Design of a Machine Learning-Based Intelligent Middleware Platform for a Heterogeneous Private Edge Cloud System

Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and acces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 21; H. 22; S. 7701
1. Verfasser: Shah, Sayed-Chhattan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 19.11.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.
AbstractList Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.
Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.
Author Shah, Sayed-Chhattan
AuthorAffiliation Mobile Grid and Cloud Computing Lab, Department of Information Communication Engineering, Hankuk University of Foreign Studies, Seoul 02450, Korea; chhattanshah@ieee.org
AuthorAffiliation_xml – name: Mobile Grid and Cloud Computing Lab, Department of Information Communication Engineering, Hankuk University of Foreign Studies, Seoul 02450, Korea; chhattanshah@ieee.org
Author_xml – sequence: 1
  givenname: Sayed-Chhattan
  orcidid: 0000-0003-0252-1064
  surname: Shah
  fullname: Shah, Sayed-Chhattan
BookMark eNptkktvEzEURkeoiD5gwT-wxAYWoX7NwxskGvqIlIpKwNq6Y19PHU3GwXaK-u9xmqqiFRvbss89vvp0j6uDKUxYVe8Z_SyEoqeJM87blrJX1RGTXM46zunBP-fD6jilFaVcCNG9qQ6F7IRoFT-qNt8w-WEiwREg12Bu_YRkiRAnPw2zM0hoyWLKOI5-wCmTa2_tiH8gIrkZIbsQ16QspfgKM8ZQIAzbRG6iv4OM5NwOSOZj2Fry4z5lXL-tXjsYE7573E-qXxfnP-dXs-X3y8X863JmpGzyzNaKgWx7o1zbCypqqK1ynWtMB0o5qaBGaRRKlKyWVnaO10b2lFrHmW1AnFSLvdcGWOlN9GuI9zqA1w8XIQ4aYvZmRG1Q9gBQ87p1ktq-B9bw2pafemZBieL6sndttv0arSlBRBifSZ-_TP5WD-FOdw3r6mYn-PgoiOH3FlPWa59MCRUe0tK8oZJSpags6IcX6Cps41Si2lGcKdlJVqhPe8rEkFJE99QMo3o3E_ppJgp7-oI1PkP2YderH_9T8Rc7KLn2
CitedBy_id crossref_primary_10_1016_j_future_2024_06_024
crossref_primary_10_1177_19714009251345104
Cites_doi 10.1016/j.aej.2020.05.037
10.1016/j.jpdc.2017.05.001
10.1145/3152360.3152361
10.1109/ACCESS.2018.2876600
10.1109/INFOCOM.2018.8485875
10.1109/SAHCNW.2009.5172913
10.1109/ICFC49376.2020.00017
10.1109/MCOM.2018.1700387
10.1145/1966445.1966473
10.1109/CLUSTER.2017.52
10.1007/s11227-015-1425-9
10.1145/3366614.3368102
10.1109/INFCOM.2012.6195845
10.1109/MCE.2016.2590118
10.1109/MCOM.2019.1800434
10.1109/ICIN.2019.8685872
10.1016/j.future.2018.04.057
10.1145/3313150.3313219
10.1016/j.comnet.2020.107693
10.1016/j.dcan.2017.04.005
10.1109/CLOUD.2015.12
10.1109/MNET.2018.1800132
10.1109/MCOM.2017.1600435CM
10.1109/ISORC.2019.00033
10.1016/j.pmcj.2015.07.005
10.1016/j.comnet.2016.06.011
10.1109/TrustCom.2012.144
10.1007/s10723-019-09493-z
10.1109/MWC.2016.1600317WC
10.3390/app8112220
10.1109/CLEI.2017.8226474
10.1109/CloudCom.2013.121
10.1109/ACCESS.2017.2669080
10.1145/3309705
10.1109/COMST.2018.2841349
10.1016/j.comcom.2016.03.015
10.1016/j.procs.2015.05.059
10.1109/MCOM.2017.1700105
10.1145/3229625.3229626
10.1109/WCNC.2016.7564647
10.1109/TCOMM.2017.2787700
10.1016/j.jnca.2013.12.002
10.1109/ROBIO.2018.8664852
10.1007/s11276-016-1322-z
10.1016/j.compeleceng.2021.107227
10.1109/CLEI.2017.8226401
10.1145/3019612.3019820
10.1109/TCSS.2016.2515844
10.1109/TC.2017.2709742
10.1007/s10723-016-9387-6
10.3390/s18061798
10.1109/BigData.2018.8622393
10.1109/ICACT.2008.4494018
10.1002/cpe.3297
10.1109/IROS.2010.5650303
10.1007/s10107-015-0881-6
10.1002/itl2.124
10.1109/W-FiCloud.2016.36
10.1016/j.comnet.2016.05.026
10.1016/j.future.2017.10.034
10.1109/W-FiCloud.2018.00011
10.1109/MC.2018.1151016
10.1109/MMSP.2017.8122255
10.1007/s11227-016-1872-y
ContentType Journal Article
Copyright 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the author. 2021
Copyright_xml – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the author. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s21227701
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ce4baaa5257f40dbba1625dc8ab1da93
PMC8618563
10_3390_s21227701
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-d591a47bc9f7b3035a5d9f8f6c8a99f49a5e4c9e4e4154d48f25c4b00df21d6a3
IEDL.DBID 7X7
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778251600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:12 EDT 2025
Tue Nov 04 01:40:34 EST 2025
Fri Sep 05 07:32:16 EDT 2025
Tue Oct 07 07:33:41 EDT 2025
Tue Nov 18 22:24:16 EST 2025
Sat Nov 29 07:13:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-d591a47bc9f7b3035a5d9f8f6c8a99f49a5e4c9e4e4154d48f25c4b00df21d6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0252-1064
OpenAccessLink https://www.proquest.com/docview/2602194841?pq-origsite=%requestingapplication%
PMID 34833792
PQID 2602194841
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ce4baaa5257f40dbba1625dc8ab1da93
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618563
proquest_miscellaneous_2604009904
proquest_journals_2602194841
crossref_primary_10_3390_s21227701
crossref_citationtrail_10_3390_s21227701
PublicationCentury 2000
PublicationDate 20211119
PublicationDateYYYYMMDD 2021-11-19
PublicationDate_xml – month: 11
  year: 2021
  text: 20211119
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Tomanek (ref_7) 2016; 107
Du (ref_36) 2018; 66
ref_13
ref_57
Shah (ref_2) 2018; 6
ref_12
ref_11
ref_10
ref_53
Guo (ref_63) 2018; 24
ref_51
Li (ref_75) 2015; 71
ref_19
ref_18
ref_16
ref_15
ref_59
Farahzadi (ref_39) 2018; 4
Shah (ref_1) 2019; 2
ref_61
Verbelen (ref_45) 2014; 41
Schulz (ref_6) 2017; 55
ref_25
ref_69
Shah (ref_31) 2015; 27
ref_68
ref_23
ref_67
ref_66
ref_65
Parvez (ref_5) 2018; 20
ref_20
ref_62
Poularakis (ref_52) 2018; 56
ref_29
Karunaratne (ref_58) 2019; 57
ref_27
Perera (ref_21) 2015; 2
ref_26
De (ref_38) 2017; 73
Ilavarasan (ref_73) 2010; 2
Sabella (ref_3) 2016; 5
Persson (ref_14) 2015; 52
Shi (ref_76) 2016; 27
ref_72
Aral (ref_32) 2019; 17
Yaqoob (ref_71) 2017; 5
ref_34
Orhean (ref_60) 2017; 117
ref_33
Chen (ref_44) 2021; 93
ref_30
Aazam (ref_42) 2018; 87
ref_74
Kuang (ref_64) 2018; 81
Jia (ref_37) 2015; 5
Kato (ref_56) 2016; 24
Markakis (ref_4) 2017; 55
Mao (ref_55) 2017; 66
Hirsch (ref_70) 2017; 15
Palumbo (ref_9) 2021; 184
Mineraud (ref_22) 2016; 89
ref_46
Bruneo (ref_17) 2018; 51
ref_43
Cardellini (ref_35) 2016; 157
ref_41
ref_40
Mahmoud (ref_54) 2020; 59
ref_49
Ren (ref_47) 2019; 33
ref_48
ref_8
Helgason (ref_24) 2016; 107
Merlino (ref_28) 2019; 19
References_xml – volume: 59
  start-page: 3531
  year: 2020
  ident: ref_54
  article-title: Link Quality Prediction in Wireless Community Networks using Deep Recurrent Neural Networks
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.05.037
– volume: 117
  start-page: 292
  year: 2017
  ident: ref_60
  article-title: New scheduling approach using reinforcement learning for heterogeneous distributed systems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.05.001
– ident: ref_74
– ident: ref_26
– ident: ref_29
  doi: 10.1145/3152360.3152361
– volume: 6
  start-page: 62898
  year: 2018
  ident: ref_2
  article-title: An energy-efficient resource management system for a mobile ad hoc cloud
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876600
– volume: 2
  start-page: 10
  year: 2010
  ident: ref_73
  article-title: High performance and energy-efficient task scheduling algorithm for heterogeneous mobile computing system
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– ident: ref_65
  doi: 10.1109/INFOCOM.2018.8485875
– ident: ref_10
  doi: 10.1109/SAHCNW.2009.5172913
– ident: ref_16
– ident: ref_43
  doi: 10.1109/ICFC49376.2020.00017
– volume: 56
  start-page: 132
  year: 2018
  ident: ref_52
  article-title: SDN-Enabled Tactical Ad Hoc Networks: Extending Programmable Control to the Edge
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700387
– ident: ref_66
  doi: 10.1145/1966445.1966473
– ident: ref_33
  doi: 10.1109/CLUSTER.2017.52
– volume: 71
  start-page: 3009
  year: 2015
  ident: ref_75
  article-title: Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1425-9
– ident: ref_34
  doi: 10.1145/3366614.3368102
– ident: ref_23
– ident: ref_67
  doi: 10.1109/INFCOM.2012.6195845
– volume: 5
  start-page: 84
  year: 2016
  ident: ref_3
  article-title: Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2016.2590118
– volume: 57
  start-page: 102
  year: 2019
  ident: ref_58
  article-title: An Overview of Machine Learning Approaches in Wireless Mesh Networks
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2019.1800434
– ident: ref_50
  doi: 10.1109/ICIN.2019.8685872
– volume: 87
  start-page: 278
  year: 2018
  ident: ref_42
  article-title: Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.04.057
– ident: ref_49
  doi: 10.1145/3313150.3313219
– volume: 184
  start-page: 107693
  year: 2021
  ident: ref_9
  article-title: Characterization and analysis of cloud-to-user latency: The case of Azure and AWS
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107693
– ident: ref_27
– volume: 4
  start-page: 176
  year: 2018
  ident: ref_39
  article-title: Middleware technologies for cloud of things: A survey
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2017.04.005
– ident: ref_25
  doi: 10.1109/CLOUD.2015.12
– volume: 33
  start-page: 162
  year: 2019
  ident: ref_47
  article-title: An edge-computing based architecture for mobile augmented reality
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800132
– volume: 55
  start-page: 70
  year: 2017
  ident: ref_6
  article-title: Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1600435CM
– ident: ref_30
  doi: 10.1109/ISORC.2019.00033
– volume: 27
  start-page: 90
  year: 2016
  ident: ref_76
  article-title: An energy-efficient scheduling scheme for time-constrained tasks in local mobile clouds
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2015.07.005
– ident: ref_13
– volume: 107
  start-page: 104
  year: 2016
  ident: ref_7
  article-title: Multidimensional cloud latency monitoring and evaluation
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.06.011
– ident: ref_19
  doi: 10.1109/TrustCom.2012.144
– volume: 17
  start-page: 677
  year: 2019
  ident: ref_32
  article-title: Addressing Application Latency Requirements through Edge Scheduling
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-019-09493-z
– volume: 24
  start-page: 146
  year: 2016
  ident: ref_56
  article-title: The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective
  publication-title: IEEE Wireless Commun.
  doi: 10.1109/MWC.2016.1600317WC
– ident: ref_51
  doi: 10.3390/app8112220
– ident: ref_72
  doi: 10.1109/CLEI.2017.8226474
– ident: ref_40
  doi: 10.1109/CloudCom.2013.121
– volume: 5
  start-page: 177
  year: 2017
  ident: ref_71
  article-title: Heterogeneity-aware task allocation in mobile ad hoc cloud
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2669080
– volume: 19
  start-page: 1
  year: 2019
  ident: ref_28
  article-title: Enabling Workload Engineering in Edge, Fog, and Cloud Computing through OpenStack-based Middleware
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3309705
– volume: 20
  start-page: 3098
  year: 2018
  ident: ref_5
  article-title: A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2841349
– ident: ref_53
– volume: 89
  start-page: 5
  year: 2016
  ident: ref_22
  article-title: A gap analysis of Internet-of-Things platforms
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2016.03.015
– volume: 52
  start-page: 210
  year: 2015
  ident: ref_14
  article-title: Calvin—Merging cloud and IoT
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2015.05.059
– volume: 55
  start-page: 152
  year: 2017
  ident: ref_4
  article-title: Computing, Caching, and Communication at the Edge: The Cornerstone for Building a Versatile 5G Ecosystem
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1700105
– ident: ref_48
  doi: 10.1145/3229625.3229626
– ident: ref_8
  doi: 10.1109/WCNC.2016.7564647
– ident: ref_11
– volume: 66
  start-page: 1594
  year: 2018
  ident: ref_36
  article-title: 2018. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2017.2787700
– volume: 41
  start-page: 206
  year: 2014
  ident: ref_45
  article-title: Adaptive deployment and configuration for mobile augmented reality in the cloudlet
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2013.12.002
– ident: ref_62
  doi: 10.1109/ROBIO.2018.8664852
– volume: 24
  start-page: 79
  year: 2018
  ident: ref_63
  article-title: Data offloading and task allocation for cloudlet-assisted ad hoc mobile clouds
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-016-1322-z
– volume: 93
  start-page: 107227
  year: 2021
  ident: ref_44
  article-title: A 3.5-tier container-based edge computing architecture
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2021.107227
– ident: ref_69
  doi: 10.1109/CLEI.2017.8226401
– ident: ref_18
  doi: 10.1145/3019612.3019820
– volume: 2
  start-page: 171
  year: 2015
  ident: ref_21
  article-title: Energy-efficient location and activity-aware on-demand mobile distributed sensing platform for sensing as a service in IoT clouds
  publication-title: IEEE Trans. Comput. Social. Syst.
  doi: 10.1109/TCSS.2016.2515844
– volume: 66
  start-page: 1946
  year: 2017
  ident: ref_55
  article-title: Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2017.2709742
– volume: 15
  start-page: 55
  year: 2017
  ident: ref_70
  article-title: A two-phase energy-aware scheduling approach for CPU-intensive jobs in mobile grids
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-016-9387-6
– ident: ref_46
  doi: 10.3390/s18061798
– ident: ref_59
  doi: 10.1109/BigData.2018.8622393
– ident: ref_20
  doi: 10.1109/ICACT.2008.4494018
– volume: 27
  start-page: 1226
  year: 2015
  ident: ref_31
  article-title: Energy Efficient and Robust Allocation of Interdependent Tasks on Mobile Ad hoc Computational Grid
  publication-title: Concurr. Comput.: Pract. Exp.
  doi: 10.1002/cpe.3297
– ident: ref_68
  doi: 10.1109/IROS.2010.5650303
– volume: 157
  start-page: 421
  year: 2016
  ident: ref_35
  article-title: 2016. A game-theoretic approach to computation offloading in mobile cloud computing
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0881-6
– volume: 2
  start-page: e124
  year: 2019
  ident: ref_1
  article-title: Private mobile edge cloud for 5G network applications
  publication-title: Internet Technol. Lett.
  doi: 10.1002/itl2.124
– ident: ref_12
– ident: ref_41
  doi: 10.1109/W-FiCloud.2016.36
– volume: 107
  start-page: 178
  year: 2016
  ident: ref_24
  article-title: A middleware for opportunistic content distribution
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2016.05.026
– volume: 81
  start-page: 166
  year: 2018
  ident: ref_64
  article-title: A quick-response framework for multi-user computation offloading in mobile cloud computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.10.034
– ident: ref_15
– ident: ref_61
  doi: 10.1109/W-FiCloud.2018.00011
– volume: 51
  start-page: 57
  year: 2018
  ident: ref_17
  article-title: I/O cloud: Adding an IoT Dimension to Cloud Infrastructures
  publication-title: Computer
  doi: 10.1109/MC.2018.1151016
– volume: 5
  start-page: 725
  year: 2015
  ident: ref_37
  article-title: Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks
  publication-title: IEEE Trans. Commun.
– ident: ref_57
  doi: 10.1109/MMSP.2017.8122255
– volume: 73
  start-page: 1672
  year: 2017
  ident: ref_38
  article-title: Application-aware cloudlet selection for computation offloading in multi-cloudlet environment
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-016-1872-y
SSID ssj0023338
Score 2.3652403
Snippet Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7701
SubjectTerms Cameras
Cloud computing
Computer centers
Computers
Data analysis
Data collection
Design
Distributed processing
edge computing
fog computing
Infrastructure
intelligent network layer
Internet access
Internet of Things
internet of things applications
local cluster heterogeneous network
Machine learning
Operating systems
Personal computers
Project Report
resource management
Robots
Security services
Sensors
Smart cities
Smart houses
Smartphones
Surveillance
Wireless communications
Wireless networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSwYxsERNUruxR56CAdQBJLbo_CqVqga1Kfx9zk4aNRISC0uG-KI45zvffc7pO0IuU6YVj62MtEgQoCRGoM8pT4QMAlN-JUG70Gwie3kR7-9yuNLqy9eEVfTAleJ62jIFAJ6007HYKAUJpuxGC1CJARl4PuNMLsFUDbX6iLwqHqE-gvreHDfoNMvqzi_L6BNI-luZZbsuciXQPGyTrTpDpNfVzHbImp3uks0V3sA98nkX6i5o4SjQ51AOaWnNlDqKbjAwGfrUcG2W9DmcQnzDzNLhBEqfp1K84MOPvhqmQCFbLOZ0OPO9ziy9NyNLbyfFwtCK0XyfvD3cv94-RnXrhEgjvisjw2UCLFNaukxhlOLAjXTCDVBvUjomgVumpWUWAzgzTLiUa4YuaFyamAH0D0hnWkztIaHcCi6ZU1whGMR4jtsnJilO-9MKAWncJVdLlea65hX37S0mOeILr_280X6XXDSinxWZxm9CN35dGgHPfx1uoFXktVXkf1lFl5wsVzWvnXKeI3TD_ZkJhu84b4bRnfw_EgiK9jLMZ80x65KsZQ2tCbVHpuOPQMwtBpj9DPpH__EFx2Qj9eUzvuJQnpBOOVvYU7Kuv8rxfHYWrP0HzpoJBw
  priority: 102
  providerName: Directory of Open Access Journals
Title Design of a Machine Learning-Based Intelligent Middleware Platform for a Heterogeneous Private Edge Cloud System
URI https://www.proquest.com/docview/2602194841
https://www.proquest.com/docview/2604009904
https://pubmed.ncbi.nlm.nih.gov/PMC8618563
https://doaj.org/article/ce4baaa5257f40dbba1625dc8ab1da93
Volume 21
WOSCitedRecordID wos000778251600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMCS2UQBy7RNonT2CdEl652D60iBFI5RX52V6qakqRw47cz47rZjYS4cPHBnihOxmN_Mx59Q8j7lGmVj62INU_AQUkMB5tTSIQsOUB-JaR2vthEsVjw5VKUIeDWhrTKw57oN2pTa4yRnwLuBuNinCUftz9irBqFt6uhhMZdcoxls3GdF8sbhysD_2vPJpSBa3_awjadFkWo_3I4gzxV_wBfDrMjbx0354_-d6KPycMANOmn_cp4Qu7YzVPy4Bb94DOy_ezTN2jtqKRzn1VpaSBcXcVTON8MvewpOzs698GMX7KxtFzLDuEuhQYevsCkmhqEbL1radlgyTRLZ2Zl6dm63hm6J0Z_Tr6dz76eXcShAkOswU3sYpOLRLJCaeEKBYddLnMjHHcTzaUQjgmZW6aFZRZwADOMuzTXDCzZuDQxE5m9IEebemNfEppbngvmVK7ApwRYALswYB2nMejBZTqOyIeDTiod6MmxSsa6AjcF1Vf16ovIu150u-fk-JvQFBXbCyCNtu-om1UVrLLSlikpJTLCOjY2SskE_EEDX6cSI0UWkZODjqtg2211o-CIvO2HwSrxqkX6H40yDMH3mEWkGCynwYSGI5vrK8_vzScAoibZq3-__DW5n2J-DaYkihNy1DU7-4bc0z-767YZeUPwLR-R4-lsUX4Z-XgDtPPfM-grL-fl9z8eghuJ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58CyqocCCQOJi1Y91vHtAiL6UqE2UQ5FyM_sMlaI42A4Vf4rfyKxfbSTErQcuPtjj97cz863H3wC8j6iSSWC4r1iIBCXUDMecdELIgmHKL7lQtm42kU4mbDbj0y343f0L48oqO59YO2qdKzdHfoB5Nw4uymj4efXDd12j3NfVroVGA4sz8-sKKVv5aXSM7_dDFJ2eXBwN_bargK-Q-lS-TngoaCoVt6lEB56IRHPL7EAxwbmlXCSGKm6owdhGNWU2ShRFdGobhXogYjzuHbiLfjx1ZC-dXRO8GPleo14Uxzw4KDEsRGna9pvpYl7dGmAjn92sxrwR3k4f_W8P5jE8bBNp8qVB_hPYMsun8OCGvOIzWB3X5Skkt0SQcV01akgrKDv3DzF-azLqJUkrMq4na65EYch0ISqXzhNc4M5DVzSUo5HJ1yWZFq4lnCEnem7I0SJfa9IIv-_C11u55eewvcyXZg9IYljCqZWJRM6MaQ9GGczlrHKTOkxEgQcfOwxkqpVfd11AFhnSMAeXrIeLB-9601WjOfI3o0MHpN7AyYTXK_JinrVeJ1OGSiGEU7y1NNBSihD5rsa7k6EWPPZgv8NU1vquMrsGlAdv-83oddynJFE_aGdDHbkIqAfpBnw3Lmhzy_Lye61fzgaYJA7iF_8--Ru4P7wYn2fno8nZS9iJXC2RK7_k-7BdFWvzCu6pn9VlWbyuByGBb7cN7j-BmHM2
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYYCiwIJC5W_FjHuweEaNOoUUnkA0jlZPYZKkVxcBwq_hq_jlm_aCTErQcuOcSTh51vZ75vPfkG4HVElUwCw33FQhQooWa45qQzQhYMKb_kQtl62EQ6n7OzM57twa_uvzCurbLLiXWi1oVye-RD5N24uCij4dC2bRHZePJ-_d13E6TcndZunEYDkVPz8wLl2-bddIy_9Zsomhx_Ojrx2wkDvkIZVPk64aGgqVTcphKTeSISzS2zI8UE55ZykRiquKEG6xzVlNkoURSRqm0U6pGI8X2vwT5SchoNYD-bzrIvvdyLUf01XkZxzIPhBotElKbt9JmuAtaDAnbY7W5v5qViN7nzP1-mu3C7pdjkQ7Mm7sGeWd2HW5eMFx_Aelw3rpDCEkFmdT-pIa3V7MI_xMquybQ3K63IrN7GuRClIdlSVI7oE3zAF5-4dqICg0yx3ZCsdMPiDDnWC0OOlsVWk8YS_iF8vpJTfgSDVbEyj4EkhiWcWplIVNNIiLD-IMuzym33MBEFHrzt8JCr1pjdzQdZ5ijQHHTyHjoevOpD140byd-CDh2o-gBnIF4_UZSLvM1HuTJUCiGcF66lgZZShKiENZ6dDLXgsQcHHb7yNqtt8j_g8uBlfxjzkbvJJOoL7WKokx0B9SDdgfLOF9o9sjr_VjubsxHSx1H85N8f_gJuIKbzj9P56VO4GbkmI9eXyQ9gUJVb8wyuqx_V-aZ83q5IAl-vGt2_ASKgfYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+Machine+Learning-Based+Intelligent+Middleware+Platform+for+a+Heterogeneous+Private+Edge+Cloud+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sayed-Chhattan+Shah&rft.date=2021-11-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=22&rft.spage=7701&rft_id=info:doi/10.3390%2Fs21227701&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon