2011; 59 Jason (ref_14) 2017; 41 |
| References_xml | – ident: ref_30 doi: 10.1109/AERO.2017.7943708 – volume: 9 start-page: 62 year: 2015 ident: ref_19 article-title: Smoothing joint integrated probabilistic data association publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2013.0347 – volume: 47 start-page: 1457 year: 2011 ident: ref_23 article-title: Adaptive clutter measurement density estimation for improved target tracking publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2011.5751270 – volume: 9 start-page: 10 year: 2015 ident: ref_7 article-title: Multi-target tracking with state dependent detection publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2014.0068 – ident: ref_13 doi: 10.1002/0470045345 – ident: ref_24 – ident: ref_4 doi: 10.3390/s16122180 – ident: ref_21 doi: 10.3390/s16060805 – volume: 50 start-page: 1798 year: 2014 ident: ref_10 article-title: Linear multitarget finite resolution tracking in clutter publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.120257 – volume: 53 start-page: 201 year: 2017 ident: ref_16 article-title: A Tractable Forward– Backward CPHD Smoother publication-title: IEEE Trans. Aeorsp. Electron. Sys. doi: 10.1109/TAES.2017.2649978 – ident: ref_2 doi: 10.1017/CBO9780511975837 – volume: 1305 start-page: 434 year: 1990 ident: ref_28 article-title: Mixture Reduction Algorithms for Target Tracking in Clutter publication-title: Signal and Data Processing of Small Targets – volume: 59 start-page: 1063 year: 2011 ident: ref_8 article-title: Target tracking with target state dependent detection publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2098401 – volume: 8 start-page: 227161 year: 2020 ident: ref_11 article-title: Multiple Sensor Linear Multi-Target Integrated Probabilistic Data Association for Ultra-Wide Band Radar publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3045933 – ident: ref_27 – volume: 177 start-page: 114919 year: 2021 ident: ref_22 article-title: Dynamic based trajectory estimation and tracking in an uncertain environment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114919 – volume: 11 start-page: 1815 year: 2017 ident: ref_26 article-title: Multi-scan smoothing for tracking manoeuvering target trajectory in heavy cluttered environment publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2017.0019 – volume: 41 start-page: 1 year: 2017 ident: ref_14 article-title: Joint Probabilistic Data Association and Smoothing Applied to Multiple Space Object Tracking publication-title: J. Guid. Control Dyn. – volume: 15 start-page: 149 year: 2014 ident: ref_1 article-title: Extended object tracking with random hypersurface models publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.120107 – volume: 141 start-page: 112969 year: 2020 ident: ref_29 article-title: Modified Smoothing Data Association for Target Tracking in Clutter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112969 – volume: 51 start-page: 962 year: 2015 ident: ref_6 article-title: JIPDA: Automatic target tracking avoiding track coalescence publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2014.130327 – volume: 7 start-page: 448 year: 2013 ident: ref_9 article-title: A Multiple Hypothesis Tracker for Multitarget Tracking with Multiple Simultaneous Measurements publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2258322 – volume: 36 start-page: 2 year: 2000 ident: ref_15 article-title: Fixed-interval retrodiction approach to Bayesian IMM-MHT for maneuvering multiple targets publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/7.826308 – ident: ref_5 doi: 10.3390/s18010269 – volume: 14 start-page: 564 year: 2020 ident: ref_18 article-title: Extended Smoothing Joint Data Association for Multi-target Tracking in Cluttered Environments publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2019.0075 – volume: 10 start-page: 1270 year: 2016 ident: ref_20 article-title: Multi-target multi-scan smoothing in clutter publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2015.0509 – ident: ref_17 doi: 10.3390/s19030741 – ident: ref_12 doi: 10.1109/ICCAIS.2017.8217597 – volume: 31 start-page: 559 year: 1995 ident: ref_3 article-title: Integrated probabilistic data association-finite resolution publication-title: Automatica doi: 10.1016/0005-1098(95)98484-N – volume: 21 start-page: 1 year: 2016 ident: ref_25 article-title: Smoothing Data Association for Target Trajectory Estimation in Cluttered Environments publication-title: Eurasip J. Adv. Signal Process. |
| SSID | ssj0023338 |
| Score | 2.3849819 |
| Snippet | This research work extends the fixed interval smoothing based on the joint integrated track splitting (FIsJITS) filter in the multi-maneuvering-targets (MMT)... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4759 |
| SubjectTerms | Algorithms Associations component existence probabilities false-track discrimination Hypotheses multi-maneuvering-targets Probability Random variables Sensors smoothing Surveillance target existence probabilities |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1C6CE9hLRpifNR1JBDLia2ZFvSMQkNvWxoyQb2Zixp3F3YtUN2N78_I9m7rKHQS08GaTDyjOV5T5beAFzxtLDcFibOU8xjj9HjSiuMDcpcZ4RvTVWHYhPy8VFNJvrXTqkvvyeskwfuHHcjuNXOclF7ITONxpiaK5vnTilRExbxX99E6g2Z6qmWIObV6QgJIvU3S-6Fy6QXJN3JPkGkf4Ash_sidxLNwxEc9giR3XYj-wR72HyGjzu6gcfwe9S6WU3gkT0tWnI1NbLb-Z-WiP50wQiGMkpB1i-Cs1G_YZCNqgbXb-EGbBy2fy_ZrGH381Cp-gs8P_wY3_-M-9oIsSUCt4qdEwmmEm2RpUZaQk2pdtIQJ9RKY5IYkVV1RhftMkryrrZSJU4or8gojdXiK-w3bYMnwCQiKkNMJkUiIzmaAkXtD-hW0pi0MBFcb3xW2l443NevmJdEILx7y617I7jcmr50ahl_M7rzjt8aeIHr0EBhL_uwl_8KewTnm7CV_axblrxQflGGiHYE37fdNF_8TxDycrsONpI4IgGlCOQg3IMBDXua2TQob2teaAJIp__jCc7ggPujFEkRc3EO-6vXNV7AB_u2mi1fv4XX-R2fzfzh priority: 102 providerName: Directory of Open Access Journals |
| Title | Modified Smoothing Algorithm for Tracking Multiple Maneuvering Targets in Clutter |
| URI | https://www.proquest.com/docview/2686194274 https://www.proquest.com/docview/2687716750 https://pubmed.ncbi.nlm.nih.gov/PMC9269129 https://doaj.org/article/32c9dc23f94349ebbbf28c55d883f566 |
| Volume | 22 |
| WOSCitedRecordID | wos000824145700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9MwGLZg4wCH8TkR2CqDOHCJlthJbJ_QNnUah1QFhlROUfyRrVKXjKbdcb-d93XTrpHQLrs4km05ll9_PI8_npeQLyzODDOZDtPYpSFi9LBU0oXaiVQlgG91WXlnE2I0kpOJGncbbm13rXI9J_qJ2jYG98iPWCaRcAOJ-nbzN0SvUXi62rnQeEp20W029nMxuSdcHPjXSk2IA7U_ahnKlwmUJd1ag7xUfw9f9m9Hbi03Zy8fW9FXZK8DmvR41TNekyeufkNebMkPviU_8sZOK8Cg9Nd1AxaDSHo8u4TCFlfXFNAshZXM4F46zbt7hzQva7e89QXQC3-LvKXTmp7OvMPrd-T32fDi9DzsXCyEBnjgIrSWRy4WzmRJrIUB8BUrKzRQSyWViyLNk7JK4KNsAljBVkbIyHKJwo5CG8X3yU7d1O49ocI5JzUQotgBp0mdzhyv8J1vKbSOMx2Qr-tGL0ynP45uMGYF8BC0T7GxT0A-b7LerEQ3_pfpBC23yYA62T6imV8W3bArODPKGsYrlMFTTmtdMWnS1ErJK0CyATlYG7HoBm9b3FswIJ82yTDs8CwFWrlZ-jwCqCbgrYCIXn_pVaifUk-vvIC3YpkCnPXh4Z9_JM8ZvrWIspDxA7KzmC_dIXlmbhfTdj7wPd2HckB2T4aj8c-B31CAML8bQtz4ez7-8w-heREc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqggQseCNSChgEEpuoiZ3E9gKhUqhatTMCMUizC_Ej7UjTpJ3MFPFTfCP3epLpRELsumAVybHysE-uz4ntcwl5w-LMMJPpMI1dGiJHDwslXaidSFUC_FYXpU82IYZDOR6rLxvkd7cXBpdVdjHRB2pbG_xHvsMyiYIbRNSH84sQs0bh7GqXQmMJiyP36ydItub94Sfo37eM7X8e7R2EbVaB0ID0mYfW8sjFwpksibUwwDdiZYUGNaWkclGkeVKUCRyUTWB4tKURMrJcopeh0AbNlyDk34A4LlDsifGVwOOg95buRZyraKdhaJcm0AZ1bczzqQF6fLa_GnNteNu_9781zH1ytyXSdHeJ_Adkw1UPyZ01e8VH5OugtpMSODb9dlYDIqGQ7k5P4OHnp2cU2DqFkdrgXAEdtOsq6aCo3OLSX4CO_Cr5hk4qujf1Cb0fk-_X8k5PyGZVV-4pocI5JzUIvtiBZkudzhwvcR9zIbSOMx2Qd10n56b1V8c0H9McdBbiIV_hISCvV1XPl6Yif6v0EZGyqoA-4L6gnp3kbVjJOTPKGsZLtPlTTmtdMmnS1ErJS2DqAdnuQJO3wanJrxATkFer0xBWcK4IWrle-DoCpDTwyYCIHj57D9Q_U01OvUG5YpkCHrn175u_JLcORoPj_PhwePSM3Ga4ryTKQsa3yeZ8tnDPyU1zOZ80sxf-K6Pkx3Wj9w-IlGbU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoTgYXyLwACDQOIlamInsf2A0NioqEarIoY0nrL4I1ulLtmadoi_xq_jOk1CKyHe9sBTpMTKh3NyfU58fS7AaxommupE-XFoY99xdD-TwvrK8lhGyG9VltfFJvh4LI6P5WQLfrVrYVxaZRsT60BtSu3-kfdpIpzgRhHVz5u0iMnB4P3Fpe8qSLmZ1racxgoih_bnD5Rv1bvhAb7rN5QOPh7tf_KbCgO-Rhm08I1hgQ251UkUKq6Re4TScIXKSgppg0CxKMsj3EgT4VBpcs1FYJhwvoZcaWfEhOF_Gyl5RHuwPRmOJt87ucdQ_a28jBiTQb-izjyNO1PUtRGwLhSwwW43czPXBrvBnf-5m-7CTkOxyd7qm7gHW7a4D7fXjBcfwJdRaaY5sm_y9bxErOJOsjc7xZtfnJ0T5PEEx3DtZhHIqMm4JKOssMur-gTkqM6fr8i0IPuzutT3Q_h2Lc_0CHpFWdjHQLi1ViiUgqFFNRdblViWuxXOGVcqTJQHb9sXnurGed0VAJmlqMAcNtIOGx686pperOxG_tbog0NN18A5hNc7yvlp2gSclFEtjaYsdwaA0iqlcip0HBshWI4c3oPdFkBpE7aq9A96PHjZHcaA42aRsJfLZd2Go8hGpukB38Dqxg1tHimmZ7V1uaSJRIb55N8XfwE3EbTp5-H48Cncom7BSZD4lO1CbzFf2mdwQ18tptX8efPJETi5bvj-BuWdcSM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Smoothing+Algorithm+for+Tracking+Multiple+Maneuvering+Targets+in+Clutter&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Memon%2C+Sufyan+Ali&rft.au=Park%2C+Min-Seuk&rft.au=Memon%2C+Imran&rft.au=Kim%2C+Wan-Gu&rft.date=2022-06-23&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft_id=info:doi/10.3390%2Fs22134759&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |