DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion
Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper propose...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 22; číslo 14; s. 5149 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
08.07.2022
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper proposes an object-aware image fusion method based on a deep residual shrinkage network, termed as DRSNFuse. DRSNFuse exploits residual shrinkage blocks for image fusion and introduces a deeper network in infrared and visible image fusion tasks than existing methods based on fully convolutional networks. The deeper network can effectively extract semantic information, while the residual shrinkage blocks maintain the texture information throughout the whole network. The residual shrinkage blocks adapt a channel-wise attention mechanism to the fusion task, enabling feature map channels to focus on objects and backgrounds separately. A novel image fusion loss function is proposed to obtain better fusion performance and suppress artifacts. DRSNFuse trained with the proposed loss function can generate fused images with fewer artifacts and more original textures, which also satisfy the human visual system. Experiments show that our method has better fusion results than mainstream methods through quantitative comparison and obtains fused images with brighter targets, sharper edge contours, richer details, and fewer artifacts. |
|---|---|
| AbstractList | Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper proposes an object-aware image fusion method based on a deep residual shrinkage network, termed as DRSNFuse. DRSNFuse exploits residual shrinkage blocks for image fusion and introduces a deeper network in infrared and visible image fusion tasks than existing methods based on fully convolutional networks. The deeper network can effectively extract semantic information, while the residual shrinkage blocks maintain the texture information throughout the whole network. The residual shrinkage blocks adapt a channel-wise attention mechanism to the fusion task, enabling feature map channels to focus on objects and backgrounds separately. A novel image fusion loss function is proposed to obtain better fusion performance and suppress artifacts. DRSNFuse trained with the proposed loss function can generate fused images with fewer artifacts and more original textures, which also satisfy the human visual system. Experiments show that our method has better fusion results than mainstream methods through quantitative comparison and obtains fused images with brighter targets, sharper edge contours, richer details, and fewer artifacts.Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper proposes an object-aware image fusion method based on a deep residual shrinkage network, termed as DRSNFuse. DRSNFuse exploits residual shrinkage blocks for image fusion and introduces a deeper network in infrared and visible image fusion tasks than existing methods based on fully convolutional networks. The deeper network can effectively extract semantic information, while the residual shrinkage blocks maintain the texture information throughout the whole network. The residual shrinkage blocks adapt a channel-wise attention mechanism to the fusion task, enabling feature map channels to focus on objects and backgrounds separately. A novel image fusion loss function is proposed to obtain better fusion performance and suppress artifacts. DRSNFuse trained with the proposed loss function can generate fused images with fewer artifacts and more original textures, which also satisfy the human visual system. Experiments show that our method has better fusion results than mainstream methods through quantitative comparison and obtains fused images with brighter targets, sharper edge contours, richer details, and fewer artifacts. Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with texture details. Infrared and visible image fusion seeks to obtain high-quality images, keeping the advantages of source images. This paper proposes an object-aware image fusion method based on a deep residual shrinkage network, termed as DRSNFuse. DRSNFuse exploits residual shrinkage blocks for image fusion and introduces a deeper network in infrared and visible image fusion tasks than existing methods based on fully convolutional networks. The deeper network can effectively extract semantic information, while the residual shrinkage blocks maintain the texture information throughout the whole network. The residual shrinkage blocks adapt a channel-wise attention mechanism to the fusion task, enabling feature map channels to focus on objects and backgrounds separately. A novel image fusion loss function is proposed to obtain better fusion performance and suppress artifacts. DRSNFuse trained with the proposed loss function can generate fused images with fewer artifacts and more original textures, which also satisfy the human visual system. Experiments show that our method has better fusion results than mainstream methods through quantitative comparison and obtains fused images with brighter targets, sharper edge contours, richer details, and fewer artifacts. |
| Author | Yu, Zibo Wang, Hongfeng Wang, Jianzhong Sun, Yong Xu, Haonan |
| AuthorAffiliation | 1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; 3120185177@bit.edu.cn (H.W.); 3120200259@bit.edu.cn (H.X.); 3120195181@bit.edu.cn (Y.S.); 3120200269@bit.edu.cn (Z.Y.) 2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China |
| AuthorAffiliation_xml | – name: 2 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China – name: 1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; 3120185177@bit.edu.cn (H.W.); 3120200259@bit.edu.cn (H.X.); 3120195181@bit.edu.cn (Y.S.); 3120200269@bit.edu.cn (Z.Y.) |
| Author_xml | – sequence: 1 givenname: Hongfeng surname: Wang fullname: Wang, Hongfeng – sequence: 2 givenname: Jianzhong surname: Wang fullname: Wang, Jianzhong – sequence: 3 givenname: Haonan surname: Xu fullname: Xu, Haonan – sequence: 4 givenname: Yong surname: Sun fullname: Sun, Yong – sequence: 5 givenname: Zibo surname: Yu fullname: Yu, Zibo |
| BookMark | eNplkcluFDEQQC2UiCxw4A8scYHDEG_d7eaAhBICI0WJlERcLS_liSc99sTuBvH3eJgQZTlVqfzqlVV1gHZiioDQO0o-cd6To8IYFQ0V_Su0TwUTM8kY2XmU76GDUpaEMM65fI32eCN7IpncRxcnl1fnp1OBz_gEYI0voQQ36QFf3eQQb_UC8DmMv1O-xT5lPI8-6wwO6-jwz1CCGQDPVxusSkKKb9Cu10OBt_fxEF2ffrs-_jE7u_g-P_56NrNCtOPMGEmsbLT0VAtngFoJ1HtBbMtb4EZ3RhBnGWPgrBatMbRmIMELJzvOD9F8q3VJL9U6h5XOf1TSQf0rpLxQOo_BDqBoSzppiOeukYKTrqfOS--INaTzutm4vmxd68ms6jiIY9bDE-nTlxhu1CL9Uj2nUvRtFXy4F-R0N0EZ1SoUC8OgI6SpKNb2DZM9Zayi75-hyzTlWDe1oQRpm1aSSh1tKZtTKRm8smHUY11vnR8GRYna3F093L12fHzW8f_7L9m_BwitNQ |
| CitedBy_id | crossref_primary_10_3390_s23167097 crossref_primary_10_3390_act14020050 crossref_primary_10_3390_s24175860 crossref_primary_10_1109_TGRS_2024_3500036 crossref_primary_10_1016_j_infrared_2023_104796 |
| Cites_doi | 10.3390/drones5040133 10.1049/elp2.12147 10.1109/ICASSP40776.2020.9054071 10.1007/s00170-020-06173-1 10.1016/j.inffus.2015.11.003 10.1109/TCI.2020.2965304 10.1016/j.infrared.2017.02.005 10.1016/j.inffus.2010.03.002 10.1109/ICIIP.2011.6108966 10.1016/j.inffus.2019.07.005 10.1007/978-3-030-01261-8_13 10.3390/s22124416 10.1109/ACCESS.2017.2735019 10.1109/CVPR.2017.632 10.1109/CVPR.2017.106 10.1109/TIP.2003.819861 10.1364/JOSAA.34.001400 10.1109/CMMNO53328.2021.9467549 10.3390/s22114249 10.1109/ACCESS.2017.2735865 10.1109/JSEN.2015.2478655 10.1109/TIP.2018.2887342 10.1016/j.bspc.2017.02.005 10.1109/ICCV.2017.322 10.1109/ICPR.2018.8546006 10.1109/CVPR.2016.90 10.1109/TMM.2019.2895292 10.1109/TII.2019.2943898 10.1016/j.inffus.2018.09.004 10.1109/CVPR.2017.19 10.24963/ijcai.2020/135 10.1117/1.OE.51.1.010901 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s22145149 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_16078b0f3d58430791df8fd0cb07fa53 PMC9318496 10_3390_s22145149 |
| GrantInformation_xml | – fundername: Defense Industrial Technology Development Program grantid: JCKY2019602C015 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-bb80c85a8f1a4dbe1c8e1ff40c636e3ba7b40dc222edca46bb12ede8ef4d8733 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000832063800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:53:21 EDT 2025 Tue Nov 04 01:58:11 EST 2025 Thu Oct 02 05:23:34 EDT 2025 Tue Oct 07 07:39:20 EDT 2025 Tue Nov 18 22:30:40 EST 2025 Sat Nov 29 07:18:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-bb80c85a8f1a4dbe1c8e1ff40c636e3ba7b40dc222edca46bb12ede8ef4d8733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2694065680?pq-origsite=%requestingapplication% |
| PMID | 35890828 |
| PQID | 2694065680 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_16078b0f3d58430791df8fd0cb07fa53 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9318496 proquest_miscellaneous_2695289122 proquest_journals_2694065680 crossref_citationtrail_10_3390_s22145149 crossref_primary_10_3390_s22145149 |
| PublicationCentury | 2000 |
| PublicationDate | 20220708 |
| PublicationDateYYYYMMDD | 2022-07-08 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220708 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Dogra (ref_4) 2017; 5 Zong (ref_9) 2017; 34 Ma (ref_23) 2021; 70 Li (ref_16) 2018; 28 Li (ref_6) 2011; 12 ref_14 ref_36 ref_33 ref_10 ref_32 ref_30 Kotsiopoulos (ref_3) 2021; 115 ref_19 Xu (ref_39) 2020; 34 ref_18 Zhao (ref_31) 2019; 16 ref_17 ref_15 Ma (ref_24) 2020; 54 Zhang (ref_11) 2017; 34 Wang (ref_37) 2004; 13 Yang (ref_35) 2020; 2020 Toet (ref_40) 2012; 51 ref_25 Hu (ref_34) 2022; 16 ref_21 Ma (ref_38) 2017; 82 ref_1 ref_2 Zhou (ref_8) 2016; 30 Ma (ref_20) 2020; 70 ref_29 ref_28 ref_27 ref_26 Hou (ref_22) 2020; 6 Ma (ref_13) 2019; 48 Du (ref_5) 2017; 5 Guo (ref_12) 2019; 21 Bavirisetti (ref_7) 2015; 16 |
| References_xml | – ident: ref_28 – volume: 70 start-page: 1 year: 2020 ident: ref_20 article-title: GANMcC: A generative adversarial network with multiclassification constraints for infrared and visible image fusion publication-title: IEEE Trans. Instrum. Meas. – ident: ref_32 doi: 10.3390/drones5040133 – volume: 16 start-page: 206 year: 2022 ident: ref_34 article-title: A novel method for transformer fault diagnosis based on refined deep residual shrinkage network publication-title: IET Electr. Power Appl. doi: 10.1049/elp2.12147 – ident: ref_17 doi: 10.1109/ICASSP40776.2020.9054071 – volume: 115 start-page: 823 year: 2021 ident: ref_3 article-title: Deep multi-sensorial data analysis for production monitoring in hard metal industry publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-020-06173-1 – volume: 30 start-page: 15 year: 2016 ident: ref_8 article-title: Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.11.003 – volume: 6 start-page: 640 year: 2020 ident: ref_22 article-title: VIF-Net: An unsupervised framework for infrared and visible image fusion publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2020.2965304 – volume: 82 start-page: 8 year: 2017 ident: ref_38 article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.02.005 – volume: 12 start-page: 74 year: 2011 ident: ref_6 article-title: Performance comparison of different multi-resolution transforms for image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2010.03.002 – ident: ref_10 doi: 10.1109/ICIIP.2011.6108966 – volume: 54 start-page: 85 year: 2020 ident: ref_24 article-title: Infrared and visible image fusion via detail preserving adversarial learning publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.005 – ident: ref_26 doi: 10.1007/978-3-030-01261-8_13 – ident: ref_1 doi: 10.3390/s22124416 – volume: 5 start-page: 15750 year: 2017 ident: ref_5 article-title: Image Segmentation-Based Multi-Focus Image Fusion Through Multi-Scale Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735019 – ident: ref_18 doi: 10.1109/CVPR.2017.632 – volume: 70 start-page: 1 year: 2021 ident: ref_23 article-title: STDFusionNet: An infrared and visible image fusion network based on salient target detection publication-title: IEEE Trans. Instrum. Meas. – ident: ref_36 doi: 10.1109/CVPR.2017.106 – volume: 13 start-page: 600 year: 2004 ident: ref_37 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 34 start-page: 12484 year: 2020 ident: ref_39 article-title: FusionDN: A Unified Densely Connected Network for Image Fusion publication-title: Proc. Aaai Conf. Artif. Intell. – volume: 34 start-page: 1400 year: 2017 ident: ref_11 article-title: Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition publication-title: JOSA A doi: 10.1364/JOSAA.34.001400 – ident: ref_25 – ident: ref_29 – ident: ref_33 doi: 10.1109/CMMNO53328.2021.9467549 – volume: 2020 start-page: 8880960 year: 2020 ident: ref_35 article-title: Fault diagnosis of rotating machinery based on one-dimensional deep residual shrinkage network with a wide convolution layer publication-title: Shock Vib. – ident: ref_2 doi: 10.3390/s22114249 – volume: 5 start-page: 16040 year: 2017 ident: ref_4 article-title: From Multi-scale Decomposition to Non-multi-scale Decomposition Methods: A Comprehensive Survey of Image Fusion Techniques and its Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735865 – volume: 16 start-page: 203 year: 2015 ident: ref_7 article-title: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2478655 – volume: 28 start-page: 2614 year: 2018 ident: ref_16 article-title: DenseFuse: A fusion approach to infrared and visible images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 34 start-page: 195 year: 2017 ident: ref_9 article-title: Medical image fusion based on sparse representation of classified image patches publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2017.02.005 – ident: ref_30 doi: 10.1109/ICCV.2017.322 – ident: ref_15 – ident: ref_14 doi: 10.1109/ICPR.2018.8546006 – ident: ref_27 doi: 10.1109/CVPR.2016.90 – volume: 21 start-page: 1982 year: 2019 ident: ref_12 article-title: FuseGAN: Learning to fuse multi-focus image via conditional generative adversarial network publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2895292 – volume: 16 start-page: 4681 year: 2019 ident: ref_31 article-title: Deep residual shrinkage networks for fault diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2943898 – volume: 48 start-page: 11 year: 2019 ident: ref_13 article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – ident: ref_19 doi: 10.1109/CVPR.2017.19 – ident: ref_21 doi: 10.24963/ijcai.2020/135 – volume: 51 start-page: 010901 year: 2012 ident: ref_40 article-title: Progress in color night vision publication-title: Opt. Eng. doi: 10.1117/1.OE.51.1.010901 |
| SSID | ssj0023338 |
| Score | 2.4026194 |
| Snippet | Infrared images are robust against illumination variation and disguises, containing the sharp edge contours of objects. Visible images are enriched with... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5149 |
| SubjectTerms | Algorithms artificial texture suppression auto encoder and decoder channel-wise attention mechanism Deep learning deep residual shrinkage network image fusion Neural networks Semantics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPOhBfGJ1lSgevBTbppum3nwtCrKKingrSTrBRa3Ldtff76TtLlsQvHgryUebzCSZmXTyBeBY84i8ChS-Ecb6ZKG5L7VQfsSdt9FNpaop8--Sfl--vqYPc1d9uZywmh64FtypI0CTOrA8J1NJAzINcyttHhgdJFZ1K55PKp0GU02oxSnyqnmE6JvBaRk5Qu7QEWbOWZ-KpL_lWbbzIucMTW8NVhsPkZ3XLVuHBSw2YGWON3AT7q8en_q9SYln7ApxyB6xrM5Usac3ArzTEsH6dXo3I5-U3RZ25PLMmSpy9jKgSfCB7PbTweglpJgteO5dP1_e-M3NCL6h8G3say0DI7tK2lDFucbQSAytjQMjuECuVaLjIDdk-6kzKhZah_SEEm2cy4TzbVgsvgrcAUYILnWMUrlQL9c6jYXVmJLZpxKlPTiZCiwzDWu4u7ziI6Powck2m8nWg6MZdFhTZfwGunBSnwEcu3VVQDrPGp1nf-ncg85UZ1kz5crMHcklf0rIwIPDWTVNFvcHRBX4NakwXYowwyjyIGnputWgdk0xeKtot1Na_uJU7P5HD_ZgOXLnKNw-sezA4ng0wX1YMt_jQTk6qMbyD2eB-rE priority: 102 providerName: Directory of Open Access Journals |
| Title | DRSNFuse: Deep Residual Shrinkage Network for Infrared and Visible Image Fusion |
| URI | https://www.proquest.com/docview/2694065680 https://www.proquest.com/docview/2695289122 https://pubmed.ncbi.nlm.nih.gov/PMC9318496 https://doaj.org/article/16078b0f3d58430791df8fd0cb07fa53 |
| Volume | 22 |
| WOSCitedRecordID | wos000832063800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CjQMc-EaEjcogDlyiJXGaOLtMG2tFJRaqbkLlFNmOzSpGWpqWI3877zlp10iICxcrsp9iy-_D7_nj9wDeKR6hV2ESXyfa-rhCc1-oRPoRJ2-jnwnZQOZ_SvNcTKfZuN1wq9trlRub6Ax1Ode0R35ELy5xuUxEcLL46VPWKDpdbVNo3IV9SptNcp5ObwMujvFXgyaEPQdHdUSw3CHBZu6sQQ6qv-Nfdm9H7iw3w0f_O9DH8LB1NNlpIxlP4I6pnsKDHfjBZ_D5fHKZD9e1OWbnxizYxNTuaRa7vEaC72hpWN7cEmfo2rJRZZd0XZ3JqmRfZqhLN4aNfhAZ_gT5-xyuhoOrDx_9NsGCrzEKXPlKiUCLvhQ2lHGpTKiFCa2NA53wxHAlUxUHpUYXAmdDxolSIX4ZYWxc4mzzF7BXzSvzEhhScKFiIyRFjKVSWZxYZTL0HrBGKg_eb2a80C34OOXAuCkwCCHmFFvmePB2S7poEDf-RnRGbNsSEEi2q5gvvxWtzhWEnSdUYHmJXhbasiwsrbBloFWQWtnnHhxuOFi0mlsXt-zz4M22GXWODlJkZeZrR9PHQDWMIg_SjrB0BtRtqWbXDr07QysaZ8mrf3d-APcjemhBG8niEPZWy7V5Dff0r9WsXvacmLtS9GD_bJCPJz23m4Dlxe8B1o1HF-OvfwDSDg9t |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBQk4UF4VhgILAomLVb9irytVCAhRowaD2gjlZu2TRhQnxAmIH8V_7IwfaSwhbj1ws9Yj22t_-83MevcbgJcyDDCqMLGrYmVd9NChy2Us3CCkaKOXclFL5o-SLOOTSfp5C_60e2FoWWXLiRVR65miOfJ92nGJ7jLm3pv5D5eqRtHf1baERg2LY_P7F6Zs5eGwj9_3VRAMPozfH7lNVQFXYeqzdKXknuI9wa0vIi2Nr7jxrY08FYexCaVIZORphX7TaCWiWEofjww3NtI8oflPZPxrEXURh08yuczvQkz3avEi7Ki3XwakAu6TSueGy6sqA3TC2e5izA3vNtj5z97LHbjdhNHsbY37u7Blintwa0Nc8T586p-cZoNVaQ5Y35g5OzFltfGMnZ6hwTfkUZbVa-AZBu5sWNgFLcZnotDsyxSZ4tyw4Xcyw4sgeh_A-Co6tAvbxawwD4GhRchlZLigfFhLmUaxlSbF2AhbhHTgdfuBc9VIq1OFj_McUyzCQr7GggMv1qbzWk_kb0bvCCVrA5IArxpmi695wyg5KQNy6dlQYwyJTJ362nKrPSW9xIpe6MBeC5i84aUyv0SLA8_Xp5FR6DeRKMxsVdn0MA33g8CBpIPNzgN1zxTTs0qbPEUfEaXxo3_f_BncOBp_HOWjYXb8GG4GtKWEpsz5HmwvFyvzBK6rn8tpuXhajTAG-RUj9wLOj2lj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NQEB6Wrog-eBejqx5FwZfQ3JqeCCJqLYZdY9ldZH0K5-oW17Q2reJP8985k5sNiG_74FtIhiQn-fLNzMmcbwCeyDDAqMLEroqVddFDhy6XsXCDkKKNUcJFLZl_MM4yfnKSzHbgV7sWhsoqW06siFovFM2RD2nFJbrLmHtD25RFzCbTl8tvLnWQoj-tbTuNGiL75ucPTN_KF-kE3_XTIJi-PX7zzm06DLgK06C1KyX3FB8Jbn0RaWl8xY1vbeSpOIxNKMVYRp5W6EONViKKpfRxy3BjI83HNBeK7L-LEXkUDGB3lr6ffeqyvRCTv1rKCIftDcuANMF90uzccoBVn4BecNsvzdzyddOr__FTugZXmgCbvaq_iOuwY4obcHlLdvEmfJgcHmXTTWmes4kxS3ZoympJGjs6RYMvyLAsq6vjGYb0LC3sisr0mSg0-zhHDjkzLP1KZngSxPUtOD6PAd2GQbEozB1gaBFyGRkuKFPWUiZRbKVJMGrCPUI68Kx92blqRNep98dZjskX4SLvcOHA4850WSuN_M3oNSGmMyBx8GrHYvU5b7gmJ81ALj0baowukcMTX1tutaekN7ZiFDqw14InbxirzP8gx4FH3WHkGvqBJAqz2FQ2I0zQ_SBwYNzDae-G-keK-WmlWp6g94iS-O6_L_4QLiJg84M0278HlwJaa0Jz6XwPBuvVxtyHC-r7el6uHjSfG4P8nKH7G_zTc7I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DRSNFuse%3A+Deep+Residual+Shrinkage+Network+for+Infrared+and+Visible+Image+Fusion&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Hongfeng&rft.au=Wang%2C+Jianzhong&rft.au=Xu%2C+Haonan&rft.au=Sun%2C+Yong&rft.date=2022-07-08&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft.spage=5149&rft_id=info:doi/10.3390%2Fs22145149&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s22145149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |