Multitrack Compressed Sensing for Faster Hyperspectral Imaging

Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensin...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 15; p. 5034
Main Authors: Kubal, Sharvaj, Lee, Elizabeth, Tay, Chor Yong, Yong, Derrick
Format: Journal Article
Language:English
Published: Basel MDPI AG 24.07.2021
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed can be drastically increased while maintaining reconstruction speed and accuracy. The methods were validated computationally both in noiseless as well as noisy simulated measurements. Multitrack adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full sampling HSI without compromising reconstruction accuracy across the sample images tested. Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of longer reconstruction times.
AbstractList Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed can be drastically increased while maintaining reconstruction speed and accuracy. The methods were validated computationally both in noiseless as well as noisy simulated measurements. Multitrack adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full sampling HSI without compromising reconstruction accuracy across the sample images tested. Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of longer reconstruction times.
Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed can be drastically increased while maintaining reconstruction speed and accuracy. The methods were validated computationally both in noiseless as well as noisy simulated measurements. Multitrack adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full sampling HSI without compromising reconstruction accuracy across the sample images tested. Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of longer reconstruction times.Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials inspection and food safety. However, HSI is challenging because of the large amount of data and long measurement times involved. Compressed sensing (CS) approaches to HSI address this, albeit subject to tradeoffs between image reconstruction accuracy, time and generalizability to different types of scenes. Here, we develop improved CS approaches for HSI, based on parallelized multitrack acquisition of multiple spectra per shot. The multitrack architecture can be paired up with either of the two compatible CS algorithms developed here: (1) a sparse recovery algorithm based on block compressed sensing and (2) an adaptive CS algorithm based on sampling in the wavelet domain. As a result, the measurement speed can be drastically increased while maintaining reconstruction speed and accuracy. The methods were validated computationally both in noiseless as well as noisy simulated measurements. Multitrack adaptive CS has a ∼10 times shorter measurement plus reconstruction time as compared to full sampling HSI without compromising reconstruction accuracy across the sample images tested. Multitrack non-adaptive CS (sparse recovery) is most robust against Poisson noise at the expense of longer reconstruction times.
Author Kubal, Sharvaj
Tay, Chor Yong
Yong, Derrick
Lee, Elizabeth
AuthorAffiliation 4 School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
1 Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore; sharvaj.kubal@smart.mit.edu
2 Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology Centre, 1 Create Way, Singapore 138602, Singapore; elizabeth.lee@smart.mit.edu
3 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore; cytay@ntu.edu.sg
AuthorAffiliation_xml – name: 2 Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology Centre, 1 Create Way, Singapore 138602, Singapore; elizabeth.lee@smart.mit.edu
– name: 4 School of Biological Sciences, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore
– name: 1 Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore; sharvaj.kubal@smart.mit.edu
– name: 3 School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore; cytay@ntu.edu.sg
Author_xml – sequence: 1
  givenname: Sharvaj
  orcidid: 0000-0003-4060-9358
  surname: Kubal
  fullname: Kubal, Sharvaj
– sequence: 2
  givenname: Elizabeth
  orcidid: 0000-0001-8604-8707
  surname: Lee
  fullname: Lee, Elizabeth
– sequence: 3
  givenname: Chor Yong
  orcidid: 0000-0001-6721-7106
  surname: Tay
  fullname: Tay, Chor Yong
– sequence: 4
  givenname: Derrick
  orcidid: 0000-0001-6806-8472
  surname: Yong
  fullname: Yong, Derrick
BookMark eNplkU1v1DAQQC1U1C964B9E4gKHpfbYTuxLJbSidKWiHgpny3bGi5ckDnaC1H9Pli2IlpNH9ps345kzcjSkAQl5zeh7zjW9LMCYlJSLF-SUCRArBUCP_olPyFkpO0qBc66OyQkXvAFo2Cm5-jx3U5yy9d-rderHjKVgW93jUOKwrULK1bUtE-bq5mHEXEb0C9xVm95uF-AVeRlsV_Di8TwnX68_flnfrG7vPm3WH25XXoh6WnmnZAsBeEs1hhpQa8udagRodD4o0E5ZFaxkWgfbOLBQOw6SUq8b6gI_J5uDt012Z8Yce5sfTLLR_L5IeWtsnqLv0HjbcOU91dqhACl0oJZ58LYW0nloFtfVwTXOrsfW47D_0RPp05chfjPb9NMoLhRjahG8fRTk9GPGMpk-Fo9dZwdMczEga0prWiu5oG-eobs052EZ1UJJpUGJWi_U5YHyOZWSMRgfJzvFtK8fO8Oo2e_Z_N3zkvHuWcaf9v9nfwE-MKff
CitedBy_id crossref_primary_10_1016_j_optlaseng_2024_108238
crossref_primary_10_1016_j_aca_2024_343001
Cites_doi 10.1080/05704928.2012.705800
10.1109/TCI.2016.2637079
10.1117/1.JBO.19.1.010901
10.1016/j.rse.2007.12.014
10.1364/OE.15.014013
10.1016/j.jmsy.2020.06.010
10.1016/j.optlastec.2010.01.022
10.1016/j.jprocont.2010.05.008
10.1007/978-3-319-46478-7_2
10.1364/OE.26.010550
10.1364/FIO.2020.JTu1B.28
10.1109/MSP.2013.2278763
10.1109/ITOEC.2017.8122510
10.1364/AO.49.006824
10.1364/OE.17.006368
10.1109/MSP.2007.914730
10.1145/3306346.3322946
10.1145/3130800.3130896
10.1109/ACCESS.2018.2886471
10.1109/ALLERTON.2015.7447163
10.1109/TIT.2006.871582
10.1109/ICCVW.2017.68
10.1109/TIT.2005.862083
10.1137/110820579
10.1016/j.dsp.2013.12.001
10.1201/9781315371474
10.1364/COSI.2009.CTuA5
10.1364/AO.53.006619
10.1117/1.OE.51.7.071406
10.1002/jrs.4729
10.1117/1.OE.52.9.090901
10.1109/TIP.2018.2884076
10.1016/j.tibtech.2018.08.008
10.1109/ACCESS.2018.2793851
10.1145/3130800.3130810
10.1364/AO.47.000B44
10.1109/TSP.2006.881199
10.1109/MSP.2016.2582378
10.1016/j.compind.2014.10.006
10.1561/2000000033
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21155034
DatabaseName CrossRef
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ca738cc099be42549f0a1c2ca645bc27
PMC8348118
10_3390_s21155034
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-cb85d2f23d09ef62e99a3b87429ebcf829b8a8fa5199fa7b2a26b32500c970bf3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000682226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:25:51 EST 2025
Tue Nov 04 01:48:20 EST 2025
Fri Sep 05 08:04:57 EDT 2025
Sun Nov 23 03:41:32 EST 2025
Sat Nov 29 07:20:38 EST 2025
Tue Nov 18 19:58:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-cb85d2f23d09ef62e99a3b87429ebcf829b8a8fa5199fa7b2a26b32500c970bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8604-8707
0000-0001-6806-8472
0000-0001-6721-7106
0000-0003-4060-9358
OpenAccessLink https://doaj.org/article/ca738cc099be42549f0a1c2ca645bc27
PMID 34372271
PQID 2558928469
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ca738cc099be42549f0a1c2ca645bc27
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348118
proquest_miscellaneous_2560060685
proquest_journals_2558928469
crossref_citationtrail_10_3390_s21155034
crossref_primary_10_3390_s21155034
PublicationCentury 2000
PublicationDate 20210724
PublicationDateYYYYMMDD 2021-07-24
PublicationDate_xml – month: 7
  year: 2021
  text: 20210724
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aharon (ref_20) 2006; 54
Wagadarikar (ref_12) 2008; 47
Cao (ref_14) 2016; 33
Wang (ref_25) 2019; 28
Kittle (ref_35) 2010; 49
Magalhaes (ref_36) 2012; 51
Rani (ref_18) 2018; 6
ref_11
Gehm (ref_32) 2007; 15
Goetz (ref_4) 2009; 113
Wagadarikar (ref_34) 2009; 17
ref_17
ref_16
ref_15
ref_37
Fisher (ref_6) 2019; 37
Marques (ref_19) 2019; 7
Averbuch (ref_27) 2012; 5
Masia (ref_45) 2015; 46
Choi (ref_21) 2017; 36
Hagen (ref_8) 2013; 52
Rousset (ref_39) 2018; 26
Arce (ref_13) 2014; 31
Dai (ref_28) 2014; 53
Dale (ref_3) 2013; 48
Lu (ref_1) 2014; 19
ref_24
ref_46
Mistretta (ref_7) 2010; 20
ref_23
ref_22
ref_44
ref_43
ref_42
ref_40
Donoho (ref_10) 2006; 52
Lu (ref_30) 2020; 56
Huang (ref_31) 2015; 66
Hahn (ref_38) 2014; 26
Candes (ref_9) 2006; 52
Duarte (ref_33) 2008; 25
ref_26
Rousset (ref_29) 2017; 3
ref_5
Fowler (ref_41) 2012; 4
Li (ref_2) 2010; 42
References_xml – volume: 48
  start-page: 142
  year: 2013
  ident: ref_3
  article-title: Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2012.705800
– volume: 3
  start-page: 36
  year: 2017
  ident: ref_29
  article-title: Adaptive Basis Scan by Wavelet Prediction for Single-Pixel Imaging
  publication-title: IEEE Trans. Comput. Imag.
  doi: 10.1109/TCI.2016.2637079
– volume: 19
  start-page: 010901
  year: 2014
  ident: ref_1
  article-title: Medical hyperspectral imaging: A review
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.1.010901
– volume: 113
  start-page: S5
  year: 2009
  ident: ref_4
  article-title: Three decades of hyperspectral remote sensing of the Earth: A personal view
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.12.014
– volume: 15
  start-page: 14013
  year: 2007
  ident: ref_32
  article-title: Single-shot compressive spectral imaging with a dual-disperser architecture
  publication-title: Opt. Express
  doi: 10.1364/OE.15.014013
– ident: ref_5
– volume: 56
  start-page: 312
  year: 2020
  ident: ref_30
  article-title: Smart manufacturing process and system automation—A critical review of the standards and envisioned scenarios
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.010
– volume: 42
  start-page: 1010
  year: 2010
  ident: ref_2
  article-title: Detection of physical defects in solar cells by hyperspectral imaging technology
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2010.01.022
– ident: ref_26
– volume: 20
  start-page: 1009
  year: 2010
  ident: ref_7
  article-title: Applied advanced process analytics in biopharmaceutical manufacturing: Challenges and prospects in real-time monitoring and control
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2010.05.008
– ident: ref_44
  doi: 10.1007/978-3-319-46478-7_2
– volume: 26
  start-page: 10550
  year: 2018
  ident: ref_39
  article-title: Time-resolved multispectral imaging based on an adaptive single-pixel camera
  publication-title: Opt. Express
  doi: 10.1364/OE.26.010550
– ident: ref_43
  doi: 10.1364/FIO.2020.JTu1B.28
– ident: ref_40
– volume: 31
  start-page: 105
  year: 2014
  ident: ref_13
  article-title: Compressive Coded Aperture Spectral Imaging: An Introduction
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2278763
– ident: ref_23
  doi: 10.1109/ITOEC.2017.8122510
– volume: 49
  start-page: 6824
  year: 2010
  ident: ref_35
  article-title: Multiframe image estimation for coded aperture snapshot spectral imagers
  publication-title: Appl. Opt.
  doi: 10.1364/AO.49.006824
– ident: ref_37
– ident: ref_42
– volume: 17
  start-page: 6368
  year: 2009
  ident: ref_34
  article-title: Video rate spectral imaging using a coded aperture snapshot spectral imager
  publication-title: Opt. Express
  doi: 10.1364/OE.17.006368
– volume: 25
  start-page: 83
  year: 2008
  ident: ref_33
  article-title: Single-pixel imaging via compressive sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914730
– ident: ref_17
  doi: 10.1145/3306346.3322946
– ident: ref_16
  doi: 10.1145/3130800.3130896
– volume: 7
  start-page: 1300
  year: 2019
  ident: ref_19
  article-title: A Review of Sparse Recovery Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886471
– ident: ref_22
  doi: 10.1109/ALLERTON.2015.7447163
– volume: 52
  start-page: 1289
  year: 2006
  ident: ref_10
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– ident: ref_24
  doi: 10.1109/ICCVW.2017.68
– volume: 52
  start-page: 489
  year: 2006
  ident: ref_9
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 5
  start-page: 57
  year: 2012
  ident: ref_27
  article-title: Adaptive Compressed Image Sensing Using Dictionaries
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/110820579
– volume: 26
  start-page: 113
  year: 2014
  ident: ref_38
  article-title: Compressive sensing and adaptive direct sampling in hyperspectral imaging
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.12.001
– ident: ref_11
  doi: 10.1201/9781315371474
– ident: ref_46
– ident: ref_15
  doi: 10.1364/COSI.2009.CTuA5
– volume: 53
  start-page: 6619
  year: 2014
  ident: ref_28
  article-title: Adaptive compressed sampling based on extended wavelet trees
  publication-title: Appl. Opt.
  doi: 10.1364/AO.53.006619
– volume: 51
  start-page: 1
  year: 2012
  ident: ref_36
  article-title: High-resolution hyperspectral single-pixel imaging system based on compressive sensing
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.51.7.071406
– volume: 46
  start-page: 727
  year: 2015
  ident: ref_45
  article-title: Hyperspectral image analysis for CARS, SRS, and Raman data
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4729
– volume: 52
  start-page: 1
  year: 2013
  ident: ref_8
  article-title: Review of snapshot spectral imaging technologies
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.52.9.090901
– volume: 28
  start-page: 2257
  year: 2019
  ident: ref_25
  article-title: HyperReconNet: Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2884076
– volume: 37
  start-page: 253
  year: 2019
  ident: ref_6
  article-title: The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.08.008
– volume: 6
  start-page: 4875
  year: 2018
  ident: ref_18
  article-title: A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2793851
– volume: 36
  start-page: 1
  year: 2017
  ident: ref_21
  article-title: High-quality hyperspectral reconstruction using a spectral prior
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3130800.3130810
– volume: 47
  start-page: B44
  year: 2008
  ident: ref_12
  article-title: Single disperser design for coded aperture snapshot spectral imaging
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.000B44
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref_20
  article-title: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 33
  start-page: 95
  year: 2016
  ident: ref_14
  article-title: Computational Snapshot Multispectral Cameras: Toward dynamic capture of the spectral world
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2582378
– volume: 66
  start-page: 1
  year: 2015
  ident: ref_31
  article-title: Automated visual inspection in the semiconductor industry: A survey
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2014.10.006
– volume: 4
  start-page: 297
  year: 2012
  ident: ref_41
  article-title: Block-Based Compressed Sensing of Images and Video
  publication-title: Found. Trends Signal Process.
  doi: 10.1561/2000000033
SSID ssj0023338
Score 2.3422163
Snippet Hyperspectral imaging (HSI) provides additional information compared to regular color imaging, making it valuable in areas such as biomedicine, materials...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5034
SubjectTerms adaptive imaging
Algorithms
Arrays
compressed sensing
hyperspectral imaging
Light
Manufacturing
Neural networks
Process controls
wavelets
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwEB2VlgMcoAUqQgtKKw5combtrGNfqCjqqkhoVbVF6i2yJ3ZbFbJld8v3M5N4QyMhLlzjkWJlxuP3nPEbgPeOOEGtgsy0tkVGiFhmznKNu7eG4C7rQbddS76W06m-vDSn8cBtEcsqVzmxTdT1DPmM_ICgrzaUS5U5vPuZcdco_rsaW2g8gg1WKqM43zg6np6e9ZRLEgPr9IQkkfuDBVkRJJfFYBdqxfoHCHNYH_lgw5k8_9-pbsKzCDXTT11sbMGab17A0wcChC_hY3f_dm7xNuXM0CqJ1-k5V7U3VykB2nRiWUohPSG-2l3LpKmmX360zY1ewbfJ8cXnkyx2VMiQaN8yQ6fHtQhC1rnxQQlvjJVOEz023mHQwjhtdbAE60ywpRNWKCcJJeVoytwFuQ3rzazxryFVkqXGynqEwRRGWCeVxFyEGgmSOS0S-LD6whVGuXHuevG9ItrBzqh6ZySw35vedRobfzM6Yjf1BiyL3T6Yza-quMoqtKXUiIR6nS-Y-obcjlCgVcXYoSgT2F15rIprdVH9cVcCe_0wrTL-dWIbP7tnG8XKNUqPEygHwTGY0HCkublu9bo1X3Ye6Tf_fvkOPBFcL5OXmSh2YX05v_dv4TH-Wt4s5u9iYP8G2TcFTA
  priority: 102
  providerName: ProQuest
Title Multitrack Compressed Sensing for Faster Hyperspectral Imaging
URI https://www.proquest.com/docview/2558928469
https://www.proquest.com/docview/2560060685
https://pubmed.ncbi.nlm.nih.gov/PMC8348118
https://doaj.org/article/ca738cc099be42549f0a1c2ca645bc27
Volume 21
WOSCitedRecordID wos000682226900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VygEOqA8QKXQVUA-9RGTtrB8XJKh2BVJZrfqQllNkO3aLaAPaXXrktzPjZFcbqVIvvfhgjxRnJpa_T5n5BuCDRU5QicAzpUyRISLmmTWU4-6NRrhLetCxa8lnOR6r6VRP1lp9UU5YIw_cOO7UGcmVcwhkrC-IzYTc9B1zRhQD61isI8-lXpKplmpxZF6NjhBHUn86R5qDUJwXndsnivR3kGU3L3Ltohm9gt0WIabnzc5ewwtfv4GdNd3At3DWlM3OjLtL6UBHAfAq_UrJ6PWPFHFoOjKkgJBeIs1sqinxSenV79iTaA--j4bfPl1mbSOEzCFbW2TOqkHFAuNVrn0QzGttuFXIarW3LiimrTIqGERjOhhpmWHCcgQ3udMyt4Hvw2Z9X_sDSAUnhTBZ9V3QhWbGcsFdzkLlEElZxRL4uHRQ6VqVcGpW8atEtkC-LFe-TOBkZfrQSGP8zeiCvLwyIDXrOIExLtsYl_-KcQJHyxiV7RGbl8iFlMbLVegEjlfLeDjoj4ep_f0j2QgSnBFqkIDsxLazoe5KffszymwrqlHuq3f_4w0OYZtRMkwuM1YcweZi9ujfw5b7s7idz3qwIacyjqoHLy-G48mXXvyecbx-GuLc5Op6cvMMfIT8ZA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRL0wLNVAwUCAolL1KyddewDIF6rXXW7WokilVOwHbtUhWy7uwXxp_iNzORFIyFuPXCNR3l4JpPvi8ffADw1yAly4XkkpU4iRMQ8Mppq3J1WCHdJD7rsWjJJp1N5eKhma_Cr2QtDZZVNTiwTdT639I98F6GvVJhLhXp1ehZR1yhaXW1aaFRhsed-_kDKtnwxfof-fcbY8P3B21FUdxWILFKfVWSNHOTMM57HynnBnFKaG4kUUTljvWTKSC29RmijvE4N00wYjkghtiqNjed43iuwnmCwxz1Yn433Z59aiseR8VX6RZyreHeJ9AopAE86X72yOUAH0XbrMS984IY3_7epuQU3aigdvq5i_zasueIObFwQWLwLL6v9xQttT0LKfKVSeh5-oKr94ihEwB4ONUlFhCPk49W2U5yacPytbN60CR8v5QG2oFfMC7cNoeAkpZbmfetVopg2XHAbM59bhJxGsgCeNx7NbC2nTl09vmZIq8j5Wev8AJ60pqeVhsjfjN5QWLQGJPtdHpgvjrI6i2RWp1xai6jeuISovY913zKrRTIwlqUB7DQRktW5aJn9CY8AHrfDmEVoaUgXbn5ONoKUeYQcBJB2grFzQ92R4vhLqUcuaTN3X97798UfwbXRwf4km4yne_fhOqPaoDiNWLIDvdXi3D2Aq_b76ni5eFi_VCF8vuxg_Q1Jp2Nq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMCBQwCiUu0WTvrxwEQUFZdtVpVAqS9pbZjlwrIlt0tiL_Gr2Mmj20jIW49cE2sPJwvk--LZ74BeOZQE5QyilRrm6fIiEXqLOW4B2uQ7pIfdN21ZE9Np3o2M_sb8LurhaG0yi4m1oG6nHv6Rz5A6qsNxlJpBrFNi9jfHr8-_p5SBylaae3aaTQQ2Q2_fqJ8W76cbOOzfs75-P3Hdztp22Eg9SiDVql3elTyyEWZmRAlD8ZY4TTKRROcj5obp62OFmmOiVY5brl0AllD5o3KXBR43AtwkSwFKSio2anYE6j9GicjIUw2WKLQQjEg8t73r24T0OO2_czMM5-68fX_eZJuwLWWYLM3zRtxEzZCdQuunrFdvA2vmqrjhfVfGMXD2j-9ZB8ol786ZEjj2diSgQTbQZXeFKPiNLHJt7ql0x34dC43cBc2q3kV7gGTggzWVDn00eSGWyek8BmPpUci6jRP4EX3dAvfmqxTr4-vBYotAkKxBkICT9dDjxtnkb8NeksQWQ8gM_B6w3xxWLSxpfBWCe09cn0XchL8MbNDz72V-ch5rhLY6tBStBFqWZxCJYEn690YW2jByFZhfkJjJPn1SD1KQPWA2bug_p7q6HPtUq6pxHuo7__75I_hMiK02JtMdx_AFU4JQ5lKeb4Fm6vFSXgIl_yP1dFy8ah-uxgcnDdS_wA1NGqX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multitrack+Compressed+Sensing+for+Faster+Hyperspectral+Imaging&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sharvaj+Kubal&rft.au=Elizabeth+Lee&rft.au=Chor+Yong+Tay&rft.au=Derrick+Yong&rft.date=2021-07-24&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft.spage=5034&rft_id=info:doi/10.3390%2Fs21155034&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ca738cc099be42549f0a1c2ca645bc27
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon