The Linear Programming Approach to Approximate Dynamic Programming

The curse of dimensionality gives rise to prohibitive computational requirements that render infeasible the exact solution of large-scale stochastic control problems. We study an efficient method based on linear programming for approximating solutions to such problems. The approach "fits"...

Full description

Saved in:
Bibliographic Details
Published in:Operations research Vol. 51; no. 6; pp. 850 - 865
Main Authors: de Farias, D. P, Van Roy, B
Format: Journal Article
Language:English
Published: Linthicum INFORMS 01.11.2003
Institute for Operations Research and the Management Sciences
Subjects:
ISSN:0030-364X, 1526-5463
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The curse of dimensionality gives rise to prohibitive computational requirements that render infeasible the exact solution of large-scale stochastic control problems. We study an efficient method based on linear programming for approximating solutions to such problems. The approach "fits" a linear combination of pre-selected basis functions to the dynamic programming cost-to-go function. We develop error bounds that offer performance guarantees and also guide the selection of both basis functions and "state-relevance weights" that influence quality of the approximation. Experimental results in the domain of queueing network control provide empirical support for the methodology.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.51.6.850.24925