Design of a Machine Learning-Based Intelligent Middleware Platform for a Heterogeneous Private Edge Cloud System
Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and acces...
Gespeichert in:
| Veröffentlicht in: | Sensors (Basel, Switzerland) Jg. 21; H. 22; S. 7701 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
19.11.2021
MDPI |
| Schlagworte: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments. |
|---|---|
| AbstractList | Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments.Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments. Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These applications have diverse requirements, such as low latencies, high data rates, significant amounts of computing and storage resources, and access to sensors and actuators. A heterogeneous private edge cloud system was proposed to address the requirements of these applications. The proposed heterogeneous private edge cloud system is characterized by a complex and dynamic multilayer network and computing infrastructure. Efficient management and utilization of this infrastructure may increase data rates and reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent middleware platform is proposed in the current study to manage and utilize heterogeneous private edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data collection, and data storage services to support emerging resource-intensive and non-resource-intensive smart city and 5G network applications. It aims to leverage regression analysis and reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources to application tasks. This platform adopts parallel transmission techniques, dynamic interface allocation techniques, and machine learning-based algorithms in a dynamic multilayer network infrastructure to improve network and application performance. Moreover, it uses container and device virtualization technologies to address problems related to heterogeneous hardware and execution environments. |
| Author | Shah, Sayed-Chhattan |
| AuthorAffiliation | Mobile Grid and Cloud Computing Lab, Department of Information Communication Engineering, Hankuk University of Foreign Studies, Seoul 02450, Korea; chhattanshah@ieee.org |
| AuthorAffiliation_xml | – name: Mobile Grid and Cloud Computing Lab, Department of Information Communication Engineering, Hankuk University of Foreign Studies, Seoul 02450, Korea; chhattanshah@ieee.org |
| Author_xml | – sequence: 1 givenname: Sayed-Chhattan orcidid: 0000-0003-0252-1064 surname: Shah fullname: Shah, Sayed-Chhattan |
| BookMark | eNptkktvEzEURkeoiD5gwT-wxAYWoX7NwxskGvqIlIpKwNq6Y19PHU3GwXaK-u9xmqqiFRvbss89vvp0j6uDKUxYVe8Z_SyEoqeJM87blrJX1RGTXM46zunBP-fD6jilFaVcCNG9qQ6F7IRoFT-qNt8w-WEiwREg12Bu_YRkiRAnPw2zM0hoyWLKOI5-wCmTa2_tiH8gIrkZIbsQ16QspfgKM8ZQIAzbRG6iv4OM5NwOSOZj2Fry4z5lXL-tXjsYE7573E-qXxfnP-dXs-X3y8X863JmpGzyzNaKgWx7o1zbCypqqK1ynWtMB0o5qaBGaRRKlKyWVnaO10b2lFrHmW1AnFSLvdcGWOlN9GuI9zqA1w8XIQ4aYvZmRG1Q9gBQ87p1ktq-B9bw2pafemZBieL6sndttv0arSlBRBifSZ-_TP5WD-FOdw3r6mYn-PgoiOH3FlPWa59MCRUe0tK8oZJSpags6IcX6Cps41Si2lGcKdlJVqhPe8rEkFJE99QMo3o3E_ppJgp7-oI1PkP2YderH_9T8Rc7KLn2 |
| CitedBy_id | crossref_primary_10_1016_j_future_2024_06_024 crossref_primary_10_1177_19714009251345104 |
| Cites_doi | 10.1016/j.aej.2020.05.037 10.1016/j.jpdc.2017.05.001 10.1145/3152360.3152361 10.1109/ACCESS.2018.2876600 10.1109/INFOCOM.2018.8485875 10.1109/SAHCNW.2009.5172913 10.1109/ICFC49376.2020.00017 10.1109/MCOM.2018.1700387 10.1145/1966445.1966473 10.1109/CLUSTER.2017.52 10.1007/s11227-015-1425-9 10.1145/3366614.3368102 10.1109/INFCOM.2012.6195845 10.1109/MCE.2016.2590118 10.1109/MCOM.2019.1800434 10.1109/ICIN.2019.8685872 10.1016/j.future.2018.04.057 10.1145/3313150.3313219 10.1016/j.comnet.2020.107693 10.1016/j.dcan.2017.04.005 10.1109/CLOUD.2015.12 10.1109/MNET.2018.1800132 10.1109/MCOM.2017.1600435CM 10.1109/ISORC.2019.00033 10.1016/j.pmcj.2015.07.005 10.1016/j.comnet.2016.06.011 10.1109/TrustCom.2012.144 10.1007/s10723-019-09493-z 10.1109/MWC.2016.1600317WC 10.3390/app8112220 10.1109/CLEI.2017.8226474 10.1109/CloudCom.2013.121 10.1109/ACCESS.2017.2669080 10.1145/3309705 10.1109/COMST.2018.2841349 10.1016/j.comcom.2016.03.015 10.1016/j.procs.2015.05.059 10.1109/MCOM.2017.1700105 10.1145/3229625.3229626 10.1109/WCNC.2016.7564647 10.1109/TCOMM.2017.2787700 10.1016/j.jnca.2013.12.002 10.1109/ROBIO.2018.8664852 10.1007/s11276-016-1322-z 10.1016/j.compeleceng.2021.107227 10.1109/CLEI.2017.8226401 10.1145/3019612.3019820 10.1109/TCSS.2016.2515844 10.1109/TC.2017.2709742 10.1007/s10723-016-9387-6 10.3390/s18061798 10.1109/BigData.2018.8622393 10.1109/ICACT.2008.4494018 10.1002/cpe.3297 10.1109/IROS.2010.5650303 10.1007/s10107-015-0881-6 10.1002/itl2.124 10.1109/W-FiCloud.2016.36 10.1016/j.comnet.2016.05.026 10.1016/j.future.2017.10.034 10.1109/W-FiCloud.2018.00011 10.1109/MC.2018.1151016 10.1109/MMSP.2017.8122255 10.1007/s11227-016-1872-y |
| ContentType | Journal Article |
| Copyright | 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the author. 2021 |
| Copyright_xml | – notice: 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the author. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
| DOI | 10.3390/s21227701 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ce4baaa5257f40dbba1625dc8ab1da93 PMC8618563 10_3390_s21227701 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-d591a47bc9f7b3035a5d9f8f6c8a99f49a5e4c9e4e4154d48f25c4b00df21d6a3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778251600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:46:12 EDT 2025 Tue Nov 04 01:40:34 EST 2025 Fri Sep 05 07:32:16 EDT 2025 Tue Oct 07 07:33:41 EDT 2025 Tue Nov 18 22:24:16 EST 2025 Sat Nov 29 07:13:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-d591a47bc9f7b3035a5d9f8f6c8a99f49a5e4c9e4e4154d48f25c4b00df21d6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0252-1064 |
| OpenAccessLink | https://www.proquest.com/docview/2602194841?pq-origsite=%requestingapplication% |
| PMID | 34833792 |
| PQID | 2602194841 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ce4baaa5257f40dbba1625dc8ab1da93 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618563 proquest_miscellaneous_2604009904 proquest_journals_2602194841 crossref_primary_10_3390_s21227701 crossref_citationtrail_10_3390_s21227701 |
| PublicationCentury | 2000 |
| PublicationDate | 20211119 |
| PublicationDateYYYYMMDD | 2021-11-19 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211119 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Tomanek (ref_7) 2016; 107 Du (ref_36) 2018; 66 ref_13 ref_57 Shah (ref_2) 2018; 6 ref_12 ref_11 ref_10 ref_53 Guo (ref_63) 2018; 24 ref_51 Li (ref_75) 2015; 71 ref_19 ref_18 ref_16 ref_15 ref_59 Farahzadi (ref_39) 2018; 4 Shah (ref_1) 2019; 2 ref_61 Verbelen (ref_45) 2014; 41 Schulz (ref_6) 2017; 55 ref_25 ref_69 Shah (ref_31) 2015; 27 ref_68 ref_23 ref_67 ref_66 ref_65 Parvez (ref_5) 2018; 20 ref_20 ref_62 Poularakis (ref_52) 2018; 56 ref_29 Karunaratne (ref_58) 2019; 57 ref_27 Perera (ref_21) 2015; 2 ref_26 De (ref_38) 2017; 73 Ilavarasan (ref_73) 2010; 2 Sabella (ref_3) 2016; 5 Persson (ref_14) 2015; 52 Shi (ref_76) 2016; 27 ref_72 Aral (ref_32) 2019; 17 Yaqoob (ref_71) 2017; 5 ref_34 Orhean (ref_60) 2017; 117 ref_33 Chen (ref_44) 2021; 93 ref_30 Aazam (ref_42) 2018; 87 ref_74 Kuang (ref_64) 2018; 81 Jia (ref_37) 2015; 5 Kato (ref_56) 2016; 24 Markakis (ref_4) 2017; 55 Mao (ref_55) 2017; 66 Hirsch (ref_70) 2017; 15 Palumbo (ref_9) 2021; 184 Mineraud (ref_22) 2016; 89 ref_46 Bruneo (ref_17) 2018; 51 ref_43 Cardellini (ref_35) 2016; 157 ref_41 ref_40 Mahmoud (ref_54) 2020; 59 ref_49 Ren (ref_47) 2019; 33 ref_48 ref_8 Helgason (ref_24) 2016; 107 Merlino (ref_28) 2019; 19 |
| References_xml | – volume: 59 start-page: 3531 year: 2020 ident: ref_54 article-title: Link Quality Prediction in Wireless Community Networks using Deep Recurrent Neural Networks publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.05.037 – volume: 117 start-page: 292 year: 2017 ident: ref_60 article-title: New scheduling approach using reinforcement learning for heterogeneous distributed systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2017.05.001 – ident: ref_74 – ident: ref_26 – ident: ref_29 doi: 10.1145/3152360.3152361 – volume: 6 start-page: 62898 year: 2018 ident: ref_2 article-title: An energy-efficient resource management system for a mobile ad hoc cloud publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876600 – volume: 2 start-page: 10 year: 2010 ident: ref_73 article-title: High performance and energy-efficient task scheduling algorithm for heterogeneous mobile computing system publication-title: Int. J. Comput. Sci. Inf. Technol. – ident: ref_65 doi: 10.1109/INFOCOM.2018.8485875 – ident: ref_10 doi: 10.1109/SAHCNW.2009.5172913 – ident: ref_16 – ident: ref_43 doi: 10.1109/ICFC49376.2020.00017 – volume: 56 start-page: 132 year: 2018 ident: ref_52 article-title: SDN-Enabled Tactical Ad Hoc Networks: Extending Programmable Control to the Edge publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700387 – ident: ref_66 doi: 10.1145/1966445.1966473 – ident: ref_33 doi: 10.1109/CLUSTER.2017.52 – volume: 71 start-page: 3009 year: 2015 ident: ref_75 article-title: Heuristics to allocate high-performance cloudlets for computation offloading in mobile ad hoc clouds publication-title: J. Supercomput. doi: 10.1007/s11227-015-1425-9 – ident: ref_34 doi: 10.1145/3366614.3368102 – ident: ref_23 – ident: ref_67 doi: 10.1109/INFCOM.2012.6195845 – volume: 5 start-page: 84 year: 2016 ident: ref_3 article-title: Mobile-Edge Computing Architecture: The role of MEC in the Internet of Things publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2016.2590118 – volume: 57 start-page: 102 year: 2019 ident: ref_58 article-title: An Overview of Machine Learning Approaches in Wireless Mesh Networks publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2019.1800434 – ident: ref_50 doi: 10.1109/ICIN.2019.8685872 – volume: 87 start-page: 278 year: 2018 ident: ref_42 article-title: Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.04.057 – ident: ref_49 doi: 10.1145/3313150.3313219 – volume: 184 start-page: 107693 year: 2021 ident: ref_9 article-title: Characterization and analysis of cloud-to-user latency: The case of Azure and AWS publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107693 – ident: ref_27 – volume: 4 start-page: 176 year: 2018 ident: ref_39 article-title: Middleware technologies for cloud of things: A survey publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.04.005 – ident: ref_25 doi: 10.1109/CLOUD.2015.12 – volume: 33 start-page: 162 year: 2019 ident: ref_47 article-title: An edge-computing based architecture for mobile augmented reality publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1800132 – volume: 55 start-page: 70 year: 2017 ident: ref_6 article-title: Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1600435CM – ident: ref_30 doi: 10.1109/ISORC.2019.00033 – volume: 27 start-page: 90 year: 2016 ident: ref_76 article-title: An energy-efficient scheduling scheme for time-constrained tasks in local mobile clouds publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2015.07.005 – ident: ref_13 – volume: 107 start-page: 104 year: 2016 ident: ref_7 article-title: Multidimensional cloud latency monitoring and evaluation publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.06.011 – ident: ref_19 doi: 10.1109/TrustCom.2012.144 – volume: 17 start-page: 677 year: 2019 ident: ref_32 article-title: Addressing Application Latency Requirements through Edge Scheduling publication-title: J. Grid Comput. doi: 10.1007/s10723-019-09493-z – volume: 24 start-page: 146 year: 2016 ident: ref_56 article-title: The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective publication-title: IEEE Wireless Commun. doi: 10.1109/MWC.2016.1600317WC – ident: ref_51 doi: 10.3390/app8112220 – ident: ref_72 doi: 10.1109/CLEI.2017.8226474 – ident: ref_40 doi: 10.1109/CloudCom.2013.121 – volume: 5 start-page: 177 year: 2017 ident: ref_71 article-title: Heterogeneity-aware task allocation in mobile ad hoc cloud publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2669080 – volume: 19 start-page: 1 year: 2019 ident: ref_28 article-title: Enabling Workload Engineering in Edge, Fog, and Cloud Computing through OpenStack-based Middleware publication-title: ACM Trans. Internet Technol. doi: 10.1145/3309705 – volume: 20 start-page: 3098 year: 2018 ident: ref_5 article-title: A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2018.2841349 – ident: ref_53 – volume: 89 start-page: 5 year: 2016 ident: ref_22 article-title: A gap analysis of Internet-of-Things platforms publication-title: Comput. Commun. doi: 10.1016/j.comcom.2016.03.015 – volume: 52 start-page: 210 year: 2015 ident: ref_14 article-title: Calvin—Merging cloud and IoT publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2015.05.059 – volume: 55 start-page: 152 year: 2017 ident: ref_4 article-title: Computing, Caching, and Communication at the Edge: The Cornerstone for Building a Versatile 5G Ecosystem publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1700105 – ident: ref_48 doi: 10.1145/3229625.3229626 – ident: ref_8 doi: 10.1109/WCNC.2016.7564647 – ident: ref_11 – volume: 66 start-page: 1594 year: 2018 ident: ref_36 article-title: 2018. Computation offloading and resource allocation in mixed fog/cloud computing systems with min-max fairness guarantee publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2017.2787700 – volume: 41 start-page: 206 year: 2014 ident: ref_45 article-title: Adaptive deployment and configuration for mobile augmented reality in the cloudlet publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2013.12.002 – ident: ref_62 doi: 10.1109/ROBIO.2018.8664852 – volume: 24 start-page: 79 year: 2018 ident: ref_63 article-title: Data offloading and task allocation for cloudlet-assisted ad hoc mobile clouds publication-title: Wirel. Netw. doi: 10.1007/s11276-016-1322-z – volume: 93 start-page: 107227 year: 2021 ident: ref_44 article-title: A 3.5-tier container-based edge computing architecture publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107227 – ident: ref_69 doi: 10.1109/CLEI.2017.8226401 – ident: ref_18 doi: 10.1145/3019612.3019820 – volume: 2 start-page: 171 year: 2015 ident: ref_21 article-title: Energy-efficient location and activity-aware on-demand mobile distributed sensing platform for sensing as a service in IoT clouds publication-title: IEEE Trans. Comput. Social. Syst. doi: 10.1109/TCSS.2016.2515844 – volume: 66 start-page: 1946 year: 2017 ident: ref_55 article-title: Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2017.2709742 – volume: 15 start-page: 55 year: 2017 ident: ref_70 article-title: A two-phase energy-aware scheduling approach for CPU-intensive jobs in mobile grids publication-title: J. Grid Comput. doi: 10.1007/s10723-016-9387-6 – ident: ref_46 doi: 10.3390/s18061798 – ident: ref_59 doi: 10.1109/BigData.2018.8622393 – ident: ref_20 doi: 10.1109/ICACT.2008.4494018 – volume: 27 start-page: 1226 year: 2015 ident: ref_31 article-title: Energy Efficient and Robust Allocation of Interdependent Tasks on Mobile Ad hoc Computational Grid publication-title: Concurr. Comput.: Pract. Exp. doi: 10.1002/cpe.3297 – ident: ref_68 doi: 10.1109/IROS.2010.5650303 – volume: 157 start-page: 421 year: 2016 ident: ref_35 article-title: 2016. A game-theoretic approach to computation offloading in mobile cloud computing publication-title: Math. Program. doi: 10.1007/s10107-015-0881-6 – volume: 2 start-page: e124 year: 2019 ident: ref_1 article-title: Private mobile edge cloud for 5G network applications publication-title: Internet Technol. Lett. doi: 10.1002/itl2.124 – ident: ref_12 – ident: ref_41 doi: 10.1109/W-FiCloud.2016.36 – volume: 107 start-page: 178 year: 2016 ident: ref_24 article-title: A middleware for opportunistic content distribution publication-title: Comput. Netw. doi: 10.1016/j.comnet.2016.05.026 – volume: 81 start-page: 166 year: 2018 ident: ref_64 article-title: A quick-response framework for multi-user computation offloading in mobile cloud computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.10.034 – ident: ref_15 – ident: ref_61 doi: 10.1109/W-FiCloud.2018.00011 – volume: 51 start-page: 57 year: 2018 ident: ref_17 article-title: I/O cloud: Adding an IoT Dimension to Cloud Infrastructures publication-title: Computer doi: 10.1109/MC.2018.1151016 – volume: 5 start-page: 725 year: 2015 ident: ref_37 article-title: Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks publication-title: IEEE Trans. Commun. – ident: ref_57 doi: 10.1109/MMSP.2017.8122255 – volume: 73 start-page: 1672 year: 2017 ident: ref_38 article-title: Application-aware cloudlet selection for computation offloading in multi-cloudlet environment publication-title: J. Supercomput. doi: 10.1007/s11227-016-1872-y |
| SSID | ssj0023338 |
| Score | 2.3652403 |
| Snippet | Recent advances in mobile technologies have facilitated the development of a new class of smart city and fifth-generation (5G) network applications. These... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7701 |
| SubjectTerms | Cameras Cloud computing Computer centers Computers Data analysis Data collection Design Distributed processing edge computing fog computing Infrastructure intelligent network layer Internet access Internet of Things internet of things applications local cluster heterogeneous network Machine learning Operating systems Personal computers Project Report resource management Robots Security services Sensors Smart cities Smart houses Smartphones Surveillance Wireless communications Wireless networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSwYxsERNUruxR56CAdQBJLbo_CqVqga1Kfx9zk4aNRISC0uG-KI45zvffc7pO0IuU6YVj62MtEgQoCRGoM8pT4QMAlN-JUG70Gwie3kR7-9yuNLqy9eEVfTAleJ62jIFAJ6007HYKAUJpuxGC1CJARl4PuNMLsFUDbX6iLwqHqE-gvreHDfoNMvqzi_L6BNI-luZZbsuciXQPGyTrTpDpNfVzHbImp3uks0V3sA98nkX6i5o4SjQ51AOaWnNlDqKbjAwGfrUcG2W9DmcQnzDzNLhBEqfp1K84MOPvhqmQCFbLOZ0OPO9ziy9NyNLbyfFwtCK0XyfvD3cv94-RnXrhEgjvisjw2UCLFNaukxhlOLAjXTCDVBvUjomgVumpWUWAzgzTLiUa4YuaFyamAH0D0hnWkztIaHcCi6ZU1whGMR4jtsnJilO-9MKAWncJVdLlea65hX37S0mOeILr_280X6XXDSinxWZxm9CN35dGgHPfx1uoFXktVXkf1lFl5wsVzWvnXKeI3TD_ZkJhu84b4bRnfw_EgiK9jLMZ80x65KsZQ2tCbVHpuOPQMwtBpj9DPpH__EFx2Qj9eUzvuJQnpBOOVvYU7Kuv8rxfHYWrP0HzpoJBw priority: 102 providerName: Directory of Open Access Journals |
| Title | Design of a Machine Learning-Based Intelligent Middleware Platform for a Heterogeneous Private Edge Cloud System |
| URI | https://www.proquest.com/docview/2602194841 https://www.proquest.com/docview/2604009904 https://pubmed.ncbi.nlm.nih.gov/PMC8618563 https://doaj.org/article/ce4baaa5257f40dbba1625dc8ab1da93 |
| Volume | 21 |
| WOSCitedRecordID | wos000778251600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMCS2UQBy7RNonT2CdEl652D60iBFI5RX52V6qakqRw47cz47rZjYS4cPHBnihOxmN_Mx59Q8j7lGmVj62INU_AQUkMB5tTSIQsOUB-JaR2vthEsVjw5VKUIeDWhrTKw57oN2pTa4yRnwLuBuNinCUftz9irBqFt6uhhMZdcoxls3GdF8sbhysD_2vPJpSBa3_awjadFkWo_3I4gzxV_wBfDrMjbx0354_-d6KPycMANOmn_cp4Qu7YzVPy4Bb94DOy_ezTN2jtqKRzn1VpaSBcXcVTON8MvewpOzs698GMX7KxtFzLDuEuhQYevsCkmhqEbL1radlgyTRLZ2Zl6dm63hm6J0Z_Tr6dz76eXcShAkOswU3sYpOLRLJCaeEKBYddLnMjHHcTzaUQjgmZW6aFZRZwADOMuzTXDCzZuDQxE5m9IEebemNfEppbngvmVK7ApwRYALswYB2nMejBZTqOyIeDTiod6MmxSsa6AjcF1Vf16ovIu150u-fk-JvQFBXbCyCNtu-om1UVrLLSlikpJTLCOjY2SskE_EEDX6cSI0UWkZODjqtg2211o-CIvO2HwSrxqkX6H40yDMH3mEWkGCynwYSGI5vrK8_vzScAoibZq3-__DW5n2J-DaYkihNy1DU7-4bc0z-767YZeUPwLR-R4-lsUX4Z-XgDtPPfM-grL-fl9z8eghuJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58CyqocCCQOJi1Y91vHtAiL6UqE2UQ5FyM_sMlaI42A4Vf4rfyKxfbSTErQcuPtjj97cz863H3wC8j6iSSWC4r1iIBCXUDMecdELIgmHKL7lQtm42kU4mbDbj0y343f0L48oqO59YO2qdKzdHfoB5Nw4uymj4efXDd12j3NfVroVGA4sz8-sKKVv5aXSM7_dDFJ2eXBwN_bargK-Q-lS-TngoaCoVt6lEB56IRHPL7EAxwbmlXCSGKm6owdhGNWU2ShRFdGobhXogYjzuHbiLfjx1ZC-dXRO8GPleo14Uxzw4KDEsRGna9pvpYl7dGmAjn92sxrwR3k4f_W8P5jE8bBNp8qVB_hPYMsun8OCGvOIzWB3X5Skkt0SQcV01akgrKDv3DzF-azLqJUkrMq4na65EYch0ISqXzhNc4M5DVzSUo5HJ1yWZFq4lnCEnem7I0SJfa9IIv-_C11u55eewvcyXZg9IYljCqZWJRM6MaQ9GGczlrHKTOkxEgQcfOwxkqpVfd11AFhnSMAeXrIeLB-9601WjOfI3o0MHpN7AyYTXK_JinrVeJ1OGSiGEU7y1NNBSihD5rsa7k6EWPPZgv8NU1vquMrsGlAdv-83oddynJFE_aGdDHbkIqAfpBnw3Lmhzy_Lye61fzgaYJA7iF_8--Ru4P7wYn2fno8nZS9iJXC2RK7_k-7BdFWvzCu6pn9VlWbyuByGBb7cN7j-BmHM2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYYCiwIJC5W_FjHuweEaNOoUUnkA0jlZPYZKkVxcBwq_hq_jlm_aCTErQcuOcSTh51vZ75vPfkG4HVElUwCw33FQhQooWa45qQzQhYMKb_kQtl62EQ6n7OzM57twa_uvzCurbLLiXWi1oVye-RD5N24uCij4dC2bRHZePJ-_d13E6TcndZunEYDkVPz8wLl2-bddIy_9Zsomhx_Ojrx2wkDvkIZVPk64aGgqVTcphKTeSISzS2zI8UE55ZykRiquKEG6xzVlNkoURSRqm0U6pGI8X2vwT5SchoNYD-bzrIvvdyLUf01XkZxzIPhBotElKbt9JmuAtaDAnbY7W5v5qViN7nzP1-mu3C7pdjkQ7Mm7sGeWd2HW5eMFx_Aelw3rpDCEkFmdT-pIa3V7MI_xMquybQ3K63IrN7GuRClIdlSVI7oE3zAF5-4dqICg0yx3ZCsdMPiDDnWC0OOlsVWk8YS_iF8vpJTfgSDVbEyj4EkhiWcWplIVNNIiLD-IMuzym33MBEFHrzt8JCr1pjdzQdZ5ijQHHTyHjoevOpD140byd-CDh2o-gBnIF4_UZSLvM1HuTJUCiGcF66lgZZShKiENZ6dDLXgsQcHHb7yNqtt8j_g8uBlfxjzkbvJJOoL7WKokx0B9SDdgfLOF9o9sjr_VjubsxHSx1H85N8f_gJuIKbzj9P56VO4GbkmI9eXyQ9gUJVb8wyuqx_V-aZ83q5IAl-vGt2_ASKgfYU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+Machine+Learning-Based+Intelligent+Middleware+Platform+for+a+Heterogeneous+Private+Edge+Cloud+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sayed-Chhattan+Shah&rft.date=2021-11-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=22&rft.spage=7701&rft_id=info:doi/10.3390%2Fs21227701&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |