Calibration-Free 3D Indoor Positioning Algorithms Based on DNN and DIFF

The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi fluctuate greatly, which seriously degrades the RSSI-based positioning accuracy. Signal strength difference (DIFF), a calibration-free solution...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5891
Main Authors: Yang, Jingmin, Deng, Shanghui, Xu, Li, Zhang, Wenjie
Format: Journal Article
Language:English
Published: Basel MDPI AG 07.08.2022
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi fluctuate greatly, which seriously degrades the RSSI-based positioning accuracy. Signal strength difference (DIFF), a calibration-free solution for handling the received signal strength variance between diverse devices, can effectively reduce the negative impact of signal fluctuation. However, DIFF also leads to the explosion of the RSSI data dimension, expanding the number of dimensions from m to Cm2, which reduces the positioning efficiency. To this end, we design a data hierarchical processing strategy based on a building-floor-specific location, which effectively improves the efficiency of high-dimensional data processing. Moreover, based on a deep neural network (DNN), we design three different positioning algorithms for multi-building, multi-floor, and specific-location respectively, extending the indoor positioning from the single plane to three dimensions. Specifically, in the stage of data preprocessing, we first create the original RSSI database. Next, we create the optimized RSSI database by identifying and deleting the unavailable data in the RSSI database. Finally, we perform DIFF processing on the optimized RSSI database to create the DIFF database. In the stage of positioning, firstly, we design an improved multi-building positioning algorithm based on a denoising autoencoder (DAE). Secondly, we design an enhanced DNN for multi-floor positioning. Finally, the newly deep denoising autoencoder (DDAE) used for specific location positioning is proposed. The experimental results show that the proposed algorithms have better positioning efficiency and accuracy compared with the traditional machine learning algorithms and the current advanced deep learning algorithms.
AbstractList The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi fluctuate greatly, which seriously degrades the RSSI-based positioning accuracy. Signal strength difference (DIFF), a calibration-free solution for handling the received signal strength variance between diverse devices, can effectively reduce the negative impact of signal fluctuation. However, DIFF also leads to the explosion of the RSSI data dimension, expanding the number of dimensions from m to Cm2 , which reduces the positioning efficiency. To this end, we design a data hierarchical processing strategy based on a building-floor-specific location, which effectively improves the efficiency of high-dimensional data processing. Moreover, based on a deep neural network (DNN), we design three different positioning algorithms for multi-building, multi-floor, and specific-location respectively, extending the indoor positioning from the single plane to three dimensions. Specifically, in the stage of data preprocessing, we first create the original RSSI database. Next, we create the optimized RSSI database by identifying and deleting the unavailable data in the RSSI database. Finally, we perform DIFF processing on the optimized RSSI database to create the DIFF database. In the stage of positioning, firstly, we design an improved multi-building positioning algorithm based on a denoising autoencoder (DAE). Secondly, we design an enhanced DNN for multi-floor positioning. Finally, the newly deep denoising autoencoder (DDAE) used for specific location positioning is proposed. The experimental results show that the proposed algorithms have better positioning efficiency and accuracy compared with the traditional machine learning algorithms and the current advanced deep learning algorithms.
The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi fluctuate greatly, which seriously degrades the RSSI-based positioning accuracy. Signal strength difference (DIFF), a calibration-free solution for handling the received signal strength variance between diverse devices, can effectively reduce the negative impact of signal fluctuation. However, DIFF also leads to the explosion of the RSSI data dimension, expanding the number of dimensions from m to Cm2, which reduces the positioning efficiency. To this end, we design a data hierarchical processing strategy based on a building-floor-specific location, which effectively improves the efficiency of high-dimensional data processing. Moreover, based on a deep neural network (DNN), we design three different positioning algorithms for multi-building, multi-floor, and specific-location respectively, extending the indoor positioning from the single plane to three dimensions. Specifically, in the stage of data preprocessing, we first create the original RSSI database. Next, we create the optimized RSSI database by identifying and deleting the unavailable data in the RSSI database. Finally, we perform DIFF processing on the optimized RSSI database to create the DIFF database. In the stage of positioning, firstly, we design an improved multi-building positioning algorithm based on a denoising autoencoder (DAE). Secondly, we design an enhanced DNN for multi-floor positioning. Finally, the newly deep denoising autoencoder (DDAE) used for specific location positioning is proposed. The experimental results show that the proposed algorithms have better positioning efficiency and accuracy compared with the traditional machine learning algorithms and the current advanced deep learning algorithms.The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi fluctuate greatly, which seriously degrades the RSSI-based positioning accuracy. Signal strength difference (DIFF), a calibration-free solution for handling the received signal strength variance between diverse devices, can effectively reduce the negative impact of signal fluctuation. However, DIFF also leads to the explosion of the RSSI data dimension, expanding the number of dimensions from m to Cm2, which reduces the positioning efficiency. To this end, we design a data hierarchical processing strategy based on a building-floor-specific location, which effectively improves the efficiency of high-dimensional data processing. Moreover, based on a deep neural network (DNN), we design three different positioning algorithms for multi-building, multi-floor, and specific-location respectively, extending the indoor positioning from the single plane to three dimensions. Specifically, in the stage of data preprocessing, we first create the original RSSI database. Next, we create the optimized RSSI database by identifying and deleting the unavailable data in the RSSI database. Finally, we perform DIFF processing on the optimized RSSI database to create the DIFF database. In the stage of positioning, firstly, we design an improved multi-building positioning algorithm based on a denoising autoencoder (DAE). Secondly, we design an enhanced DNN for multi-floor positioning. Finally, the newly deep denoising autoencoder (DDAE) used for specific location positioning is proposed. The experimental results show that the proposed algorithms have better positioning efficiency and accuracy compared with the traditional machine learning algorithms and the current advanced deep learning algorithms.
Author Zhang, Wenjie
Xu, Li
Yang, Jingmin
Deng, Shanghui
AuthorAffiliation 1 School of Computer Science, Minnan Normal University, Zhangzhou 363000, China
2 Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China
3 Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou 350007, China
AuthorAffiliation_xml – name: 2 Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China
– name: 1 School of Computer Science, Minnan Normal University, Zhangzhou 363000, China
– name: 3 Fujian Provincial Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou 350007, China
Author_xml – sequence: 1
  givenname: Jingmin
  orcidid: 0000-0001-6467-7545
  surname: Yang
  fullname: Yang, Jingmin
– sequence: 2
  givenname: Shanghui
  orcidid: 0000-0003-4419-986X
  surname: Deng
  fullname: Deng, Shanghui
– sequence: 3
  givenname: Li
  surname: Xu
  fullname: Xu, Li
– sequence: 4
  givenname: Wenjie
  surname: Zhang
  fullname: Zhang, Wenjie
BookMark eNptkU1PGzEQhq0KVCD00H9gqZf2sMUer9e7l0o0aWgkBBzaszX-2OBoY1N7U6n_vhuCUEE9eTR-_MzI7xk5iil6Qt5z9lmIjl0UAC5l2_E35JTXUFctADv6pz4hZ6VsGAMhRPuWnAjZSVXXzSm5muMQTMYxpFgts_dULOgqupQyvUsl7PshrunlsE45jPfbQr9i8Y6mSBc3NxSjo4vVcnlOjnscin_3dM7Iz-W3H_Pv1fXt1Wp-eV3ZadxYofJ9z6G3HE0DzjCGAK5xUklEZSyTltcCO2y4Ewa44dI3WIME0XYgmJiR1cHrEm70Qw5bzH90wqAfGymvNeYx2MFr7BuBYMCgkfVUGm69M1hLUML3qp1cXw6uh53Zemd9HDMOL6Qvb2K41-v0W3dCcdHuBR-fBDn92vky6m0o1g8DRp92RYNiwFWrps1n5MMrdJN2OU5ftaeYahSTcqI-HSibUynZ98_LcKb3UevnqCf24hVrw_iY47RrGP7z4i9ZLKk5
CitedBy_id crossref_primary_10_1016_j_comcom_2023_10_018
crossref_primary_10_3390_electronics13020360
crossref_primary_10_1088_1402_4896_ade8b7
crossref_primary_10_1109_JSEN_2022_3226303
crossref_primary_10_1038_s41598_025_09899_8
crossref_primary_10_3389_fpubh_2025_1475456
Cites_doi 10.1109/ACCESS.2020.2992727
10.1109/ICC.2019.8761118
10.1109/IPIN.2015.7346967
10.1016/j.autcon.2008.10.011
10.1109/JSTSP.2018.2827701
10.1007/978-3-319-45246-3
10.1016/j.jfranklin.2019.10.028
10.3390/s19112508
10.1007/s00500-018-3171-4
10.1049/iet-com.2019.0681
10.1109/ISMICT.2016.7498906
10.1109/TVT.2018.2833029
10.3390/s150614809
10.1016/j.adhoc.2021.102443
10.1109/CONFLUENCE.2016.7508143
10.1109/TLA.2016.7587622
10.1109/ACCESS.2016.2530806
10.1016/j.eswa.2009.05.062
10.1109/TMC.2018.2839112
10.1109/ACCESS.2019.2913784
10.1109/TMC.2016.2550452
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
10.1109/TIE.2010.2055774
10.1109/IPEC51340.2021.9421239
10.1186/s41044-018-0031-2
10.1109/ACCESS.2018.2843325
10.1109/PERCOM.2008.75
10.1109/IPIN.2014.7275492
10.1109/JIOT.2019.2901093
10.1007/s11277-017-4852-5
10.1016/j.asoc.2022.108624
10.1109/IPIN.2016.7743591
10.1109/ICUFN.2018.8436598
10.3390/s21041114
10.1109/LES.2021.3094965
10.1109/IWCMC.2017.7986446
10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155891
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_af63a2b2bab5463ab1cedba45273ef78
PMC9371388
10_3390_s22155891
GrantInformation_xml – fundername: Opening Foundation of Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund, Fujian Normal University
  grantid: NSCL-KF2021-07
– fundername: Research Project on Education and Teaching Reform of Undergraduate Colleges and Universities in Fujian Province
  grantid: FBJG20210070
– fundername: Fujian Province Nature Science Foundation
  grantid: 2020J01813; 2021J011002
– fundername: Zhangzhou Municipal Natural Science Foundation
  grantid: ZZ2021J23
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-a7eff12fc1ab62db00a22d6d575aa7bc05c143a9a61d3b21b15e6a42523892303
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000839846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:08 EDT 2025
Tue Nov 04 02:01:18 EST 2025
Fri Sep 05 07:03:21 EDT 2025
Tue Oct 07 07:08:32 EDT 2025
Tue Nov 18 20:58:05 EST 2025
Sat Nov 29 07:17:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-a7eff12fc1ab62db00a22d6d575aa7bc05c143a9a61d3b21b15e6a42523892303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4419-986X
0000-0001-6467-7545
OpenAccessLink https://doaj.org/article/af63a2b2bab5463ab1cedba45273ef78
PMID 35957446
PQID 2700767055
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_af63a2b2bab5463ab1cedba45273ef78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371388
proquest_miscellaneous_2702178792
proquest_journals_2700767055
crossref_primary_10_3390_s22155891
crossref_citationtrail_10_3390_s22155891
PublicationCentury 2000
PublicationDate 20220807
PublicationDateYYYYMMDD 2022-08-07
PublicationDate_xml – month: 8
  year: 2022
  text: 20220807
  day: 7
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sadowski (ref_17) 2018; 6
Chen (ref_3) 2016; 4
Kim (ref_34) 2018; 3
Uradzinski (ref_12) 2017; 97
ref_36
ref_35
ref_33
ref_32
Wang (ref_37) 2022; 14
Cha (ref_38) 2022; 120
ref_31
Saab (ref_9) 2011; 58
Lin (ref_21) 2020; 14
ref_16
Mohammad (ref_4) 2019; 7
Zhu (ref_6) 2020; 357
Tesoriero (ref_10) 2010; 37
(ref_19) 2018; 12
ref_25
Jiang (ref_13) 2018; 22
Chow (ref_23) 2019; 18
ref_24
Bengio (ref_39) 2013; 35
ref_22
ref_42
ref_41
ref_1
Alvarez (ref_11) 2016; 14
Ravi (ref_18) 2021; 115
Guo (ref_20) 2018; 67
ref_29
ref_28
ref_27
Quinteiro (ref_30) 2015; 15
ref_26
Luo (ref_15) 2017; 16
ref_8
Maswadi (ref_2) 2020; 8
Chen (ref_5) 2019; 6
Khoury (ref_14) 2009; 18
Vincent (ref_40) 2010; 11
ref_7
References_xml – volume: 8
  start-page: 92244
  year: 2020
  ident: ref_2
  article-title: Systematic literature review of smart home monitoring technologies based on IoT for the elderly
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992727
– ident: ref_22
  doi: 10.1109/ICC.2019.8761118
– ident: ref_41
  doi: 10.1109/IPIN.2015.7346967
– volume: 18
  start-page: 444
  year: 2009
  ident: ref_14
  article-title: Evaluation of position tracking technologies for user localization in indoor construction environments
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2008.10.011
– volume: 12
  start-page: 529
  year: 2018
  ident: ref_19
  article-title: Hybrid Analog-Digital Processing System for Amplitude-Monopulse RSSI-Based MiMo WiFi Direction-of-Arrival Estimation
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2018.2827701
– ident: ref_29
  doi: 10.1007/978-3-319-45246-3
– volume: 357
  start-page: 1420
  year: 2020
  ident: ref_6
  article-title: Accurate WiFi-based indoor localization by using fuzzy classifier and mlps ensemble in complex environment
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.10.028
– ident: ref_31
  doi: 10.3390/s19112508
– ident: ref_32
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_40
  article-title: Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_26
– volume: 22
  start-page: 3621
  year: 2018
  ident: ref_13
  article-title: FSELM: Fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3171-4
– volume: 14
  start-page: 497
  year: 2020
  ident: ref_21
  article-title: Characteristic analysis of wireless local area network’s received signal strength indication in indoor positioning
  publication-title: IET Commun.
  doi: 10.1049/iet-com.2019.0681
– ident: ref_7
  doi: 10.1109/ISMICT.2016.7498906
– volume: 67
  start-page: 7314
  year: 2018
  ident: ref_20
  article-title: Accurate WiFi Localization by Fusing a Group of Fingerprints via a Global Fusion Profile
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2833029
– volume: 15
  start-page: 14809
  year: 2015
  ident: ref_30
  article-title: A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
  publication-title: Sensors
  doi: 10.3390/s150614809
– ident: ref_16
– volume: 115
  start-page: 102443
  year: 2021
  ident: ref_18
  article-title: Practical server-side WiFi-based indoor localization: Addressing cardinality and outlier challenges for improved occupancy estimation
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2021.102443
– ident: ref_8
  doi: 10.1109/CONFLUENCE.2016.7508143
– volume: 14
  start-page: 3208
  year: 2016
  ident: ref_11
  article-title: ZigBee-based Sensor Network for Indoor Location and Tracking Applications
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2016.7587622
– volume: 4
  start-page: 803
  year: 2016
  ident: ref_3
  article-title: Vehicle localization and velocity estimation based on mobile phone sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2530806
– ident: ref_42
– volume: 37
  start-page: 894
  year: 2010
  ident: ref_10
  article-title: Improving location awareness in indoor spaces using RFID technology
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.062
– volume: 18
  start-page: 290
  year: 2019
  ident: ref_23
  article-title: Efficient Locality Classification for Indoor Fingerprint-Based Systems
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2839112
– volume: 7
  start-page: 60376
  year: 2019
  ident: ref_4
  article-title: Formal analysis of human-assisted smart city emergency services
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913784
– volume: 16
  start-page: 466
  year: 2017
  ident: ref_15
  article-title: Pallas: Self-Bootstrapping Fine-Grained Passive Indoor Localization Using WiFi Monitors
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2016.2550452
– ident: ref_35
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00139
– volume: 58
  start-page: 1961
  year: 2011
  ident: ref_9
  article-title: A Standalone RFID Indoor Positioning System Using Passive Tags
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2010.2055774
– ident: ref_1
  doi: 10.1109/IPEC51340.2021.9421239
– volume: 3
  start-page: 4
  year: 2018
  ident: ref_34
  article-title: A scalable deep neural network architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-018-0031-2
– volume: 6
  start-page: 30149
  year: 2018
  ident: ref_17
  article-title: RSSI-Based Indoor Localization With the Internet of Things
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2843325
– ident: ref_25
  doi: 10.1109/PERCOM.2008.75
– ident: ref_28
  doi: 10.1109/IPIN.2014.7275492
– volume: 6
  start-page: 7570
  year: 2019
  ident: ref_5
  article-title: Crowdtracking: Real-time vehicle tracking through mobile crowdsensing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2901093
– volume: 97
  start-page: 6509
  year: 2017
  ident: ref_12
  article-title: Advanced Indoor Positioning Using Zigbee Wireless Technology
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-017-4852-5
– volume: 120
  start-page: 108624
  year: 2022
  ident: ref_38
  article-title: A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on Wi-Fi fingerprinting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.108624
– ident: ref_24
  doi: 10.1109/IPIN.2016.7743591
– ident: ref_33
  doi: 10.1109/ICUFN.2018.8436598
– ident: ref_36
  doi: 10.3390/s21041114
– volume: 14
  start-page: 23
  year: 2022
  ident: ref_37
  article-title: CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization With Deep Learning
  publication-title: IEEE Embed. Syst. Lett.
  doi: 10.1109/LES.2021.3094965
– ident: ref_27
  doi: 10.1109/IWCMC.2017.7986446
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_39
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
SSID ssj0023338
Score 2.4110258
Snippet The heterogeneity of wireless receiving devices, co-channel interference, and multi-path effect make the received signal strength indication (RSSI) of Wi-Fi...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5891
SubjectTerms 3D indoor positioning
Accuracy
Algorithms
Calibration
calibration-free
deep denoising autoencoder (DDAE)
Deep learning
fingerprint database
Global positioning systems
GPS
Location based services
Machine learning
Methods
Radio frequency identification
signal strength difference (DIFF)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLfgjQMcxudEx0ABceBS7SVt0_aE9vZW2KV6QiDtVuWr26TRjvZtf__svryySojLro2VRLUd27HzM8Dnem5Nwg3lDOsojFWShrm2KiT0fBlznpu5HZpNpGWZnZ3lK3_h1vuyyu2ZOBzUtjV0R35ICdJUEvbL1-s_IXWNouyqb6HxGHYIqSyewc7ipFz9GEOuCCOwDZ5QhMH9YS_QwlEfvYkVGsD6Jx7mtD7ynsEpnj90qy9g17ua7GgjGy_hkWtewbN7AISv4Rs9zdIbIQiLzjkWLdlpY9u2YytfzoWE7OjqHBdYX_zu2QLNnmVtw5ZlyVRj2fK0KN7Ar-Lk5_H30LdWCA3Gf-tQpa6uuagNV1oKi7qnhLDSovOmVKrNPDHoSKlcSW4jLbjmiZMK9RstPLqE82gPZk3buLfAcp5nCXkZGBnFztFbWJmIWEqcHP0zHsCX7a-ujMcdp_YXVxXGH8SVauRKAJ9G0usN2Ma_iBbEr5GA8LGHD213Xnl1q1QtIyW00EoT3r_S3DirVUxwc65OswAOtqyrvNL21V--BfBxHEZ1oxyKalx7M9BgEJeluQggnUjJZEPTkebyYgDuJuzBKMv2_7_4O3gq6I0F1aWkBzBbdzfuPTwxt-vLvvvgJfwOg1oFIg
  priority: 102
  providerName: ProQuest
Title Calibration-Free 3D Indoor Positioning Algorithms Based on DNN and DIFF
URI https://www.proquest.com/docview/2700767055
https://www.proquest.com/docview/2702178792
https://pubmed.ncbi.nlm.nih.gov/PMC9371388
https://doaj.org/article/af63a2b2bab5463ab1cedba45273ef78
Volume 22
WOSCitedRecordID wos000839846500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5B4QAHVF7C0EYL4sDFanZt79rHpokhh1oWAimcrH25rVRslKQc-e3M2E4US0i9cPFhd2StZzya-bQz3wB8rKfOJtzSnWEdhbFOVJgZp0Niz5cx55mdum7YhCqKdLXKyoNRX1QT1tMD94o707WMtDDCaEPM7dpw653RMRGH-Vp1bb6Y9ezA1AC1IkRePY9QhKD-bCMwstH8vFH06Uj6R5nluC7yINDkx_BsyBDZeX-y5_DANy_g6QFv4Ev4TB1VprddmK-9Z9GcLRvXtmtWDlVYKMjOb69aBP_XPzdshtHKsbZh86JgunFsvszzV_A9X3y7-BIOExFCi7BtG2rl65qL2nJtpHDoMloIJx3mXForY6eJxfxHZ1pyFxnBDU-81OiWGJgxk5tGr-GoaRv_BljGszSh5AABTew9tbDKRMRS4ssxreIBfNppqrIDXThNrbitEDaQUqu9UgP4sBf91XNk_EtoRureCxCtdbeAxq4GY1f3GTuAk52xqsHXNhVdnStJrEABvN9vo5fQ1YdufHvXySD2SlUmAlAjI48ONN5pbq47vm2iDIzS9O3_-IJ38ERQAwUVnagTONqu7_wpPLa_tzeb9QQeqpXqnukEHs0WRfl10v3Y-Lz8s8C1cnlZ_vgLRsL9dA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMCBQwCiUvU2Hk4OSDUsoSuWlY9FGlvqV9pK5WkJFsQf4rfyEyS3TYS4tYD13jkxPGXeWTG3wC8KQNrYm4oZ1iGfqRi6WfaKp_Y85OI88wEtms2IWezdD7P9tfg9_IsDJVVLnVip6htbegf-SYlSGVC3C8fzr771DWKsqvLFho9LHbdr58YsrXvpxPc37dC5J8OPu74Q1cB32Dos_CVdGXJRWm40omwCDslhE0s-i1KSW2C2KAPoTKVcBtqwTWPXaIQ2mjc0BsKQpz3GlxHPS6phEzOLwK8EOO9nr0oDLNgsxVoT6lr38jmda0BRv7suBrzknnL7_5vL-Ye3BkcabbVI_8-rLnqAdy-RK_4ED7TwTPdQ9zPG-dYOGHTytZ1w_aHYjUUZFunR7igxfG3lm2jUbesrthkNmOqsmwyzfNH8PVKVvIY1qu6ck-AZTxLY_KhMO6LnKOTvkksoiTBydH75B68W25tYQZWdWrucVpgdEUoKFYo8OD1SvSspxL5m9A24WMlQOzf3YW6OSoGZVKoMgmV0EIrTd0MlObGWa0iItNzpUw92FhCpRhUUltc4MSDV6thVCaUIVKVq887GQxRU5kJD-QIlaMHGo9UJ8cdLTkxK4Zp-vTfN38JN3cOvuwVe9PZ7jO4Jeg0CVXgyA1YXzTn7jncMD8WJ23zovu2GBxeNWb_APSyYFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FBCE4sCMMARoEEhdr3O39gFCCMYwClg8ghZPTm5NIwQ72BMSv8XVUeTxDLCFuOXB1l9pLv67FVf0K4HntGR1yTTnD2ncDGcZuqox0iT0_CjhPtWeGZhNxUST7-2m5Ab9WZ2GorHKlEwdFbVpN_8hnlCCNI-J-mdVjWUSZ5a9Pv7nUQYoyrat2GkuI7NmfPzB861_NM1zrF0Lkbz-9ee-OHQZcjWHQwpWxrWsuas2lioRBCEohTGTQh5EyVtoLNfoTMpURN74SXPHQRhJhjoYOPSPPx3kvwRa65AHusa1y_rH8sg73fIz-llxGvp96s16gdaUefhMLODQKmHi309rMc8Yuv_E_f6abcH10sdnOck_cgg3b3IZr54gX78A7OpKmluB3885a5mds3pi27Vg5lrGhINs5OcQXWhx97dkumnvD2oZlRcFkY1g2z_O78PlC3uQebDZtY-8DS3mahORdYUQYWEtngKNQBFGEk6Nfyh14uVrmSo9869T246TCuIsQUa0R4cCztejpkmTkb0K7hJW1APGCDxfa7rAa1Uwl68iXQgklFfU5kIpra5QMiGbP1nHiwPYKNtWorPrqD2YceLoeRjVDuSPZ2PZskMHgNYlT4UA8QejkgaYjzfHRQFhOnIt-kjz4982fwBWEavVhXuw9hKuCjplQaU68DZuL7sw-gsv6--K47x6PG43BwUWD9jfnGWqr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration-Free+3D+Indoor+Positioning+Algorithms+Based+on+DNN+and+DIFF&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jingmin+Yang&rft.au=Shanghui+Deng&rft.au=Li+Xu&rft.au=Wenjie+Zhang&rft.date=2022-08-07&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5891&rft_id=info:doi/10.3390%2Fs22155891&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af63a2b2bab5463ab1cedba45273ef78
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon