An Adaptive Filtering Method for Cooperative Localization in Leader–Follower AUVs

In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 22; číslo 13; s. 5016
Hlavní autori: Zhao, Lin, Dai, Hong-Yi, Lang, Lin, Zhang, Ming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 02.07.2022
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage–Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage–Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader–follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities.
AbstractList In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage–Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage–Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader–follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities.
In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader-follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage-Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage-Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader-follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities.In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader-follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage-Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage-Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader-follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities.
Author Lang, Lin
Zhao, Lin
Dai, Hong-Yi
Zhang, Ming
AuthorAffiliation 2 College of Science, National University of Defense Technology, Changsha 410073, China; daihongyi1@163.com
1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; zhaolin689@163.com (L.Z.); langlin_8502@nudt.edu.cn (L.L.)
AuthorAffiliation_xml – name: 2 College of Science, National University of Defense Technology, Changsha 410073, China; daihongyi1@163.com
– name: 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; zhaolin689@163.com (L.Z.); langlin_8502@nudt.edu.cn (L.L.)
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0000-0002-2096-5980
  surname: Zhao
  fullname: Zhao, Lin
– sequence: 2
  givenname: Hong-Yi
  surname: Dai
  fullname: Dai, Hong-Yi
– sequence: 3
  givenname: Lin
  surname: Lang
  fullname: Lang, Lin
– sequence: 4
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
BookMark eNptkctuEzEUhi3Uil5gwRuMxAYWaX0fzwYpighUStUFlK3lsc-kjhw72JNWsOIdeEOeBDepKlqx8rHP50_H_k_QQUwREHpD8BljHT4vlBImMJEv0DHhlE8Upfjgn_oInZSywpgyxtRLdMSEwkoQcoy-TGMzdWYz-lto5j6MkH1cNpcw3iTXDCk3s5Q2kM0OWCRrgv9ZNyk2PjYLMA7yn1-_5ymEdAe5mV5_K6_Q4WBCgdcP6ym6nn_8Ovs8WVx9uphNFxPLuRwnVlHH-o4wynqLOemFc8LwlhMsrWmdoIqrgStmOjVYkEY40bO2Y6yy1kl2ii72XpfMSm-yX5v8Qyfj9e4g5aU2efQ2gJZKMWplKzjvOVirwFUBSG56SfEwVNeHvWuz7dfgLMQxm_BE-rQT_Y1eplvdUdkpTKrg3YMgp-9bKKNe-2IhBBMhbYumUrUtrW9jFX37DF2lbY71q-4pSboam6jU-z1lcyolw_A4DMH6Pnb9GHtlz5-x1o-7lOqsPvznxl-IzK80
CitedBy_id crossref_primary_10_3390_jmse11101847
crossref_primary_10_1088_1361_6501_ace9ef
crossref_primary_10_3390_e26030243
crossref_primary_10_3390_app13085177
crossref_primary_10_3390_s23020916
crossref_primary_10_1007_s11071_024_09956_3
Cites_doi 10.3390/s20010060
10.33012/2017.15136
10.1177/0278364910380760
10.1016/j.oceaneng.2022.110812
10.1016/j.oceaneng.2022.111258
10.1134/S2075108717010059
10.1063/5.0019305
10.1007/s00190-013-0690-8
10.1109/JSEN.2019.2941273
10.3846/aviation.2021.13420
10.1109/OCEANS-Bergen.2013.6608166
10.3390/s16071073
10.1016/j.ijleo.2019.01.100
10.1109/TRO.2006.878957
10.1016/j.conengprac.2003.11.008
10.1109/OCEANSAP.2016.7485592
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22135016
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff
PMC9269801
10_3390_s22135016
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2020M683715
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-c82d3b91323bc041b5dd5a474106ca7d52848f483a98fce6a5d5b3793341bcd63
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824182100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:34:12 EST 2025
Tue Nov 04 01:57:26 EST 2025
Fri Sep 05 14:05:23 EDT 2025
Tue Oct 07 07:05:32 EDT 2025
Sat Nov 29 07:08:47 EST 2025
Tue Nov 18 22:44:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c82d3b91323bc041b5dd5a474106ca7d52848f483a98fce6a5d5b3793341bcd63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2096-5980
OpenAccessLink https://doaj.org/article/68832c67544b4ecc8edd63e64ab620ff
PMID 35808511
PQID 2686194245
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269801
proquest_miscellaneous_2687724103
proquest_journals_2686194245
crossref_primary_10_3390_s22135016
crossref_citationtrail_10_3390_s22135016
PublicationCentury 2000
PublicationDate 20220702
PublicationDateYYYYMMDD 2022-07-02
PublicationDate_xml – month: 7
  year: 2022
  text: 20220702
  day: 2
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Mourikis (ref_14) 2006; 22
Govaers (ref_4) 2018; Volume 1
Faghihinia (ref_13) 2021; 25
Narasimhappa (ref_19) 2020; 20
Zhang (ref_8) 2022; 254
Loebis (ref_10) 2004; 12
Kebkal (ref_3) 2017; 8
Fallon (ref_1) 2010; 29
ref_2
ref_18
Li (ref_12) 2011; 37
Xu (ref_9) 2019; 27
Wang (ref_11) 2022; 248
ref_16
ref_15
Zha (ref_21) 2019; 184
Chang (ref_17) 2014; 88
Zhai (ref_20) 2020; 91
ref_5
Wang (ref_7) 2016; 24
ref_6
References_xml – ident: ref_6
  doi: 10.3390/s20010060
– ident: ref_16
  doi: 10.33012/2017.15136
– volume: 37
  start-page: 724
  year: 2011
  ident: ref_12
  article-title: Localization Performance Analysis of Cooperative Navigation System for Multiple AUVs Based on Relative Position Measurements with a Single Leader
  publication-title: Acta Autom. Sin.
– volume: 29
  start-page: 1461
  year: 2010
  ident: ref_1
  article-title: Cooperative AUV Navigation using a Single Maneuvering Surface Craft
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364910380760
– volume: 248
  start-page: 110812
  year: 2022
  ident: ref_11
  article-title: Design and experimental results of passive iUSBL for small AUV navigation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110812
– volume: Volume 1
  start-page: 1
  year: 2018
  ident: ref_4
  article-title: Introduction to Kalman filter and its applications
  publication-title: Introduction and Implementations of the Kalman Filter
– volume: 254
  start-page: 111258
  year: 2022
  ident: ref_8
  article-title: Multiple model AUV navigation methodology with adaptivity and robustness
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111258
– volume: 8
  start-page: 80
  year: 2017
  ident: ref_3
  article-title: AUV acoustic positioning methods
  publication-title: Gyroscopy Navig.
  doi: 10.1134/S2075108717010059
– volume: 24
  start-page: 511
  year: 2016
  ident: ref_7
  article-title: Adaptive interacting multiple model filter for AUV integrated navigation
  publication-title: J. Chin. Inert. Technol.
– volume: 91
  start-page: 104501
  year: 2020
  ident: ref_20
  article-title: The robust residual-based adaptive estimation Kalman filter method for strap-down inertial and geomagnetic tightly integrated navigation system
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0019305
– volume: 88
  start-page: 391
  year: 2014
  ident: ref_17
  article-title: Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion
  publication-title: J. Geod.
  doi: 10.1007/s00190-013-0690-8
– volume: 20
  start-page: 250
  year: 2020
  ident: ref_19
  article-title: MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2941273
– ident: ref_15
– volume: 25
  start-page: 10
  year: 2021
  ident: ref_13
  article-title: Analytical Expression for Uncertainty Propagation of Aerial Cooperative Navigation
  publication-title: Aviation
  doi: 10.3846/aviation.2021.13420
– volume: 27
  start-page: 440
  year: 2019
  ident: ref_9
  article-title: A multi-AUV cooperative localization method based on adaptive neuro-fuzzy inference system
  publication-title: J. Chin. Inert. Technol.
– ident: ref_2
  doi: 10.1109/OCEANS-Bergen.2013.6608166
– ident: ref_18
  doi: 10.3390/s16071073
– volume: 184
  start-page: 165
  year: 2019
  ident: ref_21
  article-title: An improved nonlinear filter based on adaptive fading factor applied in alignment of SINS
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.01.100
– volume: 22
  start-page: 666
  year: 2006
  ident: ref_14
  article-title: Performance analysis of multirobot Cooperative localization
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2006.878957
– volume: 12
  start-page: 1531
  year: 2004
  ident: ref_10
  article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2003.11.008
– ident: ref_5
  doi: 10.1109/OCEANSAP.2016.7485592
SSID ssj0023338
Score 2.4026272
Snippet In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5016
SubjectTerms Accuracy
adaptive filter
Algorithms
Autonomous underwater vehicles
Communication
Decomposition
extended Kalman filter
Fuzzy logic
Localization
measurement anomaly
multi-AUV cooperative localization
Navigation systems
Sensors
Velocity
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM98EYECjKIA5dos3bi2Ce0VKxAaquVoFU5RYkfZSWUbDdbzvwH_iG_hJnEGxoJceJqjxQr8_z8-AbgtSqVrKTLYpt6Eacz5WPlkiQ2aia1y63X3dbF2VF-cqLOz_UyPI9uw7XKXUzsAnXP9kz3tjEIT21jaMd8yqUi-M3T7O36MqYeUnTWGhpq3IQ9It5KJrC3_Hi8_DIAMIF4rGcXEgj1py3nMzpXk6Oc1FH3j-rN8W3Ja-lncff_Lvwe3AllKJv3dnMfbrj6AexfIyd8CJ_mNZvbck3xkC1WdKqO4-y4aznNsNZlh02zdj1zODuinBjedLJVzfrWnb9-_FygoVEnNjY_PWsfweni_efDD3FowRAbxIlbVBm3otIIWUVlknRWZdZmZYplSCJNmdsMs5vyqRKlVt44WWY2qwT6PCbHylgpHsOkbmr3BFiuOdZKHsG716mTxCuHxYhwifbKW59H8GanhMIEfnJqk_GtQJxC-ioGfUXwahBd96QcfxN6R5ocBIhHuxtoNhdFcMtCKoxoRhILYJWiNStncdFOpmUleeJ9BAc7pRbBudvijw4jeDlMo1vSWUtZu-aqk0Hcgr9JRJCP7Ge0oPFMvfraEXxrLjVWDk___fFncJvTWwzaa-YHMNlurtxzuGW-b1ft5kWw_d9DBhhD
  priority: 102
  providerName: ProQuest
Title An Adaptive Filtering Method for Cooperative Localization in Leader–Follower AUVs
URI https://www.proquest.com/docview/2686194245
https://www.proquest.com/docview/2687724103
https://pubmed.ncbi.nlm.nih.gov/PMC9269801
https://doaj.org/article/68832c67544b4ecc8edd63e64ab620ff
Volume 22
WOSCitedRecordID wos000824182100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBHLhEm9qOH8fuqhVI26oCdlVOUeKHqITSatvluNr_wD_klzCTpFUjIXHh4oM9UpwZ2zOfH98AvDelUZUKeeplFKkcmpiakGWpM0Nlg_bRNlsXl-d6NjOLhZ0fpPqiO2EtPXCruBNlcMw5RTxtlcTvmeC9EkHJslI8i5FW30zbHZjqoJZA5NXyCAkE9Scbzod0gqZ63qch6e9Flv17kQeOZvIYHnURIhu1PXsCd0L9FB4e8AY-gy-jmo18uaalik2WdOCN9WzaZINmGIays9VqHVpSb3ZO7qp7bsmWNWuzav6-_TXBMUBJ0tjo4nLzHC4m469nH9MuO0LqEMJtUZvci8oimhSVy-Swyr3PS4kRQqZcqX2OjsdEaURpTXRBlbnPK4HTEf1W5VCHL-CoXtXhJTBtOYYxEXF1tDIoonzDOEGEzEYTfdQJfNhprXAddThlsPhRIIQgBRd7BSfwbi-6bvky_iZ0SqrfCxDFdVOBhi86wxf_MnwCxzvDFd282xRcGdqW4TJP4O2-GWcMHYOUdVhdNzIIKVBNIgHdM3ivQ_2Wevm94d62XFl06q_-xx-8hgecHlPQZjE_hqPt1XV4A_fdz-1yczWAu3qhm9IM4N7peDb_PGgGOZbTmzHWzT9N59_-ABrHBBI
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyRgwRsRKGAQSGyiZuzEsRcIDYVRR50ZjURblVVI_ICRUDJMpiB2_AP_wUfxJVznRSMhdl2wja3EsY_PvdePcwGeilTwjJvI16FlfjgU1hcmCHwlhlyaWFtZLV0cT-P5XJycyMUW_GzvwrhjlS0nVkStC-XWyHcpFy7gpmH0cvXZd1mj3O5qm0KjhsWB-fYVQ7byxeQ1ju8zSsdvDvf2_SargK8w9NlgK6hmmcQojGUqCIdZpHWUhmhZA67SWEdI2MKGgqVSWGV4GukoYwhj5PtMac7wvRdgO0SwBwPYXkxmi3ddiMcw4qv1ixiTwW5J6dDt3PGe1auSA_Q82v55zDMGbnztf-ua63C1caXJqMb-Ddgy-U24ckZg8Ra8HeVkpNOV43QyXrqTAficzKq02QT9dbJXFCtTq5-TqbPrzb1UssxJnX701_cfY5wsLpscGR0dl7fh6Fz-6g4M8iI3d4HEkqK_Z03GrAwNd9p46FAxE0grrLaxB8_bYU5Uo7HuUn18SjDWcohIOkR48KSruqqFRf5W6ZXDSlfBaYFXD4r1h6ShloQLZGXFnZJhFuKMFEZjow0P04zTwFoPdlrYJA1BlckfzHjwuCtGanH7RWluitOqDsZe2E3Mg7iH0F6D-iX58mMlUi4pl-j93Pv3xx_Bpf3D2TSZTuYH9-EydXdL3No53YHBZn1qHsBF9WWzLNcPm5lG4P15I_g3jSRo1Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4RgwRsRKGAQSGyiydiJYy8Qmj5GVB1GI6BVdyHxox0JJcNkCmLHP_A3fA5fwnVeNBJi1wXbxEoc5_j4Hj_OBXguUsEzbiJfh5b54UhYX5gg8JUYcWlibWU1dXE0jWczcXws5xvwsz0L47ZVtpxYEbUulJsjH1IunOCmYTS0zbaI-e7k9fKz7zJIuZXWNp1GDZED8-0ryrfy1f4u_usXlE72Puy88ZsMA75CGbTGGlHNMomKjGUqCEdZpHWUhjjKBlylsY6QvIUNBUulsMrwNNJRxhDSyP2Z0pzhcy_BZsxQ9Axgc3tvNn_XyT2G6q_2MmJMBsOS0pFbxeO9EbBKFNCLbvt7M88NdpMb_3Mz3YTrTYhNxnWfuAUbJr8N184ZL96B9-OcjHW6dFxPJgu3YwCvk7dVOm2CcTzZKYqlqV3RydSN9815VbLISZ2W9Nf3HxPsRC7LHBkfHpV34fBCvuoeDPIiN_eBxJJiHGhNxqwMDXeeeRhoMRNIK6y2sQcv21-eqMZ73aUA-ZSgBnPoSDp0ePCsK7qsDUf-Vmjb4aYr4DzCqwvF6iRpKCfhAtlacedwmIXYU4XRWGnDwzTjNLDWg60WQklDXGXyBz8ePO1uI-W4daQ0N8VZVQY1GTYT8yDuobVXof6dfHFamZdLyiVGRQ_-_fIncAVhm0z3ZwcP4Sp1R07clDrdgsF6dWYewWX1Zb0oV4-bTkfg40UD-Ddg_HFv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Filtering+Method+for+Cooperative+Localization+in+Leader%E2%80%93Follower+AUVs&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin+Zhao&rft.au=Hong-Yi+Dai&rft.au=Lin+Lang&rft.au=Ming+Zhang&rft.date=2022-07-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=5016&rft_id=info:doi/10.3390%2Fs22135016&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon