Efficient architectures for 1-D and 2-D lifting-based wavelet transforms

The lifting scheme reduces the computational complexity of the discrete wavelet transform (DWT) by factoring the wavelet filters into cascades of simple lifting steps that process the input samples in pairs. We propose four compact and efficient hardware architectures for implementing lifting-based...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 52; číslo 5; s. 1315 - 1326
Hlavní autoři: Hongyu Liao, Mandal, M.Kr, Cockburn, B.F.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.05.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The lifting scheme reduces the computational complexity of the discrete wavelet transform (DWT) by factoring the wavelet filters into cascades of simple lifting steps that process the input samples in pairs. We propose four compact and efficient hardware architectures for implementing lifting-based DWTs, namely, one-dimensional (1-D) and two-dimensional (2-D) versions of what we call recursive and dual scan architectures. The 1-D recursive architecture exploits interdependencies among the wavelet coefficients by interleaving, on alternate clock cycles using the same datapath hardware, the calculation of higher order coefficients along with that of the first-stage coefficients. The resulting hardware utilization exceeds 90% in the typical case of a five-stage 1-D DWT operating on 1024 samples. The 1-D dual scan architecture achieves 100% datapath hardware utilization by processing two independent data streams together using shared functional blocks. The recursive and dual scan architectures can be readily extended to the 2-D case. The 2-D recursive architecture is roughly 25% faster than conventional implementations, and it requires a buffer that stores only a few rows of the data array instead of a fixed fraction (typically 25% or more) of the entire array. The 2-D dual scan architecture processes the column and row transforms simultaneously, and the memory buffer size is comparable to existing architectures.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2004.826175