Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method

The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 22; H. 14; S. 5203
Hauptverfasser: Li, Xiaohan, Niu, Shengtao, Bao, Hong, Hu, Naigang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 12.07.2022
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally. Firstly, this paper constructs a dual-objective model based on the accuracy and robustness indexes. Then, an improved adaptive multi-objective particle swarm optimization (IAMOPSO) algorithm is developed for this model, which introduces initialization strategy, the adaptive inertia weight strategy, the guided particle selection strategy and the external candidate solution (ECS) set maintenance strategy to multi-objective particle swarm optimization (MOPSO). Afterwards, the performance of IAMOPSO is verified by comparing with MOPSO applied on the existing inverse beam model. Finally, the IAMOPSO is employed to the deformation reconstruction of complex plate-beam model. The numerical and experimental results demonstrate that the IAMOPSO is an excellent tool for sensor layout in iFEM.
AbstractList The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally. Firstly, this paper constructs a dual-objective model based on the accuracy and robustness indexes. Then, an improved adaptive multi-objective particle swarm optimization (IAMOPSO) algorithm is developed for this model, which introduces initialization strategy, the adaptive inertia weight strategy, the guided particle selection strategy and the external candidate solution (ECS) set maintenance strategy to multi-objective particle swarm optimization (MOPSO). Afterwards, the performance of IAMOPSO is verified by comparing with MOPSO applied on the existing inverse beam model. Finally, the IAMOPSO is employed to the deformation reconstruction of complex plate-beam model. The numerical and experimental results demonstrate that the IAMOPSO is an excellent tool for sensor layout in iFEM.The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally. Firstly, this paper constructs a dual-objective model based on the accuracy and robustness indexes. Then, an improved adaptive multi-objective particle swarm optimization (IAMOPSO) algorithm is developed for this model, which introduces initialization strategy, the adaptive inertia weight strategy, the guided particle selection strategy and the external candidate solution (ECS) set maintenance strategy to multi-objective particle swarm optimization (MOPSO). Afterwards, the performance of IAMOPSO is verified by comparing with MOPSO applied on the existing inverse beam model. Finally, the IAMOPSO is employed to the deformation reconstruction of complex plate-beam model. The numerical and experimental results demonstrate that the IAMOPSO is an excellent tool for sensor layout in iFEM.
The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally. Firstly, this paper constructs a dual-objective model based on the accuracy and robustness indexes. Then, an improved adaptive multi-objective particle swarm optimization (IAMOPSO) algorithm is developed for this model, which introduces initialization strategy, the adaptive inertia weight strategy, the guided particle selection strategy and the external candidate solution (ECS) set maintenance strategy to multi-objective particle swarm optimization (MOPSO). Afterwards, the performance of IAMOPSO is verified by comparing with MOPSO applied on the existing inverse beam model. Finally, the IAMOPSO is employed to the deformation reconstruction of complex plate-beam model. The numerical and experimental results demonstrate that the IAMOPSO is an excellent tool for sensor layout in iFEM.
Author Bao, Hong
Niu, Shengtao
Li, Xiaohan
Hu, Naigang
AuthorAffiliation Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi’an 710071, China; xhanli@stu.xidian.edu.cn (X.L.); stniu@stu.xidian.edu.cn (S.N.); nghu@xidian.edu.cn (N.H.)
AuthorAffiliation_xml – name: Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xidian University, Xi’an 710071, China; xhanli@stu.xidian.edu.cn (X.L.); stniu@stu.xidian.edu.cn (S.N.); nghu@xidian.edu.cn (N.H.)
Author_xml – sequence: 1
  givenname: Xiaohan
  surname: Li
  fullname: Li, Xiaohan
– sequence: 2
  givenname: Shengtao
  surname: Niu
  fullname: Niu, Shengtao
– sequence: 3
  givenname: Hong
  surname: Bao
  fullname: Bao, Hong
– sequence: 4
  givenname: Naigang
  surname: Hu
  fullname: Hu, Naigang
BookMark eNplksluFDEQhlsoiCxw4A0scYFDE2-9-IIURVlGmmiQBs6Wu7s841G33djuicKVF8ezgEg4uar81V-LfZ6dWGchy94T_JkxgS8DpYQXFLNX2RnhlOc1pfjkH_s0Ow9hgzFljNVvslNW1ALXNT_Lfs2G0bstdOiqU2M0W0APUx9Nvmg20O79r8pH0_aAlo_KD2iRqMH8VNE4i5xGS7DBeTRXT26KSCdzuVYj7OPGrtCjiWs0s1vwAdCtsSYCuulhABvRA8S1695mr7XqA7w7nhfZ99ubb9f3-XxxN7u-muct52XMWwa6qUpVd5yoWlG9m13zqgSNtSh1hTtgdcNwi1nHmyK5RCjRaF7URck4u8hmB93OqY0cvRmUf5JOGbkPOL-Sx1EldEyTJCpApQqsaZqKN6ArJTgpaFskrS8HrXFqBujaNI1X_TPR5zfWrOXKbaVgpKjorpmPRwHvfkwQohxMaKHvlQU3BUlLUVBBKBYJ_fAC3bjJ27SqHcVxSQQlibo8UK13IXjQsjVx_0qpvuklwXK3MPn3s6SMTy8y_rT_P_sbaZ7BTA
CitedBy_id crossref_primary_10_1016_j_ast_2024_109665
crossref_primary_10_1007_s11709_023_1032_4
crossref_primary_10_1016_j_measurement_2024_116289
crossref_primary_10_1016_j_ymssp_2023_111093
crossref_primary_10_1016_j_tws_2024_111907
crossref_primary_10_3390_s23198176
crossref_primary_10_1109_JSEN_2024_3351914
crossref_primary_10_1109_TIM_2024_3522381
crossref_primary_10_1016_j_oceaneng_2025_122248
crossref_primary_10_3390_s23135793
crossref_primary_10_1016_j_tws_2024_112127
crossref_primary_10_3390_s23135962
crossref_primary_10_3390_s25154547
crossref_primary_10_1007_s11012_024_01925_9
Cites_doi 10.1111/mice.12517
10.1016/j.enconman.2016.05.073
10.1016/j.swevo.2021.100847
10.3390/s19051192
10.1088/0964-1726/23/4/045027
10.1016/j.measurement.2020.108347
10.1002/eqe.2486
10.1155/2018/6121293
10.1109/ACCESS.2021.3086559
10.3390/s19061306
10.1088/1742-6596/1881/4/042018
10.3390/s21124221
10.3390/s22041692
10.1061/(ASCE)CP.1943-5487.0000905
10.1177/1350650117724639
10.3390/e21060602
10.1016/j.measurement.2017.09.022
10.3390/en11102716
10.1016/j.paerosci.2018.04.001
10.1016/j.procs.2016.07.135
10.1016/j.cageo.2018.01.016
10.1016/j.asoc.2018.10.012
10.3390/app8091454
10.1016/j.ijsolstr.2012.06.009
10.1109/TCYB.2017.2710133
10.1016/j.cma.2004.03.015
10.1016/j.measurement.2021.110676
10.1007/s10462-012-9378-3
10.1007/s10462-015-9445-7
10.1016/j.measurement.2020.108533
10.1016/j.jsv.2018.07.006
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22145203
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ed3f1f969eaf473bbb74bef7a94152c5
PMC9315724
10_3390_s22145203
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51775401
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-c3efb76a8d41a8a2f3390f476ef0f96f70de38b30c03d4b50de19a9bf45856343
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832074200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Nov 10 04:35:01 EST 2025
Tue Nov 04 02:02:30 EST 2025
Sun Aug 24 03:40:33 EDT 2025
Tue Oct 07 07:46:06 EDT 2025
Tue Nov 18 22:10:04 EST 2025
Sat Nov 29 07:13:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c3efb76a8d41a8a2f3390f476ef0f96f70de38b30c03d4b50de19a9bf45856343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2694061921?pq-origsite=%requestingapplication%
PMID 35890884
PQID 2694061921
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_ed3f1f969eaf473bbb74bef7a94152c5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9315724
proquest_miscellaneous_2695291209
proquest_journals_2694061921
crossref_citationtrail_10_3390_s22145203
crossref_primary_10_3390_s22145203
PublicationCentury 2000
PublicationDate 20220712
PublicationDateYYYYMMDD 2022-07-12
PublicationDate_xml – month: 7
  year: 2022
  text: 20220712
  day: 12
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Cheshmehgaz (ref_19) 2015; 43
Chen (ref_15) 2022; 71
Guo (ref_4) 2022; 4
ref_36
ref_30
Azimi (ref_6) 2020; 35
Zhou (ref_25) 2016; 123
ref_18
Ratnam (ref_22) 2018; 114
Zhao (ref_13) 2017; 2017
Mandal (ref_27) 2021; 169
Roshan (ref_1) 2021; 21
Zhao (ref_17) 2018; 2018
Han (ref_26) 2021; 62
Gerardo (ref_3) 2022; 22
Gherlone (ref_12) 2014; 23
Niu (ref_14) 2022; 190
Guo (ref_7) 2021; 1881
Yuen (ref_16) 2015; 44
Luu (ref_29) 2018; 113
Deng (ref_31) 2021; 9
Gherlone (ref_11) 2012; 49
Zhu (ref_33) 2017; 47
ref_24
Engelbrecht (ref_37) 2016; 45
ref_20
Li (ref_34) 2016; 91
Das (ref_2) 2021; 169
Tessler (ref_10) 2005; 194
Akbarzadeh (ref_21) 2018; 232
Liu (ref_23) 2018; 74
Huang (ref_5) 2020; 34
ref_28
Yu (ref_32) 2019; 18
Gordis (ref_35) 2018; 433
ref_9
Gherlone (ref_8) 2018; 99
References_xml – volume: 4
  start-page: 256
  year: 2022
  ident: ref_4
  article-title: Research on Real-time Signal Stability of Computer Monitoring Bridge Structure Health Sensor
  publication-title: Sci. J. Intell. Syst. Res.
– ident: ref_9
– volume: 35
  start-page: 597
  year: 2020
  ident: ref_6
  article-title: Structural health monitoring using extremely compressed data through deep learning
  publication-title: Comput. Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12517
– volume: 123
  start-page: 116
  year: 2016
  ident: ref_25
  article-title: Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.05.073
– volume: 62
  start-page: 100847
  year: 2021
  ident: ref_26
  article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2021.100847
– ident: ref_28
  doi: 10.3390/s19051192
– volume: 23
  start-page: 045027
  year: 2014
  ident: ref_12
  article-title: An inverse finite element method for beam shape sensing: Theoretical framework and experimental validation
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/4/045027
– volume: 169
  start-page: 108347
  year: 2021
  ident: ref_27
  article-title: Multi-objective optimization of Cu-MWCNT composite electrode in electro discharge machining using MOPSO-TOPSIS
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108347
– volume: 44
  start-page: 757
  year: 2015
  ident: ref_16
  article-title: Efficient Bayesian sensor placement algorithm for structural identification: A general approach for multi-type sensory systems
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.2486
– volume: 2018
  start-page: 6121293
  year: 2018
  ident: ref_17
  article-title: Optimal Sensor Placement for Inverse Finite Element Reconstruction of Three-Dimensional Frame Deformation
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2018/6121293
– volume: 9
  start-page: 89741
  year: 2021
  ident: ref_31
  article-title: A Competitive Particle Swarm Algorithm Based on Vector Angles for Multi-Objective Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086559
– ident: ref_18
  doi: 10.3390/s19061306
– volume: 1881
  start-page: 042018
  year: 2021
  ident: ref_7
  article-title: Analysis on Structural Health Monitoring System of High-Pile Wharf Based on Optical Fiber Sensor
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1881/4/042018
– volume: 21
  start-page: 4221
  year: 2021
  ident: ref_1
  article-title: Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth
  publication-title: Sensors
  doi: 10.3390/s21124221
– volume: 22
  start-page: 1692
  year: 2022
  ident: ref_3
  article-title: Methodology for Detecting Progressive Damage in Structures Using Ultrasound-Guided Waves
  publication-title: Sensors
  doi: 10.3390/s22041692
– volume: 34
  start-page: 04020025
  year: 2020
  ident: ref_5
  article-title: Anomaly Identification of Structural Health Monitoring Data Using Dynamic Independent Component Analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000905
– volume: 232
  start-page: 657
  year: 2018
  ident: ref_21
  article-title: Multiobjective optimization of thermohydrodynamic journal bearing using MOPSO algorithm
  publication-title: Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
  doi: 10.1177/1350650117724639
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_13
  article-title: The Application Research of Inverse Finite Element Method for Frame Deformation Estimation
  publication-title: Int. J. Aerosp. Eng.
– ident: ref_30
  doi: 10.3390/e21060602
– volume: 114
  start-page: 78
  year: 2018
  ident: ref_22
  article-title: An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.022
– ident: ref_24
  doi: 10.3390/en11102716
– volume: 99
  start-page: 14
  year: 2018
  ident: ref_8
  article-title: Shape sensing methods: Review and experimental comparison on a wing-shaped plate
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2018.04.001
– volume: 91
  start-page: 1001
  year: 2016
  ident: ref_34
  article-title: A Novel Ranking-based Optimal Guides Selection Strategy in MOPSO
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.07.135
– volume: 113
  start-page: 81
  year: 2018
  ident: ref_29
  article-title: A parallel competitive Particle Swarm Optimization for non-linear first arrival traveltime tomography and uncertainty quantification
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2018.01.016
– volume: 74
  start-page: 167
  year: 2018
  ident: ref_23
  article-title: Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.10.012
– ident: ref_20
  doi: 10.3390/app8091454
– volume: 49
  start-page: 3100
  year: 2012
  ident: ref_11
  article-title: Shape sensing of 3D frame structures using an inverse Finite Element Method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.06.009
– volume: 47
  start-page: 2794
  year: 2017
  ident: ref_33
  article-title: An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2710133
– ident: ref_36
– volume: 18
  start-page: 349
  year: 2019
  ident: ref_32
  article-title: Decomposition-based multi-objective comprehensive learning particle swarm optimisation
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 194
  start-page: 327
  year: 2005
  ident: ref_10
  article-title: A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.03.015
– volume: 190
  start-page: 110676
  year: 2022
  ident: ref_14
  article-title: Shape sensing of plate structures through coupling inverse finite element method and scaled boundary element analysis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110676
– volume: 43
  start-page: 311
  year: 2015
  ident: ref_19
  article-title: The review of multiple evolutionary searches and multi-objective evolutionary algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9378-3
– volume: 45
  start-page: 131
  year: 2016
  ident: ref_37
  article-title: Particle swarm optimization with crossover: A review and empirical analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-015-9445-7
– volume: 169
  start-page: 108533
  year: 2021
  ident: ref_2
  article-title: Performance of swarm intelligence based chaotic meta-heuristic algorithms in civil structural health monitoring
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108533
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_15
  article-title: A Unified Full-Field Deformation Measurement Method for Beam-Like Structure
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 433
  start-page: 179
  year: 2018
  ident: ref_35
  article-title: Minimum condition number by orthogonal projection row selection of artificial boundary conditions for finite element model update and damage detection
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.07.006
SSID ssj0023338
Score 2.4711735
Snippet The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5203
SubjectTerms Accuracy
Archives & records
Deformation
deformation reconstruction
Efficiency
Engineering
exploitation
exploration
external candidate solution set
Finite element analysis
Genetic algorithms
inverse finite element method
multi-objective particle swarm optimization
Optimization algorithms
Sensors
Working conditions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqgc4IJ4ipVQGceASNYmdOD6WqisO0FZakHqL7NhWF9Fkld0FceaPM-N4VxsJqReOcUaxPX7MfI7nG4D3qjKW60ynTkqfCpWXqUI7k3Jt0GJUGhegCMkm5OVlfXOjrvdSfdGdsJEeeFTcqbPc515VymkvJDfGSGGcl1qR6WkDeyl6PVswFaEWR-Q18ghxBPWnq4IIuYttZqxofQJJ_8SznN6L3DM0syfwOHqI7Gxs2VN44Lpn8GiPN_A5_BmPApxlZ1YvacNiIZA2vTLfxw2MXceesfkvPdyxK5S6iyGXrPdsjui1H9hn_bvfrBk6rmx-q5culGMVjI5nGXFwDCvHZgtyTNnFeNOcfQlJp1_At9nF1_NPacymkLYI-dZpy503ErVvRa5rXXjSDKq0cj5D_XqZWcdrw7M241aYEh9zpZXxAhFFxQV_CQdd37lXwGrNlRd1W3sEWNbh13hZ69q1ptBWZiqBD1stN22kGqeMFz8ahBxUbbMbkATe7USXI7_Gv4Q-0lDtBIgSOxTgRGmiOpv7JkoCx9uBbuI6XTUUx5sRhswTeLt7jSuMfpvozvWbIFMWimKME5CTCTJp0PRNt7gNXN2K56UsxNH_6MFreFhQ8AXRehbHcLAeNu4NHLY_14vVcBIWwF8DXRCv
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method
URI https://www.proquest.com/docview/2694061921
https://www.proquest.com/docview/2695291209
https://pubmed.ncbi.nlm.nih.gov/PMC9315724
https://doaj.org/article/ed3f1f969eaf473bbb74bef7a94152c5
Volume 22
WOSCitedRecordID wos000832074200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYLgc48EYUlsogDlyiTWKnjk9oF7UCiXYjClI5RXZi7xaxSUlbEBcu_HFmHDdsJMSFi6XYo_gxfsyMPd8Q8kKOdclUqAIjhA24jJJAwjkTMKXhxBgrWIDcBZsQ83m6XMrMG9w2_lnlfk90G3VZF2gjP0aPyxCl_ejV-muAUaPwdtWH0Dggh4hUxgfk8HQyz953KhcDDazFE2Kg3B9vYgTmjvcRsvwp5MD6exJm_33klQNnevt_m3qH3PKiJj1p58Zdcs1U98jNKwCE98mv1qZgSnpSqjXufNR55AZn-nO7E9LMzy26-K6aS3oGVJfed5PWli5ADa4b-k79qHdbChIwXVyotXH5UAVFOy9FMI9mY-h0hRIunbRP1unMRa9-QD5OJx9evwl8WIagAN1xGxTMWC2AjSWPVKpii0NruRgbG1o5tiIsDUs1C4uQlVwn8BlJJbXloJqMGWcPyaCqK_OI0FQxaXlapBY0tdLA31iSqtQUOlalCOWQvNyzKS88ZjmGzviSg-6C1eYdR4fkeUe6boE6_kZ0irzuCBBb22XUzXnuhzM3JbMRdEQaBb1iWmvBtbFCSRR2imRIjvZsz_2C3-R_eD4kz7piWKp4_6IqU-8cTRJLdFYeEtGbYb0G9Uuq1YUD_ZYsSkTMH_-78ifkRoz-GYj8GR-RwbbZmafkevFtu9o0I3IglsKl6civlJEzQkA6-zmBvOztLPv0G3TEJGg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYNFFgQSFys2t511ntAqECjRk3SSClSOZlde5emonFwEqqe-T_8Rmb8CI2EuPXA0d7Rvvzt7Mx65xuAV6pjMq597VkpnSdUEHkK9xmPa4M7RkfjAhRlsgk5HMbHx2q0Ab-aWBi6VtnoxFJRZ3lKZ-Q7FHHpk7UfvJt99yhrFP1dbVJoVLA4sBfn6LLN3_Y-4vd9HYbdvaMP-16dVcBL0fVZeCm3zkjsRSYCHevQcXT7nZAd63ynOk76meWx4X7q80yYCB8DpZVxAi3rDhcc670GmwLBHrdgc9QbjD6vXDyOHl_FX0S17sxDIgIPm4xc9a5XJgdYs2jX72Ne2uC6d_63qbkLt2tTmu1W2L8HG3Z6H25dIlh8AD-rMxObsd1Mz0izszLi2Ds0p5WmZ6N67bDxuS7O2CFKndWxqSx3bIxufl6wvr7IlwuGFj4bn-iZLd9jE4zOsRmRlRRzy7oTsuDZXnUlnw3K7NwP4dOVzMIjaE3zqd0CFmuunIjT2KEnmlmsjUexjm1qQp1JX7XhTQOLJK052Sk1yLcEfTNqNlkhqA0vV6Kziojkb0LvCVsrAeIOL1_kxdekns7EZtwFOBBlNY6KG2OkMNZJrciYS6M2bDcwS2qFNk_-YKwNL1bFqIro_5Ke2nxZykShomDsNsg1RK91aL1kOjkpSc0VDyIZisf_bvw53Ng_GvSTfm948ARuhhSLQiyn4Ta0FsXSPoXr6Y_FZF48q1cmgy9XjfjfXOB8Pg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFiE48EY1FFgQSFys2N511ntAqNBGRG3TSAGpPZlde7cNonFwEqqe-Vf8Omb8CI2EuPXAMfZo195881rvfAPwSnVNznWgfSul84UKY1-hn_G5NugxuhoVUFTNJuRgkBwdqeEa_GprYehYZWsTK0OdFxntkXeo4jKgaD_suOZYxHCn92763acOUvSltW2nUUNkz16cY_o2e9vfwf_6dRT1dj99-Og3HQb8DNOguZ9x64zEJ8pFqBMdOc5V4ITsWhc41XUyyC1PDA-ygOfCxPgzVFoZJzDK7nLBcdxrsIEhuUAd2xj2D4bHy3SPY_ZXcxnRqJ1ZRKTgUdudq_GAVaOAleh29WzmJWfXu_M_L9NduN2E2Gy71ol7sGYn9-HWJeLFB_Cz3kuxOdvO9ZQsPqsqkf1D87X2AGzY6BQbnevyjB2i1FlTs8oKx0aY_hcl29cXxWLOMPJno1M9tdV1nILR_jYjEpNyZllvTJE9262P6rODqmv3Q_h8JavwCNYnxcRuAks0V04kWeIwQ80tjsbjRCc2M5HOZaA8eNNCJM0arnZqGfItxZyNpk2XaPLg5VJ0WhOU_E3oPeFsKUCc4tWFojxJm-VMbc5diC-irMa34sYYKYx1UisK8rLYg60Wcmlj6GbpH7x58GJ5G00UfXfSE1ssKpk4UlSk7YFcQffKA63emYxPK7JzxcNYRuLxvyd_DjcQ5ul-f7D3BG5GVKJC5KfRFqzPy4V9CtezH_PxrHzWKCmDL1cN-N8KW4T-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Adaptive+Multi-Objective+Particle+Swarm+Optimization+of+Sensor+Layout+for+Shape+Sensing+with+Inverse+Finite+Element+Method&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Xiaohan&rft.au=Niu%2C+Shengtao&rft.au=Bao%2C+Hong&rft.au=Hu%2C+Naigang&rft.date=2022-07-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5203&rft_id=info:doi/10.3390%2Fs22145203&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon