An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs
Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix trans...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 20; no. 19; p. 5558 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
28.09.2020
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix transformation computing algorithm (MTCA) to realize the convolution expansion and resolve the block problem of the intermediate matrix. It enables high parallel implementation on hardware. Moreover, we also provide a specific calculation method for the optimal partition of matrix multiplication to optimize performance. In our evaluation, our proposed method saves more than 60% of hardware storage space compared with the im2col(image to column) approach. More specifically, in the case of large-scale convolutions, it saves nearly 82% of storage space. Under the accelerator architecture framework designed in this paper, we realize the performance of 26.7GFLOPS-33.4GFLOPS (depending on convolution type) on FPGA(Field Programmable Gate Array) by reducing bandwidth and improving data reusability. It is 1.2×–4.0× faster than memory-efficient convolution (MEC) and im2col, respectively, and represents an effective solution for a large-scale convolution accelerator. |
|---|---|
| AbstractList | Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix transformation computing algorithm (MTCA) to realize the convolution expansion and resolve the block problem of the intermediate matrix. It enables high parallel implementation on hardware. Moreover, we also provide a specific calculation method for the optimal partition of matrix multiplication to optimize performance. In our evaluation, our proposed method saves more than 60% of hardware storage space compared with the im2col(image to column) approach. More specifically, in the case of large-scale convolutions, it saves nearly 82% of storage space. Under the accelerator architecture framework designed in this paper, we realize the performance of 26.7GFLOPS-33.4GFLOPS (depending on convolution type) on FPGA(Field Programmable Gate Array) by reducing bandwidth and improving data reusability. It is 1.2×–4.0× faster than memory-efficient convolution (MEC) and im2col, respectively, and represents an effective solution for a large-scale convolution accelerator. Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix transformation computing algorithm (MTCA) to realize the convolution expansion and resolve the block problem of the intermediate matrix. It enables high parallel implementation on hardware. Moreover, we also provide a specific calculation method for the optimal partition of matrix multiplication to optimize performance. In our evaluation, our proposed method saves more than 60% of hardware storage space compared with the im2col(image to column) approach. More specifically, in the case of large-scale convolutions, it saves nearly 82% of storage space. Under the accelerator architecture framework designed in this paper, we realize the performance of 26.7GFLOPS-33.4GFLOPS (depending on convolution type) on FPGA(Field Programmable Gate Array) by reducing bandwidth and improving data reusability. It is 1.2×-4.0× faster than memory-efficient convolution (MEC) and im2col, respectively, and represents an effective solution for a large-scale convolution accelerator.Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of CNNs hardware accelerator architecture. Accordingly, in this paper, we propose a block parallel computing algorithm based on the matrix transformation computing algorithm (MTCA) to realize the convolution expansion and resolve the block problem of the intermediate matrix. It enables high parallel implementation on hardware. Moreover, we also provide a specific calculation method for the optimal partition of matrix multiplication to optimize performance. In our evaluation, our proposed method saves more than 60% of hardware storage space compared with the im2col(image to column) approach. More specifically, in the case of large-scale convolutions, it saves nearly 82% of storage space. Under the accelerator architecture framework designed in this paper, we realize the performance of 26.7GFLOPS-33.4GFLOPS (depending on convolution type) on FPGA(Field Programmable Gate Array) by reducing bandwidth and improving data reusability. It is 1.2×-4.0× faster than memory-efficient convolution (MEC) and im2col, respectively, and represents an effective solution for a large-scale convolution accelerator. |
| Author | Zhao, Yunping Chen, Xiaowen Lu, Jianzhuang |
| AuthorAffiliation | College of Computer, National University of Defense Technology, Changsha 410073, China; zhaoyunping@nudt.edu.cn (Y.Z.); xwchen@nudt.edu.cn (X.C.) |
| AuthorAffiliation_xml | – name: College of Computer, National University of Defense Technology, Changsha 410073, China; zhaoyunping@nudt.edu.cn (Y.Z.); xwchen@nudt.edu.cn (X.C.) |
| Author_xml | – sequence: 1 givenname: Yunping orcidid: 0000-0002-5600-3740 surname: Zhao fullname: Zhao, Yunping – sequence: 2 givenname: Jianzhuang surname: Lu fullname: Lu, Jianzhuang – sequence: 3 givenname: Xiaowen surname: Chen fullname: Chen, Xiaowen |
| BookMark | eNplkUtv1DAURi1URB-w4B9EYgOLoX4_NkijQEulUjbt2rpx7NSjJB7sTCX-PR6mIFpWtq7PPdf67ik6mtPsEXpL8EfGDD4vFBMjhNAv0AnhlK80pfjon_sxOi1lgzFljOlX6JhRYzST8gS167lZO-dHn2FJufnsSxzm5q7EeWig-XbbrmvNpWmbSlxiqvQ4pByX-6kJlW9vbspr9DLAWPybx_MM3V18uW2_rq6_X1616-uV41wuKzCKBy09EAPCSxcgcMdA8F5S7XQPUksVVN95Ljk3ymjFQQvamU4L3HfsDF0dvH2Cjd3mOEH-aRNE-7uQ8mAhL9GN3rIOeqyD8E4zLkzQoDriOahAvZNy7_p0cG133eR75-clw_hE-vRljvd2SA9WCc205FXw_lGQ04-dL4udYqk5jjD7tCuWcq40p4Tu0XfP0E3a5blGZakQmBHDCa3U-YFyOZWSfbAuLrCPvM6PoyXY7pdt_y67dnx41vHn-_-zvwCJbaiH |
| CitedBy_id | crossref_primary_10_3390_a17080361 crossref_primary_10_1145_3632957 crossref_primary_10_1145_3643134 crossref_primary_10_3390_s21155081 crossref_primary_10_3390_electronics13183765 crossref_primary_10_3390_s21227468 crossref_primary_10_3390_s22114298 |
| Cites_doi | 10.1109/ISSCC.2017.7870349 10.1109/ISSCC.2017.7870350 10.1145/2654822.2541967 10.1109/CVPR.2016.435 10.3390/fi12070113 10.1109/ICCV.2015.178 10.1109/TCSI.2017.2767204 10.1109/TVLSI.2020.3002779 10.1109/JSSC.2016.2616357 10.1109/MICRO.2014.58 10.1145/3007787.3001179 10.1016/j.ces.2017.10.006 10.1007/s11263-013-0620-5 10.1109/JSSC.2017.2778281 10.1109/CVPR.2014.81 10.1109/TVLSI.2018.2815603 10.1109/ISCA.2016.40 |
| ContentType | Journal Article |
| Copyright | 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
| Copyright_xml | – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s20195558 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_3bad08f5ec83459f8a7b1e4a7f2ec66b PMC7583864 10_3390_s20195558 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-a974f86ea19a5e6cfaf4c3a54d628c8da6867f7dbe4644979874a852b9b850db3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000586566400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:45:53 EDT 2025 Tue Nov 04 01:47:18 EST 2025 Fri Sep 05 07:18:33 EDT 2025 Tue Oct 07 07:04:19 EDT 2025 Sat Nov 29 07:12:38 EST 2025 Tue Nov 18 22:11:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-a974f86ea19a5e6cfaf4c3a54d628c8da6867f7dbe4644979874a852b9b850db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5600-3740 |
| OpenAccessLink | https://doaj.org/article/3bad08f5ec83459f8a7b1e4a7f2ec66b |
| PMID | 32998366 |
| PQID | 2550319412 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3bad08f5ec83459f8a7b1e4a7f2ec66b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7583864 proquest_miscellaneous_2447842124 proquest_journals_2550319412 crossref_citationtrail_10_3390_s20195558 crossref_primary_10_3390_s20195558 |
| PublicationCentury | 2000 |
| PublicationDate | 20200928 |
| PublicationDateYYYYMMDD | 2020-09-28 |
| PublicationDate_xml | – month: 9 year: 2020 text: 20200928 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2020 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wang (ref_12) 2018; 65 Yin (ref_9) 2018; 53 Chen (ref_19) 2017; 52 Liu (ref_26) 2018; 41 Zhang (ref_21) 2018; 52 ref_11 ref_10 You (ref_20) 2018; 15 Liu (ref_6) 2016; 44 Ma (ref_13) 2018; 26 ref_18 ref_16 Ardakani (ref_14) 2018; 65 Krizhevsky (ref_1) 2012; 60 Chen (ref_17) 2014; 49 Chaoyang (ref_23) 2020; 28 ref_25 ref_24 ref_22 Dong (ref_2) 2019; 12 ref_8 Fang (ref_15) 2019; 45 Uijlings (ref_3) 2013; 2 ref_5 ref_4 ref_7 |
| References_xml | – ident: ref_10 doi: 10.1109/ISSCC.2017.7870349 – volume: 15 start-page: 10 year: 2018 ident: ref_20 article-title: MALMM: A Multi-array Architecture for Large-scale Matrix Multiplication on FPGA publication-title: IEICE Electron. Express – volume: 60 start-page: 1097 year: 2012 ident: ref_1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 45 start-page: 217 year: 2019 ident: ref_15 article-title: Optimization method of convolution calculation based on matrix transformation publication-title: Comput. Eng. – ident: ref_11 doi: 10.1109/ISSCC.2017.7870350 – volume: 49 start-page: 269 year: 2014 ident: ref_17 article-title: DianNao: A small-footprint high-throuhput accelerator for ubiquitous machine-learning publication-title: ACM SIGARCH Comput. Archit. News doi: 10.1145/2654822.2541967 – ident: ref_16 – ident: ref_7 doi: 10.1109/CVPR.2016.435 – ident: ref_24 doi: 10.3390/fi12070113 – ident: ref_5 doi: 10.1109/ICCV.2015.178 – volume: 65 start-page: 1941 year: 2018 ident: ref_12 article-title: Efficient hardware architectures for deep convolutional neural network publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/TCSI.2017.2767204 – volume: 28 start-page: 1953 year: 2020 ident: ref_23 article-title: An Efficient Hardware Accelerator for Structured Sparse Convolutional Neural Networks on FPGAs publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2020.3002779 – volume: 12 start-page: 96 year: 2019 ident: ref_2 article-title: Target recognition in SAR images via sparse representation in the frequency domain publication-title: Pattern Recognit. – volume: 65 start-page: 1349 year: 2018 ident: ref_14 article-title: An architecture to accelerate convolution in deep neural networks publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – volume: 52 start-page: 127 year: 2017 ident: ref_19 article-title: Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural net-works publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – ident: ref_18 doi: 10.1109/MICRO.2014.58 – ident: ref_25 – volume: 44 start-page: 393 year: 2016 ident: ref_6 article-title: Cambricon: An instruction set architecture for neural networks publication-title: ACM Sigarch Comput. Archit. News doi: 10.1145/3007787.3001179 – volume: 52 start-page: 515 year: 2018 ident: ref_21 article-title: Parallel computing method of two-dimensional matrix convolution publication-title: Eng. Sci. doi: 10.1016/j.ces.2017.10.006 – volume: 2 start-page: 154 year: 2013 ident: ref_3 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 53 start-page: 968 year: 2018 ident: ref_9 article-title: A high energy efficient reconfigurable hybrid neural network processor for deep learning applications publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2017.2778281 – ident: ref_4 doi: 10.1109/CVPR.2014.81 – volume: 26 start-page: 1354 year: 2018 ident: ref_13 article-title: Optimizing the convolution operation to accelerate deep neural networks on FPGA publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2018.2815603 – ident: ref_22 – volume: 41 start-page: 2251 year: 2018 ident: ref_26 article-title: Matrix multiplication and vectorization for multi-core vector processors publication-title: J. Comput. Sci. – ident: ref_8 doi: 10.1109/ISCA.2016.40 |
| SSID | ssj0023338 |
| Score | 2.3569024 |
| Snippet | Due to the high throughput and high computing capability of convolutional neural networks (CNNs), researchers are paying increasing attention to the design of... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 5558 |
| SubjectTerms | Algorithms CNNs accelerator Efficiency Field programmable gate arrays hardware architecture parallel computing algorithm Software |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOUF5qaKlMxYFL1MRxbOeE0qUVF6IKtVJvkZ9tpZJtN1t-P-OsN91IiAtXeyRbnrE9n2f8DcBnqjJvTG7TwjmdMlP4VDFtUmq5KYSmmdDZUGxCNI28vKzO4oNbH9Mq12ficFDbuQlv5Efo-oYPNyynX-_u01A1KkRXYwmNp7AdmMrQzrePT5qznyPkKhCBrfiECgT3Rz0N_-PKUN994xYayPonHuY0P3Ljwjl99b9T3YGX0dUk9co2XsMT172BFxsEhG9hVnekNgavniHaTr4N-RxkyCMgivw4n9XYFtLOY24XqW-vcKjl9S-C3i6ZNU3_Di5OT85n39NYViE1iP2WqUII4SV3Kq9U6bjxyqOOVMksp9JIq7jkwgurHUNnqRKVFEzJkupKyzKzungPW928c7tAJDdVJi1DL0MwBEJSc50rXeIqC2-kSuDLeplbEznHQ-mL2xaxR9BIO2okgcNR9G5FtPE3oeOgq1EgcGMPDfPFVRu3WltoZTPpS2dkwcrKSyV07pgSnjrDuU5gf622Nm7Yvn3UWQKfxm7caiF-ojo3f0AZxoQMEXSWgJhYyGRC057u5nog7RYhPs3Zh38PvgfPaQD0Iewl92FruXhwH-GZ-b286RcH0br_APvSBmc priority: 102 providerName: ProQuest |
| Title | An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs |
| URI | https://www.proquest.com/docview/2550319412 https://www.proquest.com/docview/2447842124 https://pubmed.ncbi.nlm.nih.gov/PMC7583864 https://doaj.org/article/3bad08f5ec83459f8a7b1e4a7f2ec66b |
| Volume | 20 |
| WOSCitedRecordID | wos000586566400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BwgEOiE-RZakM4sAl2nw49uSYLV3BoVGFFqmcItux2UpLitruHvntjJ20aiQkLlxysOfgvInjeZrxG4APmUqcMWkb59bqmJvcxYprE2etMLnUWSJ1EppNyLrG5bJcHLX68jVhvTxwD9x5rlWboCuswZwXpUMldWq5ki6zRgjt_76JLPdkaqBaOTGvXkcoJ1J_vs38vbjC93U_On2CSP8oshzXRR4dNJdP4ckQIbKqX9kzuGe75_D4SDfwBUyrjlXG0IkRkuTsUyjDYCH9zxSbX00rGvPV4kNJFqtufqw3q931T0ZBKpvW9fYlfLucXU0_x0M3hNgQZdvFiiJ_h8KqtFSFFcYpR9CqgrciQ4OtEiikk622nGKcUpYoucIi06XGIml1_gpOunVnXwNDYcoEW07BgeTEX1ALnSpdEEjSGVQRfNyj1JhBKtx3rLhpiDJ4QJsDoBG8P5j-6vUx_mZ04aE-GHhJ6zBAjm4GRzf_cnQEZ3tHNcM-2zZEiPw1LJ5mEbw7TNMO8WkP1dn1LdlwLtEnvnkEcuTg0YLGM93qOmhtS59WFvz0f7zBG3iUebbuc1p4Bie7za19Cw_N3W613UzgvlzK8MQJPLiY1Yuvk_BR03P-e0Zjiy_zxfc_LAL-qw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJw4BsRKGAQSFyiJo5jOweEwpaqq3ajPSxSOQXbcdpKJVs2WxB_it_IOJuEjYS49cDVHiV2_DKe8TzPALymKiiNCQs_slb7zESlr5g2Pi24iYSmgdBBU2xCZJk8Pk5mW_CruwvjaJWdTmwUdbEw7ox8F01fd-GGhfT9xTffVY1y0dWuhMYaFof25w902ep3kz1c3zeU7n-cjw_8tqqAb9D1WfkKLehScqvCRMWWm1KVOEQVs4JTaWShuOSiFIW2DG2FRKBTzpSMqU60jINCR_jca7DNEOzBCLZnk-nsc-_iRejxrfMXRVES7NbU3ceLXT35jV2vKQ4wsGiHfMyNDW7_zv_2ae7C7daUJuka-_dgy1b34dZGgsUHME4rkhqDW2vDJiB7DV-FNDwJosh0Pk6xzdHqW-4aSc9PcGqr068ErXkyzrL6IXy6klk8glG1qOxjIJKbJJAFQytKMHT0pOY6VDrGVRWlkcqDt92y5qbNqe5Ke5zn6Fs5BOQ9Ajx41YterBOJ_E3og8NGL-ByfzcNi-VJ3qqSPNKqCGQZWyMjFielVEKHlilRUms41x7sdDDJW4VU538w4sHLvhtViYsPqcouLlGGMSEdQ4B5IAaIHAxo2FOdnTZJyYWLv3P25N8vfwE3DubTo_xokh0-hZvUHV64EJ_cgdFqeWmfwXXzfXVWL5-3fxaBL1eN2N9ze2RP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAc-EYNFDAIJC7RJo5jOweEwi4rqkLUQ5H2FmzHbiuVbLvZgvhr_DrG2WS7kRC3Hrjao8SJn8cznucZgNdURc6YuAoTa3XITOJCxbQJacVNIjSNhI7aYhOiKORslh1swe_-LoynVfY6sVXU1dz4M_IRmr7-wg2L6ch1tIiDyfT92XnoK0j5SGtfTmMFkX376ye6b827vQnO9RtKpx8Px5_CrsJAaNANWoYKrWknuVVxplLLjVMOh6tSVnEqjawUl1w4UWnL0G7IBDroTMmU6kzLNKp0gs-9Btd9SkGvFMTs0tlL0PdbZTJKkiwaNdTfzEt9ZfmN_a8tEzCwbYfMzI2tbnr3f_5J9-BOZ2CTfLUi7sOWrR_A7Y20iw9hnNckNwY33JZjQCYti4W07AmiyJfDcY5tnmzfMdpIfnqEn7Y8_k7Qxifjomgewdcr-YrHsF3Pa7sDRHKTRbJiaFsJhu6f1FzHSqc4w8IZqQJ4209xabpM677gx2mJHpdHQ7lGQwCv1qJnq_QifxP64HGyFvAZwduG-eKo7BRMmWhVRdKl1siEpZmTSujYMiUctYZzHcBuD5myU1NNeYmXAF6uu1HB-KiRqu38AmUYE9LzBlgAYoDOwYCGPfXJcZuqXPioPGdP_v3yF3ATYVp-3iv2n8It6k80fNxP7sL2cnFhn8EN82N50iyet0uMwLerhusflwJrfA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Accelerator+Design+Using+a+MTCA+Decomposition+Algorithm+for+CNNs&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yunping+Zhao&rft.au=Jianzhuang+Lu&rft.au=Xiaowen+Chen&rft.date=2020-09-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=19&rft.spage=5558&rft_id=info:doi/10.3390%2Fs20195558&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3bad08f5ec83459f8a7b1e4a7f2ec66b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |