Extending Camera’s Capabilities in Low Light Conditions Based on LIP Enhancement Coupled with CNN Denoising

Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to retrieve correct information. The limits of such a process are explored in the present paper, with the objective of preserving the quality of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Jg. 21; H. 23; S. 7906
Hauptverfasser: Carré, Maxime, Jourlin, Michel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 27.11.2021
MDPI
Schlagworte:
ISSN:1424-8220, 1424-8220
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to retrieve correct information. The limits of such a process are explored in the present paper, with the objective of preserving the quality of enhanced images. The LIP (Logarithmic Image Processing) framework was initially created to process images acquired in transmission. The compatibility of this framework with the human visual system makes possible its application to images acquired in reflection. Previous works have established the ability of the LIP laws to perform a precise simulation of exposure time variation. Such a simulation permits the enhancement of low-light images, but a denoising step is required, realized by using a CNN (Convolutional Neural Network). A main contribution of the paper consists of using rigorous tools (metrics) to estimate the enhancement reliability in terms of noise reduction, visual image quality, and color preservation. Thanks to these tools, it has been established that the standard exposure time can be significantly reduced, which considerably enlarges the use of a given sensor. Moreover, the contribution of the LIP enhancement and denoising step are evaluated separately.
AbstractList Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to retrieve correct information. The limits of such a process are explored in the present paper, with the objective of preserving the quality of enhanced images. The LIP (Logarithmic Image Processing) framework was initially created to process images acquired in transmission. The compatibility of this framework with the human visual system makes possible its application to images acquired in reflection. Previous works have established the ability of the LIP laws to perform a precise simulation of exposure time variation. Such a simulation permits the enhancement of low-light images, but a denoising step is required, realized by using a CNN (Convolutional Neural Network). A main contribution of the paper consists of using rigorous tools (metrics) to estimate the enhancement reliability in terms of noise reduction, visual image quality, and color preservation. Thanks to these tools, it has been established that the standard exposure time can be significantly reduced, which considerably enlarges the use of a given sensor. Moreover, the contribution of the LIP enhancement and denoising step are evaluated separately.
Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to retrieve correct information. The limits of such a process are explored in the present paper, with the objective of preserving the quality of enhanced images. The LIP (Logarithmic Image Processing) framework was initially created to process images acquired in transmission. The compatibility of this framework with the human visual system makes possible its application to images acquired in reflection. Previous works have established the ability of the LIP laws to perform a precise simulation of exposure time variation. Such a simulation permits the enhancement of low-light images, but a denoising step is required, realized by using a CNN (Convolutional Neural Network). A main contribution of the paper consists of using rigorous tools (metrics) to estimate the enhancement reliability in terms of noise reduction, visual image quality, and color preservation. Thanks to these tools, it has been established that the standard exposure time can be significantly reduced, which considerably enlarges the use of a given sensor. Moreover, the contribution of the LIP enhancement and denoising step are evaluated separately.Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to retrieve correct information. The limits of such a process are explored in the present paper, with the objective of preserving the quality of enhanced images. The LIP (Logarithmic Image Processing) framework was initially created to process images acquired in transmission. The compatibility of this framework with the human visual system makes possible its application to images acquired in reflection. Previous works have established the ability of the LIP laws to perform a precise simulation of exposure time variation. Such a simulation permits the enhancement of low-light images, but a denoising step is required, realized by using a CNN (Convolutional Neural Network). A main contribution of the paper consists of using rigorous tools (metrics) to estimate the enhancement reliability in terms of noise reduction, visual image quality, and color preservation. Thanks to these tools, it has been established that the standard exposure time can be significantly reduced, which considerably enlarges the use of a given sensor. Moreover, the contribution of the LIP enhancement and denoising step are evaluated separately.
Author Carré, Maxime
Jourlin, Michel
AuthorAffiliation 2 Hubert Curien Laboratory, Jean Monnet University, 42000 Saint-Etienne, France
1 NT2I Company, 42000 Saint-Etienne, France; m.carre@nt2i.fr
AuthorAffiliation_xml – name: 1 NT2I Company, 42000 Saint-Etienne, France; m.carre@nt2i.fr
– name: 2 Hubert Curien Laboratory, Jean Monnet University, 42000 Saint-Etienne, France
Author_xml – sequence: 1
  givenname: Maxime
  surname: Carré
  fullname: Carré, Maxime
– sequence: 2
  givenname: Michel
  surname: Jourlin
  fullname: Jourlin, Michel
BookMark eNptks1uEzEQgC1URH_gwBtY4gKHUK_H63gvSHQJECkqHOBsef2TONq1g71L6a2vwevxJDhNVdGKk0eebz6P7TlFRyEGi9DLirwFaMh5phWFeUP4E3RSMcpmglJy9E98jE5z3hJCAUA8Q8fAhCiFzQkaFr9GG4wPa9yqwSb15-Z3LuFOdb73o7cZ-4BX8Qqv_Hoz4jYWePQxZHyhsjU4luzyK16EjQraDjbsmWnXl9SVHze4vbzEH2yIPpcznqOnTvXZvrhbz9D3j4tv7efZ6sunZft-NdOM8XGmgQEhnDTccucc17XSVHDDOlJpRqwWTrhaKdEYUzmgZK672jpVg3HUgIUztDx4TVRbuUt-UOlaRuXl7UZMa6nS6HVvpWOuE5Vzc0I56-p5w0CpThjRacMaxovr3cG1m7rBGl1umFT_QPowE_xGruNPKXjdCJgXwes7QYo_JptHOfisbd-rYOOUJeVE1EBrqAr66hG6jVMK5aluqQoE5VCoNwdKp5hzsu6-mYrI_UDI-4Eo7PkjVvtR7T-w9Or7_1T8BcRcuTU
CitedBy_id crossref_primary_10_3390_s24154969
crossref_primary_10_3390_s22103667
crossref_primary_10_1007_s11760_024_03447_z
Cites_doi 10.1007/978-3-319-24574-4_28
10.1109/TIP.2009.2016796
10.1109/ICMCS.2014.6911247
10.1109/SAMPTA.2017.8024474
10.1016/S1076-5670(01)80095-1
10.1016/0165-1684(94)00102-6
10.1109/TSMCB.2007.909440
10.1109/ICIP.2015.7351501
10.1016/B978-0-12-385983-9.00002-8
10.1007/s10916-009-9316-3
10.1016/j.ijleo.2017.09.102
10.1117/12.665693
10.1007/s10851-015-0619-3
10.1111/j.1365-2818.1988.tb04559.x
10.1085/jgp.7.2.235
10.1016/j.neunet.2020.07.025
10.1097/RLI.0000000000000746
10.1137/040616024
10.1109/83.370681
10.1109/CVPR.2018.00347
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21237906
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f4fb81ff70264b57943aab8d8bcd4946
PMC8659837
10_3390_s21237906
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c446t-c343006096e6fff6c5ac286d4b01c40ec8f8f5aa89dd1f3207cb5efa53df2d3e3
IEDL.DBID 7X7
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778245100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:07:51 EDT 2025
Tue Nov 04 01:58:30 EST 2025
Sun Nov 09 10:00:40 EST 2025
Tue Oct 07 07:48:46 EDT 2025
Sat Nov 29 07:08:42 EST 2025
Tue Nov 18 21:41:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-c343006096e6fff6c5ac286d4b01c40ec8f8f5aa89dd1f3207cb5efa53df2d3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2608138263?pq-origsite=%requestingapplication%
PMID 34883909
PQID 2608138263
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_f4fb81ff70264b57943aab8d8bcd4946
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8659837
proquest_miscellaneous_2608532531
proquest_journals_2608138263
crossref_primary_10_3390_s21237906
crossref_citationtrail_10_3390_s21237906
PublicationCentury 2000
PublicationDate 20211127
PublicationDateYYYYMMDD 2021-11-27
PublicationDate_xml – month: 11
  year: 2021
  text: 20211127
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Gorgel (ref_1) 2010; 34
Jourlin (ref_7) 1998; 149
Panetta (ref_17) 2008; 38
Tian (ref_25) 2020; 131
Deng (ref_15) 2016; 55
ref_18
Jourlin (ref_28) 2021; 249
(ref_30) 2007; 7
ref_16
Brailean (ref_10) 1991; 4
Jourlin (ref_6) 1987; 6
Jourlin (ref_19) 2011; 168
Deng (ref_14) 2009; 18
Jourlin (ref_12) 1995; 41
ref_23
ref_22
ref_20
Deng (ref_13) 1995; 4
ref_3
Hecht (ref_11) 1924; 7
ref_29
ref_27
ref_26
ref_9
Nnolim (ref_21) 2018; 154
Jourlin (ref_8) 2001; 115
Buades (ref_24) 2005; 4
Gassenmaier (ref_2) 2021; 56
ref_5
ref_4
References_xml – ident: ref_9
– ident: ref_26
  doi: 10.1007/978-3-319-24574-4_28
– volume: 18
  start-page: 1135
  year: 2009
  ident: ref_14
  article-title: An entropy interpretation of the logarithmic image processing model with application to contrast enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2016796
– ident: ref_22
  doi: 10.1109/ICMCS.2014.6911247
– ident: ref_3
  doi: 10.1109/SAMPTA.2017.8024474
– volume: 4
  start-page: 2957
  year: 1991
  ident: ref_10
  article-title: Evaluating the EM algorithm for image processing using a human visual fidelity criterion
  publication-title: Int. Conf. Acoust. Speech Signal Process.
– volume: 249
  start-page: 36
  year: 2021
  ident: ref_28
  article-title: Image enhancement in the LIP framework and noise reduction with deep convolutional neural networks to produce high quality images from low light acquisitions
  publication-title: Sens. Transducers
– volume: 115
  start-page: 129
  year: 2001
  ident: ref_8
  article-title: Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images
  publication-title: Adv. Imaging Electron. Phys.
  doi: 10.1016/S1076-5670(01)80095-1
– volume: 41
  start-page: 225
  year: 1995
  ident: ref_12
  article-title: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)00102-6
– volume: 38
  start-page: 174
  year: 2008
  ident: ref_17
  article-title: Human visual system-based image enhancement and logarithmic contrast measure
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2007.909440
– ident: ref_4
  doi: 10.1109/ICIP.2015.7351501
– ident: ref_18
– volume: 168
  start-page: 65
  year: 2011
  ident: ref_19
  article-title: Logarithmic image processing for color images
  publication-title: Adv. Imaging Electron. Phys.
  doi: 10.1016/B978-0-12-385983-9.00002-8
– ident: ref_23
– volume: 34
  start-page: 993
  year: 2010
  ident: ref_1
  article-title: A wavelet-based mammographic image denoising and enhancement with homomorphic filtering
  publication-title: J. Med. Syst
  doi: 10.1007/s10916-009-9316-3
– volume: 154
  start-page: 192
  year: 2018
  ident: ref_21
  article-title: An adaptive RGB colour enhancement formulation for logarithmic image processing-based algorithms
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.09.102
– ident: ref_16
  doi: 10.1117/12.665693
– volume: 55
  start-page: 253
  year: 2016
  ident: ref_15
  article-title: The symmetric generalized LIP model and its application in dynamic range enhancement
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-015-0619-3
– volume: 149
  start-page: 21
  year: 1998
  ident: ref_7
  article-title: A model for logarithmic image processing
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1988.tb04559.x
– ident: ref_29
– volume: 7
  start-page: 235
  year: 1924
  ident: ref_11
  article-title: The visual discrimination of intensity and the Weber-Fechner law
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.7.2.235
– volume: 131
  start-page: 251
  year: 2020
  ident: ref_25
  article-title: Deep learning on image denoising: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– ident: ref_27
– volume: 56
  start-page: 328
  year: 2021
  ident: ref_2
  article-title: Application of a novel iterative denoising and image enhancement technique in T1-weighted precontrast and postcontrast gradient echo imaging of the abdomen. Improvement of image quality and diagnostic confidence
  publication-title: Investig. Radiol.
  doi: 10.1097/RLI.0000000000000746
– volume: 4
  start-page: 490
  year: 2005
  ident: ref_24
  article-title: A review of image denoising algorithms, with a new one
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040616024
– volume: 7
  start-page: 4
  year: 2007
  ident: ref_30
  article-title: Apex-additive system of photographic exposure
  publication-title: Issue
– volume: 4
  start-page: 506
  year: 1995
  ident: ref_13
  article-title: The study of logarithmic image processing model and its application to image enhancement
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.370681
– ident: ref_5
  doi: 10.1109/CVPR.2018.00347
– ident: ref_20
– volume: 6
  start-page: 651
  year: 1987
  ident: ref_6
  article-title: Logarithmic image processing
  publication-title: Acta Stereol.
SSID ssj0023338
Score 2.3602626
Snippet Using a sensor in variable lighting conditions, especially very low-light conditions, requires the application of image enhancement followed by denoising to...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7906
SubjectTerms CNN
Deep learning
denoising
image enhancement
image quality
Light
Logarithmic Image Processing
low-light
Noise
Simulation
Standard deviation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEB1KyKE9lKRJidM0qKGHXExsy7bkY7PZ0MKy5NCW3IwsachCYi_Z3eba3-jv9Us6Y3uXNQRy6c1Yg5FnRpp5I_EG4DMqjam1aUjBgACK8zI02qiQUhFmI6msausdPydqOtW3t8XNVqsvvhPW0QN3irvAFCsdIyoCC2mVMZ-ZMZV2urKOPtaSbUeqWIOpHmpJQl4dj5AkUH-x4A1aFdzWaCv6tCT9g8xyeC9yK9Bc78HbPkMUX7qZ7cMrX7-DN1u8gQfwMG5L1_QsRoarSn9__1nQ47wj3SbwK2a1mDRPYsLYW4waPphmBxOXFLWcaGj0240Y13dsdC4Qksxqfk9DXJgVo-lUXPm6mXEl4RB-XI-_j76Gfd-E0BK4W4ZWppJ5Vorc54iY28zYROcuraLYppG3GjVmxujCuRglqc9WmUeTSYeJk16-h526qf0RiDzxtCFEeZIimRTjwhpHCYFWDrMiMlEA52t9lrYnFefeFvclgQtWfblRfQBnG9F5x6TxnNAlG2UjwOTX7QtyibJ3ifIllwjgZG3Ssl-Ri5Jwm2a-xVwG8GkzTGuJD0hM7ZtVJ5PJhLalANTAFQYTGo7Us7uWlVvnWUFo__h__MEHeJ3w3Zk4DhN1AjvLx5X_CLv213K2eDxtXf0fWaUHkA
  priority: 102
  providerName: Directory of Open Access Journals
Title Extending Camera’s Capabilities in Low Light Conditions Based on LIP Enhancement Coupled with CNN Denoising
URI https://www.proquest.com/docview/2608138263
https://www.proquest.com/docview/2608532531
https://pubmed.ncbi.nlm.nih.gov/PMC8659837
https://doaj.org/article/f4fb81ff70264b57943aab8d8bcd4946
Volume 21
WOSCitedRecordID wos000778245100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVglwMc-EYUlsogDlyiTeIkdk6IlqxYqRtFCFA5RY4_distSWlauCH-Bn-PX8KMk3YbCXHhEkXxKIk04_G8Z-sNIS8tFzZSKvJgMQCAog3zpJDcg1IE1UgqxR3f8WnG81zM52nRE25tf6xymxNdotaNQo78GOpugXp5CXu9_Oph1yjcXe1baFwnh9g2G-Ocz68AFwP81akJMYD2xy2maZ5ic6O9NchJ9Q_qy-HpyL3l5uTO__7oXXK7LzTpmy4y7pFrpr5Pbu3JDz4gXzLHgMM9nUokp37__NXC7bLT7gYMTRc1nTXf6QwhPJ02uL-NcUonsPhp2sDoaUGz-gJjB3lGsNksL2EI-V06zXP61tTNAgmJh-TjSfZh-s7r2y94CjDi2lMsYijXkiYmsdYmKpYqFImOKj9QkW-UsMLGUopU68Cy0Oeqio2VMdM21MywR-SgbmrzmNAkNJBX_CSMLESGDVIlNdQVgmsbp770R-TV1iGl6rXJsUXGZQkYBX1X7nw3Ii92pstOkONvRhP06s4ANbTdg2Z1XvZTsrSRrURgLQcYGlUxKuVJWQktKqUhTOElR1sHl_3Ebssr747I890wTEncZ5G1aTadTcxCyG4jwgexNPih4Ui9uHDi3iKJU8H4k39__Cm5GeLhmiDwQn5EDtarjXlGbqhv60W7GrtZ4K5iTA4nWV68HzuyAa5nPzJ4VpyeFZ__AFPPG0o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VggQseKMGCgwIJDZWbY_tGS8QommqRjVWFwVl547nQS21dogTKnb8Bj_BR_El3OtHmkiIXRfsLM_V-HXuc8bnEvLacmEDpQIHnAEkKNowRwrJHQhFkI0kV7ypd3xOeJqKySQ-2iC_-n9hcFtlbxMbQ60rhTXyHYi7BfLlRez99KuDXaNwdbVvodHC4tB8v4CUrX433oPv-8b390fHwwOn6yrgKEh95o5iAUMWkjgykbU2UqFUvoh0kLueClyjhBU2lFLEWnuW-S5XeWisDJm2vmaGwbzXyHWw4xyTPT65TPAY5HstexFjsbtTo1vgMTZTWvF5TWuAtXh2fTfminvbv_u_vZh75E4XSNMPLfLvkw1TPiC3V-gVH5LzUVPhh2M6lFh8-_3jZw2H05abvDA1LUqaVBc0wRIFHVa4fo96SHfBuWtawej4iI7KU9QNrKOCzGJ6BkNYv6bDNKV7pqwKLLg8Ip-u5Hkfk82yKs0WoZFvwG66kR9YQL71YiU1xE2CaxvGrnQH5G0PgEx13OvYAuQsgxwMsZItsTIgr5ai05Zw5G9Cu4iipQByhDcnqtmXrDM5mQ1sLjxrOaTZQR4iE6CUudAiVxrUECbZ7gGVdYarzi7RNCAvl8NgcnAdSZamWrQyIfPBeg8IX8Pu2g2tj5TFaUNeLqIwFow_-ffFX5CbB8cfkywZp4dPyS0fNxJ5nuPzbbI5ny3MM3JDfZsX9ex5o4GUnFw1sv8A4kd0WQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGDkKw4I0oDGAQSGyiJnYSOwuEmD5ENaXqAtCwCo4fTKQhKU3LiB2_wa_wOXwJ9yZpaSXEbhbsovjKeZ37tHMuIU-dkC7UOvTAGUCCYiz3lFTCg1AE2UgyLep6x_uJmE7l8XEy2yM_1__C4LbKtU2sDbUpNdbIexB3S-TLi3nPtdsiZoPRy_kXDztI4Urrup1GA5Ej--0M0rfqxXgA3_oZY6Ph2_5rr-0w4GlIg5ae5iFHRpIktrFzLtaR0kzGJsz8QIe-1dJJFyklE2MCx5kvdBZZpyJuHDPccpj3AtmHkDxkHbI_G7-Zfdikexyyv4bLiPPE71XoJESCrZW2PGDdKGAnut3dm7nl7EbX_ufXdJ1cbUNs-qrRiRtkzxY3yZUt4sVb5POwrv3DMe0rLMv9-v6jgsN5w1qe24rmBZ2UZ3SCxQvaL3FlHzWUHoLbN7SE0fGMDosT1BqssILMan4KQ1jZpv3plA5sUeZYirlN3p3L894hnaIs7F1CY2bBovoxCx3ohAsSrQxEVFIYFyW-8rvk-RoMqW5Z2bE5yGkK2RniJt3gpkuebETnDRXJ34QOEVEbAWQPr0-Ui09pa4xSF7pMBs4JSMDDLEKOQKUyaWSmDSgoTHKwBlfamrQq_YOsLnm8GQZjhCtMqrDlqpGJOAO73iViB8c7N7Q7UuQnNa25jKNEcnHv3xd_RC4BoNPJeHp0n1xmuMMoCDwmDkhnuVjZB-Si_rrMq8XDVh0p-Xje0P4Najt-qA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+Camera%E2%80%99s+Capabilities+in+Low+Light+Conditions+Based+on+LIP+Enhancement+Coupled+with+CNN+Denoising&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Carr%C3%A9%2C+Maxime&rft.au=Jourlin%2C+Michel&rft.date=2021-11-27&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=23&rft_id=info:doi/10.3390%2Fs21237906&rft_id=info%3Apmid%2F34883909&rft.externalDocID=PMC8659837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon