An Adaptive Filtering Method for Cooperative Localization in Leader–Follower AUVs
In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observa...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 22; číslo 13; s. 5016 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
02.07.2022
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage–Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage–Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader–follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities. |
|---|---|
| AbstractList | In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader–follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage–Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage–Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader–follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities. In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader-follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage-Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage-Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader-follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities.In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging. When the conventional Kalman filter (KF) is applied to the cooperative localization of leader-follower AUVs, the outliers in the sensor observations will have a substantial adverse effect on the localization accuracy of the AUVs. Meanwhile, inaccurate noise covariance matrices may result in significant estimation errors. In this paper, we proposed an improved Sage-Husa adaptive extended Kalman filter (improved SHAEKF) for the cooperative localization of multi-AUVs. Firstly, the measurement anomalies were evaluated by calculating the Chi-square test statistics based on the innovation. The detection threshold was determined according to the confidence level of the Chi-square test, and the Chi-square test statistics exceeding the threshold were regarded as measurement abnormalities. When measurement anomalies occurred, the Sage-Husa adaptive extended Kalman filter algorithm was improved by suboptimal maximum a posterior estimation using weighted exponential fading memory, and the measurement noise covariance matrix was adjusted online. The numerical simulation of leader-follower multi-AUV cooperative localization verified the effectiveness of the improved SHAEKF and demonstrated that the average root mean square and the average standard deviation of the localization errors based on the improved SHAEKF were significantly reduced in the case of the presence of measurement abnormalities. |
| Author | Lang, Lin Zhao, Lin Dai, Hong-Yi Zhang, Ming |
| AuthorAffiliation | 2 College of Science, National University of Defense Technology, Changsha 410073, China; daihongyi1@163.com 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; zhaolin689@163.com (L.Z.); langlin_8502@nudt.edu.cn (L.L.) |
| AuthorAffiliation_xml | – name: 2 College of Science, National University of Defense Technology, Changsha 410073, China; daihongyi1@163.com – name: 1 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; zhaolin689@163.com (L.Z.); langlin_8502@nudt.edu.cn (L.L.) |
| Author_xml | – sequence: 1 givenname: Lin orcidid: 0000-0002-2096-5980 surname: Zhao fullname: Zhao, Lin – sequence: 2 givenname: Hong-Yi surname: Dai fullname: Dai, Hong-Yi – sequence: 3 givenname: Lin surname: Lang fullname: Lang, Lin – sequence: 4 givenname: Ming surname: Zhang fullname: Zhang, Ming |
| BookMark | eNptkctuEzEUhi3Uil5gwRuMxAYWaX0fzwYpighUStUFlK3lsc-kjhw72JNWsOIdeEOeBDepKlqx8rHP50_H_k_QQUwREHpD8BljHT4vlBImMJEv0DHhlE8Upfjgn_oInZSywpgyxtRLdMSEwkoQcoy-TGMzdWYz-lto5j6MkH1cNpcw3iTXDCk3s5Q2kM0OWCRrgv9ZNyk2PjYLMA7yn1-_5ymEdAe5mV5_K6_Q4WBCgdcP6ym6nn_8Ovs8WVx9uphNFxPLuRwnVlHH-o4wynqLOemFc8LwlhMsrWmdoIqrgStmOjVYkEY40bO2Y6yy1kl2ii72XpfMSm-yX5v8Qyfj9e4g5aU2efQ2gJZKMWplKzjvOVirwFUBSG56SfEwVNeHvWuz7dfgLMQxm_BE-rQT_Y1eplvdUdkpTKrg3YMgp-9bKKNe-2IhBBMhbYumUrUtrW9jFX37DF2lbY71q-4pSboam6jU-z1lcyolw_A4DMH6Pnb9GHtlz5-x1o-7lOqsPvznxl-IzK80 |
| CitedBy_id | crossref_primary_10_3390_jmse11101847 crossref_primary_10_1088_1361_6501_ace9ef crossref_primary_10_3390_e26030243 crossref_primary_10_3390_app13085177 crossref_primary_10_3390_s23020916 crossref_primary_10_1007_s11071_024_09956_3 |
| Cites_doi | 10.3390/s20010060 10.33012/2017.15136 10.1177/0278364910380760 10.1016/j.oceaneng.2022.110812 10.1016/j.oceaneng.2022.111258 10.1134/S2075108717010059 10.1063/5.0019305 10.1007/s00190-013-0690-8 10.1109/JSEN.2019.2941273 10.3846/aviation.2021.13420 10.1109/OCEANS-Bergen.2013.6608166 10.3390/s16071073 10.1016/j.ijleo.2019.01.100 10.1109/TRO.2006.878957 10.1016/j.conengprac.2003.11.008 10.1109/OCEANSAP.2016.7485592 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22135016 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff PMC9269801 10_3390_s22135016 |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2020M683715 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-c82d3b91323bc041b5dd5a474106ca7d52848f483a98fce6a5d5b3793341bcd63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824182100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:34:12 EST 2025 Tue Nov 04 01:57:26 EST 2025 Fri Sep 05 14:05:23 EDT 2025 Tue Oct 07 07:05:32 EDT 2025 Sat Nov 29 07:08:47 EST 2025 Tue Nov 18 22:44:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-c82d3b91323bc041b5dd5a474106ca7d52848f483a98fce6a5d5b3793341bcd63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2096-5980 |
| OpenAccessLink | https://doaj.org/article/68832c67544b4ecc8edd63e64ab620ff |
| PMID | 35808511 |
| PQID | 2686194245 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269801 proquest_miscellaneous_2687724103 proquest_journals_2686194245 crossref_primary_10_3390_s22135016 crossref_citationtrail_10_3390_s22135016 |
| PublicationCentury | 2000 |
| PublicationDate | 20220702 |
| PublicationDateYYYYMMDD | 2022-07-02 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220702 day: 2 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Mourikis (ref_14) 2006; 22 Govaers (ref_4) 2018; Volume 1 Faghihinia (ref_13) 2021; 25 Narasimhappa (ref_19) 2020; 20 Zhang (ref_8) 2022; 254 Loebis (ref_10) 2004; 12 Kebkal (ref_3) 2017; 8 Fallon (ref_1) 2010; 29 ref_2 ref_18 Li (ref_12) 2011; 37 Xu (ref_9) 2019; 27 Wang (ref_11) 2022; 248 ref_16 ref_15 Zha (ref_21) 2019; 184 Chang (ref_17) 2014; 88 Zhai (ref_20) 2020; 91 ref_5 Wang (ref_7) 2016; 24 ref_6 |
| References_xml | – ident: ref_6 doi: 10.3390/s20010060 – ident: ref_16 doi: 10.33012/2017.15136 – volume: 37 start-page: 724 year: 2011 ident: ref_12 article-title: Localization Performance Analysis of Cooperative Navigation System for Multiple AUVs Based on Relative Position Measurements with a Single Leader publication-title: Acta Autom. Sin. – volume: 29 start-page: 1461 year: 2010 ident: ref_1 article-title: Cooperative AUV Navigation using a Single Maneuvering Surface Craft publication-title: Int. J. Robot. Res. doi: 10.1177/0278364910380760 – volume: 248 start-page: 110812 year: 2022 ident: ref_11 article-title: Design and experimental results of passive iUSBL for small AUV navigation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110812 – volume: Volume 1 start-page: 1 year: 2018 ident: ref_4 article-title: Introduction to Kalman filter and its applications publication-title: Introduction and Implementations of the Kalman Filter – volume: 254 start-page: 111258 year: 2022 ident: ref_8 article-title: Multiple model AUV navigation methodology with adaptivity and robustness publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111258 – volume: 8 start-page: 80 year: 2017 ident: ref_3 article-title: AUV acoustic positioning methods publication-title: Gyroscopy Navig. doi: 10.1134/S2075108717010059 – volume: 24 start-page: 511 year: 2016 ident: ref_7 article-title: Adaptive interacting multiple model filter for AUV integrated navigation publication-title: J. Chin. Inert. Technol. – volume: 91 start-page: 104501 year: 2020 ident: ref_20 article-title: The robust residual-based adaptive estimation Kalman filter method for strap-down inertial and geomagnetic tightly integrated navigation system publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0019305 – volume: 88 start-page: 391 year: 2014 ident: ref_17 article-title: Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion publication-title: J. Geod. doi: 10.1007/s00190-013-0690-8 – volume: 20 start-page: 250 year: 2020 ident: ref_19 article-title: MEMS-Based IMU Drift Minimization: Sage Husa Adaptive Robust Kalman Filtering publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2941273 – ident: ref_15 – volume: 25 start-page: 10 year: 2021 ident: ref_13 article-title: Analytical Expression for Uncertainty Propagation of Aerial Cooperative Navigation publication-title: Aviation doi: 10.3846/aviation.2021.13420 – volume: 27 start-page: 440 year: 2019 ident: ref_9 article-title: A multi-AUV cooperative localization method based on adaptive neuro-fuzzy inference system publication-title: J. Chin. Inert. Technol. – ident: ref_2 doi: 10.1109/OCEANS-Bergen.2013.6608166 – ident: ref_18 doi: 10.3390/s16071073 – volume: 184 start-page: 165 year: 2019 ident: ref_21 article-title: An improved nonlinear filter based on adaptive fading factor applied in alignment of SINS publication-title: Optik doi: 10.1016/j.ijleo.2019.01.100 – volume: 22 start-page: 666 year: 2006 ident: ref_14 article-title: Performance analysis of multirobot Cooperative localization publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2006.878957 – volume: 12 start-page: 1531 year: 2004 ident: ref_10 article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2003.11.008 – ident: ref_5 doi: 10.1109/OCEANSAP.2016.7485592 |
| SSID | ssj0023338 |
| Score | 2.4026272 |
| Snippet | In the complex and variable marine environment, the navigation and localization of autonomous underwater vehicles (AUVs) are very important and challenging.... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5016 |
| SubjectTerms | Accuracy adaptive filter Algorithms Autonomous underwater vehicles Communication Decomposition extended Kalman filter Fuzzy logic Localization measurement anomaly multi-AUV cooperative localization Navigation systems Sensors Velocity |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM98EYECjKIA5dos3bi2Ce0VKxAaquVoFU5RYkfZSWUbDdbzvwH_iG_hJnEGxoJceJqjxQr8_z8-AbgtSqVrKTLYpt6Eacz5WPlkiQ2aia1y63X3dbF2VF-cqLOz_UyPI9uw7XKXUzsAnXP9kz3tjEIT21jaMd8yqUi-M3T7O36MqYeUnTWGhpq3IQ9It5KJrC3_Hi8_DIAMIF4rGcXEgj1py3nMzpXk6Oc1FH3j-rN8W3Ja-lncff_Lvwe3AllKJv3dnMfbrj6AexfIyd8CJ_mNZvbck3xkC1WdKqO4-y4aznNsNZlh02zdj1zODuinBjedLJVzfrWnb9-_FygoVEnNjY_PWsfweni_efDD3FowRAbxIlbVBm3otIIWUVlknRWZdZmZYplSCJNmdsMs5vyqRKlVt44WWY2qwT6PCbHylgpHsOkbmr3BFiuOdZKHsG716mTxCuHxYhwifbKW59H8GanhMIEfnJqk_GtQJxC-ioGfUXwahBd96QcfxN6R5ocBIhHuxtoNhdFcMtCKoxoRhILYJWiNStncdFOpmUleeJ9BAc7pRbBudvijw4jeDlMo1vSWUtZu-aqk0Hcgr9JRJCP7Ge0oPFMvfraEXxrLjVWDk___fFncJvTWwzaa-YHMNlurtxzuGW-b1ft5kWw_d9DBhhD priority: 102 providerName: ProQuest |
| Title | An Adaptive Filtering Method for Cooperative Localization in Leader–Follower AUVs |
| URI | https://www.proquest.com/docview/2686194245 https://www.proquest.com/docview/2687724103 https://pubmed.ncbi.nlm.nih.gov/PMC9269801 https://doaj.org/article/68832c67544b4ecc8edd63e64ab620ff |
| Volume | 22 |
| WOSCitedRecordID | wos000824182100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BwgEOiKcILJVBHLhEm9qOH8fuqhVI26oCdlVOUeKHqITSatvluNr_wD_klzCTpFUjIXHh4oM9UpwZ2zOfH98AvDelUZUKeeplFKkcmpiakGWpM0Nlg_bRNlsXl-d6NjOLhZ0fpPqiO2EtPXCruBNlcMw5RTxtlcTvmeC9EkHJslI8i5FW30zbHZjqoJZA5NXyCAkE9Scbzod0gqZ63qch6e9Flv17kQeOZvIYHnURIhu1PXsCd0L9FB4e8AY-gy-jmo18uaalik2WdOCN9WzaZINmGIays9VqHVpSb3ZO7qp7bsmWNWuzav6-_TXBMUBJ0tjo4nLzHC4m469nH9MuO0LqEMJtUZvci8oimhSVy-Swyr3PS4kRQqZcqX2OjsdEaURpTXRBlbnPK4HTEf1W5VCHL-CoXtXhJTBtOYYxEXF1tDIoonzDOEGEzEYTfdQJfNhprXAddThlsPhRIIQgBRd7BSfwbi-6bvky_iZ0SqrfCxDFdVOBhi86wxf_MnwCxzvDFd282xRcGdqW4TJP4O2-GWcMHYOUdVhdNzIIKVBNIgHdM3ivQ_2Wevm94d62XFl06q_-xx-8hgecHlPQZjE_hqPt1XV4A_fdz-1yczWAu3qhm9IM4N7peDb_PGgGOZbTmzHWzT9N59_-ABrHBBI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyRgwRsRKGAQSGyiZuzEsRcIDYVRR50ZjURblVVI_ICRUDJMpiB2_AP_wUfxJVznRSMhdl2wja3EsY_PvdePcwGeilTwjJvI16FlfjgU1hcmCHwlhlyaWFtZLV0cT-P5XJycyMUW_GzvwrhjlS0nVkStC-XWyHcpFy7gpmH0cvXZd1mj3O5qm0KjhsWB-fYVQ7byxeQ1ju8zSsdvDvf2_SargK8w9NlgK6hmmcQojGUqCIdZpHWUhmhZA67SWEdI2MKGgqVSWGV4GukoYwhj5PtMac7wvRdgO0SwBwPYXkxmi3ddiMcw4qv1ixiTwW5J6dDt3PGe1auSA_Q82v55zDMGbnztf-ua63C1caXJqMb-Ddgy-U24ckZg8Ra8HeVkpNOV43QyXrqTAficzKq02QT9dbJXFCtTq5-TqbPrzb1UssxJnX701_cfY5wsLpscGR0dl7fh6Fz-6g4M8iI3d4HEkqK_Z03GrAwNd9p46FAxE0grrLaxB8_bYU5Uo7HuUn18SjDWcohIOkR48KSruqqFRf5W6ZXDSlfBaYFXD4r1h6ShloQLZGXFnZJhFuKMFEZjow0P04zTwFoPdlrYJA1BlckfzHjwuCtGanH7RWluitOqDsZe2E3Mg7iH0F6D-iX58mMlUi4pl-j93Pv3xx_Bpf3D2TSZTuYH9-EydXdL3No53YHBZn1qHsBF9WWzLNcPm5lG4P15I_g3jSRo1Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4RgwRsRKGAQSGyiydiJYy8Qmj5GVB1GI6BVdyHxox0JJcNkCmLHP_A3fA5fwnVeNBJi1wXbxEoc5_j4Hj_OBXguUsEzbiJfh5b54UhYX5gg8JUYcWlibWU1dXE0jWczcXws5xvwsz0L47ZVtpxYEbUulJsjH1IunOCmYTS0zbaI-e7k9fKz7zJIuZXWNp1GDZED8-0ryrfy1f4u_usXlE72Puy88ZsMA75CGbTGGlHNMomKjGUqCEdZpHWUhjjKBlylsY6QvIUNBUulsMrwNNJRxhDSyP2Z0pzhcy_BZsxQ9Axgc3tvNn_XyT2G6q_2MmJMBsOS0pFbxeO9EbBKFNCLbvt7M88NdpMb_3Mz3YTrTYhNxnWfuAUbJr8N184ZL96B9-OcjHW6dFxPJgu3YwCvk7dVOm2CcTzZKYqlqV3RydSN9815VbLISZ2W9Nf3HxPsRC7LHBkfHpV34fBCvuoeDPIiN_eBxJJiHGhNxqwMDXeeeRhoMRNIK6y2sQcv21-eqMZ73aUA-ZSgBnPoSDp0ePCsK7qsDUf-Vmjb4aYr4DzCqwvF6iRpKCfhAtlacedwmIXYU4XRWGnDwzTjNLDWg60WQklDXGXyBz8ePO1uI-W4daQ0N8VZVQY1GTYT8yDuobVXof6dfHFamZdLyiVGRQ_-_fIncAVhm0z3ZwcP4Sp1R07clDrdgsF6dWYewWX1Zb0oV4-bTkfg40UD-Ddg_HFv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Filtering+Method+for+Cooperative+Localization+in+Leader%E2%80%93Follower+AUVs&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lin+Zhao&rft.au=Hong-Yi+Dai&rft.au=Lin+Lang&rft.au=Ming+Zhang&rft.date=2022-07-02&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft.spage=5016&rft_id=info:doi/10.3390%2Fs22135016&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_68832c67544b4ecc8edd63e64ab620ff |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |