Wind speed forecasting for wind farms: A method based on support vector regression

In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Renewable energy Ročník 85; s. 790 - 809
Hlavní autoři: Santamaría-Bonfil, G., Reyes-Ballesteros, A., Gershenson, C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2016
Témata:
ISSN:0960-1481, 1879-0682
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained using univariate wind speed time series. Parameters of Support Vector Regression are tuned by a genetic algorithm. The proposed method is compared against the persistence model, and autoregressive models (AR, ARMA, and ARIMA) tuned by Akaike's Information Criterion and Ordinary Least Squares method. The stationary transformation of time series is also evaluated for the proposed method. Using historical wind speed data from the Mexican Wind Energy Technology Center (CERTE) located at La Ventosa, Oaxaca, México, the accuracy of the proposed forecasting method is evaluated for a whole range of short termforecasting horizons (from 1 to 24 h ahead). Results show that, forecasts made with our method are more accurate for medium (5–23 h ahead) short term WSF and WPF than those made with persistence and autoregressive models. •Short-term wind speed forecasting was performed using non-linear and machine learning methods.•Univariate wind data was mapped to a higher dimensional space by the phase space reconstruction procedure.•SVR and a genetic algorithm estimates a representative function of site's wind speed using the mapped data.•Lyapunov exponents and complexity measures revealed that data presents features of a chaotic processes.
AbstractList In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained using univariate wind speed time series. Parameters of Support Vector Regression are tuned by a genetic algorithm. The proposed method is compared against the persistence model, and autoregressive models (AR, ARMA, and ARIMA) tuned by Akaike's Information Criterion and Ordinary Least Squares method. The stationary transformation of time series is also evaluated for the proposed method. Using historical wind speed data from the Mexican Wind Energy Technology Center (CERTE) located at La Ventosa, Oaxaca, México, the accuracy of the proposed forecasting method is evaluated for a whole range of short termforecasting horizons (from 1 to 24 h ahead). Results show that, forecasts made with our method are more accurate for medium (5–23 h ahead) short term WSF and WPF than those made with persistence and autoregressive models. •Short-term wind speed forecasting was performed using non-linear and machine learning methods.•Univariate wind data was mapped to a higher dimensional space by the phase space reconstruction procedure.•SVR and a genetic algorithm estimates a representative function of site's wind speed using the mapped data.•Lyapunov exponents and complexity measures revealed that data presents features of a chaotic processes.
In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained using univariate wind speed time series. Parameters of Support Vector Regression are tuned by a genetic algorithm. The proposed method is compared against the persistence model, and autoregressive models (AR, ARMA, and ARIMA) tuned by Akaike's Information Criterion and Ordinary Least Squares method. The stationary transformation of time series is also evaluated for the proposed method. Using historical wind speed data from the Mexican Wind Energy Technology Center (CERTE) located at La Ventosa, Oaxaca, México, the accuracy of the proposed forecasting method is evaluated for a whole range of short termforecasting horizons (from 1 to 24 h ahead). Results show that, forecasts made with our method are more accurate for medium (5–23 h ahead) short term WSF and WPF than those made with persistence and autoregressive models.
Author Santamaría-Bonfil, G.
Gershenson, C.
Reyes-Ballesteros, A.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0003-4302-4902
  surname: Santamaría-Bonfil
  fullname: Santamaría-Bonfil, G.
  email: guillermo.santamaria@iimas.unam.mx
  organization: Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Circuito Escolar S/N, Ciudad Universitaria, Coyoacan, D.F., 04510, Mexico
– sequence: 2
  givenname: A.
  surname: Reyes-Ballesteros
  fullname: Reyes-Ballesteros, A.
  email: areyes@iie.org.mx
  organization: Instituto de Investigaciones Eléctricas (IIE), Reforma 113, Col. Palmira, Cuernavaca, Morelos, 62490, Mexico
– sequence: 3
  givenname: C.
  surname: Gershenson
  fullname: Gershenson, C.
  email: cgg@unam.mx
  organization: Departamento de Ciencias de la Computación, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Circuito Escolar S/N, Ciudad Universitaria, Coyoacan, D.F., 04510, Mexico
BookMark eNqFkM1KAzEURoMoWKtv4GKWbma8maZp0oUg4h8IgiguQyZzU1PaZExSxbc3pa5cKFkk3Hu-j3COyL4PHgk5pdBQoPx82UT05TQt0GkDswaA7ZERFTNZAxftPhmB5FBTJughOUppCQUUMzYiT6_O91UaEPvKhohGp-z8YvuuPrcrq-M6zavLao35LfRVp1NBg6_SZhhCzNUHmlzgiIuIKbngj8mB1auEJz_3mLzcXD9f3dUPj7f3V5cPtWGM51pz1knRSy5BdH3L5LTjzApsLciOS24nE44chDTMliHHllOBkgqJxiLKyZic7XqHGN43mLJau2RwtdIewyapFgCmlLetKOh8h5oYUopolXFZ5_LZHLVbKQpqK1It1U6k2opUMFNFZAmzX-EhurWOX__FLnYxLA4-HEaVjENvsHdFc1Z9cH8XfAMcQpHJ
CitedBy_id crossref_primary_10_1016_j_scs_2022_103886
crossref_primary_10_1007_s00366_019_00823_z
crossref_primary_10_1016_j_renene_2023_03_094
crossref_primary_10_1016_j_enconman_2020_112824
crossref_primary_10_1007_s00500_025_10694_w
crossref_primary_10_1016_j_apenergy_2017_11_071
crossref_primary_10_3390_en10101572
crossref_primary_10_1108_IJESM_04_2020_0008
crossref_primary_10_1016_j_renene_2020_08_077
crossref_primary_10_1108_IJESM_04_2019_0002
crossref_primary_10_1016_j_energy_2016_07_092
crossref_primary_10_1177_0309524X221108423
crossref_primary_10_1155_2018_1910520
crossref_primary_10_1016_j_asoc_2020_106463
crossref_primary_10_1016_j_apenergy_2017_02_033
crossref_primary_10_1016_j_renene_2022_04_055
crossref_primary_10_1061_JHYEFF_HEENG_5960
crossref_primary_10_1109_ACCESS_2020_3016469
crossref_primary_10_1016_j_eswa_2024_123169
crossref_primary_10_1016_j_energy_2024_131016
crossref_primary_10_1016_j_seta_2018_01_001
crossref_primary_10_1016_j_renene_2017_09_089
crossref_primary_10_1007_s00521_021_06424_6
crossref_primary_10_1177_0309524X18780401
crossref_primary_10_3390_math10111943
crossref_primary_10_1016_j_rser_2016_11_026
crossref_primary_10_3390_s22155742
crossref_primary_10_1177_0309524X21998263
crossref_primary_10_1016_j_renene_2021_11_073
crossref_primary_10_1016_j_tsep_2023_102131
crossref_primary_10_1016_j_enconman_2022_115433
crossref_primary_10_1109_ACCESS_2024_3401038
crossref_primary_10_1016_j_energy_2021_122012
crossref_primary_10_1109_TR_2017_2727489
crossref_primary_10_1108_IJSI_08_2024_0129
crossref_primary_10_1016_j_energy_2020_119397
crossref_primary_10_1016_j_jclepro_2020_121817
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1109_ACCESS_2021_3056562
crossref_primary_10_1016_j_knosys_2020_106052
crossref_primary_10_3390_designs8010010
crossref_primary_10_1109_ACCESS_2018_2823336
crossref_primary_10_3390_s24196200
crossref_primary_10_1007_s11063_017_9766_4
crossref_primary_10_1016_j_pmatsci_2020_100741
crossref_primary_10_1016_j_energy_2021_122960
crossref_primary_10_1016_j_energy_2018_05_157
crossref_primary_10_1016_j_enconman_2018_02_012
crossref_primary_10_1016_j_jclepro_2023_139944
crossref_primary_10_1016_j_egyr_2024_11_074
crossref_primary_10_1016_j_segan_2024_101293
crossref_primary_10_3390_su11030652
crossref_primary_10_1016_j_oceaneng_2022_111352
crossref_primary_10_3390_en11081975
crossref_primary_10_1016_j_jclepro_2020_124628
crossref_primary_10_1080_15567036_2018_1495782
crossref_primary_10_1016_j_apenergy_2024_124893
crossref_primary_10_3390_en12030337
crossref_primary_10_1088_1742_6596_2087_1_012089
crossref_primary_10_1007_s11356_019_07402_1
crossref_primary_10_1016_j_energy_2021_121981
crossref_primary_10_3390_chemengineering2020027
crossref_primary_10_1016_j_renene_2021_08_007
crossref_primary_10_3390_en9120989
crossref_primary_10_1016_j_egyr_2024_08_041
crossref_primary_10_1007_s00216_020_02921_0
crossref_primary_10_1109_ACCESS_2025_3586997
crossref_primary_10_1016_j_jlp_2019_103926
crossref_primary_10_1007_s11831_021_09695_3
crossref_primary_10_1016_j_enconman_2023_117763
crossref_primary_10_1016_j_renene_2016_12_071
crossref_primary_10_1016_j_renene_2020_09_110
crossref_primary_10_1016_j_renene_2022_09_114
crossref_primary_10_1016_j_seta_2019_100601
crossref_primary_10_1016_j_enconman_2017_09_034
crossref_primary_10_1016_j_egyr_2020_11_171
crossref_primary_10_1109_TPWRS_2021_3105101
crossref_primary_10_1155_2022_3489390
crossref_primary_10_1016_j_energy_2025_135551
crossref_primary_10_3390_pr10040689
crossref_primary_10_3390_en16227522
crossref_primary_10_1016_j_energy_2024_131590
crossref_primary_10_1016_j_renene_2019_08_018
crossref_primary_10_3390_rs13183643
crossref_primary_10_1080_15435075_2020_1779076
crossref_primary_10_3390_e18030072
crossref_primary_10_1016_j_engappai_2020_104012
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_1051_matecconf_201817303043
crossref_primary_10_1155_2019_6403081
crossref_primary_10_1177_0309524X19849843
crossref_primary_10_1016_j_enggeo_2022_106561
crossref_primary_10_3390_sym14050955
crossref_primary_10_3390_app12189038
crossref_primary_10_1088_1402_4896_ad65c5
crossref_primary_10_1177_0958305X17714174
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1016_j_renene_2021_07_126
crossref_primary_10_3390_bdcc9050122
crossref_primary_10_3390_en16062887
crossref_primary_10_1063_5_0002753
crossref_primary_10_1016_j_enconman_2020_112524
crossref_primary_10_3390_app11083307
crossref_primary_10_1038_s41598_025_03188_0
crossref_primary_10_1016_j_enconman_2018_01_010
crossref_primary_10_1016_j_measurement_2024_115065
crossref_primary_10_1109_ACCESS_2019_2940266
crossref_primary_10_1080_02286203_2018_1564809
crossref_primary_10_1016_j_enconman_2019_112345
crossref_primary_10_1016_j_seta_2020_100946
crossref_primary_10_1177_0309524X19849867
crossref_primary_10_1016_j_apenergy_2018_05_043
crossref_primary_10_1016_j_renene_2021_03_020
crossref_primary_10_1190_geo2016_0300_1
crossref_primary_10_1016_j_renene_2021_11_097
crossref_primary_10_1007_s11356_019_06021_0
crossref_primary_10_3390_w13172451
crossref_primary_10_1016_j_ijepes_2022_108143
crossref_primary_10_1109_JESTPE_2016_2590834
crossref_primary_10_1016_j_apenergy_2019_114345
crossref_primary_10_1016_j_epsr_2022_108765
crossref_primary_10_1016_j_apenergy_2018_08_114
crossref_primary_10_1049_rpg2_12085
crossref_primary_10_1080_17538947_2025_2513589
crossref_primary_10_1016_j_jclepro_2018_07_164
crossref_primary_10_1016_j_renene_2019_06_047
crossref_primary_10_1016_j_enconman_2021_113917
crossref_primary_10_1016_j_renene_2018_12_038
crossref_primary_10_1080_15567036_2021_1916657
crossref_primary_10_1016_j_rser_2016_09_063
crossref_primary_10_1016_j_est_2025_116125
crossref_primary_10_1002_we_2422
crossref_primary_10_1016_j_apenergy_2021_117461
crossref_primary_10_3233_JIFS_169553
crossref_primary_10_1007_s11042_022_12992_z
crossref_primary_10_3390_atmos11010045
crossref_primary_10_1016_j_enconman_2017_11_053
crossref_primary_10_1109_JSYST_2022_3150749
crossref_primary_10_1016_j_ijepes_2022_107994
crossref_primary_10_1016_j_energy_2018_07_005
crossref_primary_10_1007_s11356_022_22959_0
crossref_primary_10_1016_j_oceaneng_2024_118191
crossref_primary_10_1016_j_renene_2017_03_064
crossref_primary_10_1016_j_epsr_2025_111765
crossref_primary_10_1016_j_jobe_2023_108282
crossref_primary_10_3390_atmos12050607
crossref_primary_10_1016_j_atmosenv_2024_120951
crossref_primary_10_1016_j_enconman_2017_02_004
crossref_primary_10_3390_app9142847
crossref_primary_10_1016_j_enconman_2018_10_089
crossref_primary_10_1088_1742_6596_2141_1_012016
crossref_primary_10_1155_2018_2506157
crossref_primary_10_1360_SST_2024_0242
crossref_primary_10_1109_ACCESS_2020_3022872
crossref_primary_10_1007_s12204_022_2477_7
crossref_primary_10_1109_TSTE_2018_2789685
crossref_primary_10_1007_s12046_019_1145_6
crossref_primary_10_1016_j_renene_2018_02_092
crossref_primary_10_1111_coin_70078
crossref_primary_10_1016_j_enconman_2017_06_021
crossref_primary_10_1155_2021_1837681
crossref_primary_10_1016_j_asoc_2017_12_022
crossref_primary_10_1016_j_jclepro_2023_135993
crossref_primary_10_1155_2020_8811407
crossref_primary_10_3390_en12183545
crossref_primary_10_1007_s10668_024_05287_w
crossref_primary_10_1016_j_apenergy_2022_120013
crossref_primary_10_1016_j_atmosenv_2024_120986
crossref_primary_10_1016_j_apenergy_2018_06_053
crossref_primary_10_1080_15435075_2022_2075225
crossref_primary_10_1016_j_apenergy_2016_08_108
crossref_primary_10_1080_08839514_2021_1922850
crossref_primary_10_1515_bmt_2018_0012
crossref_primary_10_1016_j_rser_2019_03_029
crossref_primary_10_1016_j_jhydrol_2025_132915
crossref_primary_10_1016_j_enconman_2017_11_071
crossref_primary_10_1007_s00521_018_3628_5
crossref_primary_10_3390_math11122746
crossref_primary_10_1016_j_seta_2023_103603
crossref_primary_10_3389_fphar_2023_1260349
crossref_primary_10_3390_en15196942
crossref_primary_10_1109_TITS_2021_3058608
crossref_primary_10_1016_j_energy_2021_120492
crossref_primary_10_1109_ACCESS_2024_3392899
crossref_primary_10_1016_j_egyr_2022_07_164
crossref_primary_10_3390_en15176287
crossref_primary_10_1016_j_renene_2025_122988
crossref_primary_10_1016_j_energy_2023_129823
crossref_primary_10_1088_1757_899X_506_1_012021
crossref_primary_10_3390_en10101522
crossref_primary_10_1016_j_energy_2024_133920
crossref_primary_10_1016_j_engappai_2023_105874
crossref_primary_10_1007_s00500_020_05233_8
crossref_primary_10_3390_s20030603
crossref_primary_10_1016_j_engappai_2020_103573
crossref_primary_10_1007_s12665_016_5911_z
crossref_primary_10_1016_j_egypro_2019_01_491
crossref_primary_10_3390_app11209441
crossref_primary_10_1016_j_enconman_2019_111889
crossref_primary_10_3390_en15114067
crossref_primary_10_1016_j_enconman_2021_114775
crossref_primary_10_3390_en17174300
crossref_primary_10_1016_j_apenergy_2024_124124
crossref_primary_10_1016_j_apenergy_2024_122624
crossref_primary_10_1016_j_enconman_2016_06_053
crossref_primary_10_1016_j_measurement_2019_106971
crossref_primary_10_1155_2017_2843651
crossref_primary_10_1016_j_apenergy_2021_117016
crossref_primary_10_1002_we_2613
crossref_primary_10_1016_j_energy_2017_12_011
crossref_primary_10_1016_j_renene_2022_06_139
crossref_primary_10_1016_j_renene_2021_05_160
crossref_primary_10_1016_j_renene_2022_08_044
crossref_primary_10_1016_j_ijepes_2015_11_116
crossref_primary_10_1177_0020294021997491
crossref_primary_10_1016_j_energy_2024_133103
crossref_primary_10_1109_ACCESS_2020_3035121
crossref_primary_10_1016_j_future_2024_107565
crossref_primary_10_3390_en13010093
crossref_primary_10_3390_min10030233
crossref_primary_10_1016_j_energy_2025_138514
crossref_primary_10_1016_j_renene_2017_11_089
crossref_primary_10_1016_j_enconman_2022_115322
crossref_primary_10_3390_foods12183425
crossref_primary_10_1016_j_renene_2020_08_139
crossref_primary_10_1109_TKDE_2020_3018376
crossref_primary_10_1155_2015_325435
crossref_primary_10_1016_j_chaos_2020_110592
crossref_primary_10_1016_j_enconman_2017_03_056
crossref_primary_10_1016_j_isatra_2018_09_015
crossref_primary_10_1002_esp_5686
crossref_primary_10_1049_iet_rpg_2018_5203
crossref_primary_10_3390_su10093202
crossref_primary_10_1016_j_apenergy_2018_07_032
crossref_primary_10_1097_HP_0000000000000879
crossref_primary_10_1016_j_renene_2024_120350
crossref_primary_10_7717_peerj_cs_732
crossref_primary_10_1016_j_actatropica_2025_107657
crossref_primary_10_1088_1755_1315_168_1_012032
crossref_primary_10_1016_j_enconman_2017_10_085
crossref_primary_10_3390_en13123259
crossref_primary_10_1016_j_matpr_2020_12_1090
crossref_primary_10_1016_j_asoc_2017_01_033
Cites_doi 10.1016/j.renene.2009.10.037
10.1016/j.renene.2014.03.068
10.1016/S0304-4076(03)00205-7
10.3354/cr030079
10.1016/j.eswa.2010.09.067
10.1016/j.renene.2013.05.012
10.1016/j.eswa.2010.06.001
10.1016/j.ijforecast.2014.08.008
10.1016/j.renene.2014.11.011
10.1016/j.rser.2011.05.009
10.1016/j.renene.2008.03.014
10.1016/j.renene.2003.11.009
10.1115/1.1862266
10.1007/BFb0091924
10.1002/we.1641
10.2307/1403192
10.1002/9781118619193
10.1016/j.rser.2014.01.004
10.1016/j.renene.2012.02.015
10.1016/j.ijforecast.2013.06.001
10.1016/j.renene.2004.02.001
10.1007/s10699-012-9305-8
10.1016/j.rser.2013.12.054
10.1016/j.renene.2013.08.011
10.1016/j.ijforecast.2010.07.002
10.1016/j.renene.2006.10.005
10.1007/978-1-4612-1694-0_15
10.1016/j.seta.2013.12.001
10.1016/j.renene.2010.04.022
10.1103/PhysRevA.33.1134
10.1016/j.renene.2011.03.030
10.1002/we.179
10.1016/j.renene.2012.10.009
10.1016/j.renene.2005.07.006
10.1103/PhysRevA.45.3403
10.1016/j.renene.2010.09.007
10.1260/0309524041211404
10.1016/j.enconman.2010.09.010
10.1016/j.renene.2008.09.006
10.1142/5722
10.1016/j.renene.2009.01.001
10.1016/j.ijforecast.2006.03.001
10.1016/j.apenergy.2013.08.025
10.1016/j.eneco.2007.01.011
10.1016/j.renene.2010.02.001
10.1016/S0375-9601(02)01170-2
10.1145/1961189.1961199
10.1016/j.enpol.2004.04.001
10.1016/j.renene.2011.05.033
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2015.07.004
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 809
ExternalDocumentID 10_1016_j_renene_2015_07_004
S0960148115301014
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c446t-a64b98d96908bd2495b64f8e2f09b696f336e6089c4fe2f6e2618e9189ecfee93
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000363344800077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-1481
IngestDate Sun Sep 28 01:50:58 EDT 2025
Sat Nov 29 06:21:17 EST 2025
Tue Nov 18 22:30:56 EST 2025
Fri Feb 23 02:20:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector regression
Phase space reconstruction
Non-linear analysis
Wind speed forecasting
Genetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-a64b98d96908bd2495b64f8e2f09b696f336e6089c4fe2f6e2618e9189ecfee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4302-4902
PQID 2000516228
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2000516228
crossref_citationtrail_10_1016_j_renene_2015_07_004
crossref_primary_10_1016_j_renene_2015_07_004
elsevier_sciencedirect_doi_10_1016_j_renene_2015_07_004
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blaskowitz, Herwartz (bib61) 2014; 30
Akaike (bib31) 1998
Madsen, Pinson, Kariniotakis (bib29) 2005; 29
Liu, Niu, Wang, Fan (bib21) February 2014; 62
International Electrotechnical Commission (IEC) (bib44) 2005
Borja, Huacuz, Lopez-Laing, Tejeda (bib45) 2011
Holttinen (bib3) 2005; 33
Kavasseri, Seetharaman (bib1) 2009; 34
Takens (bib24) 1981; 1980
Holland (bib40) 1975; vol. 1
Paniagua-Tineo, Salcedo-Sanz, Casanova-Mateo, Ortiz-García, Cony, Hernández-Martín (bib17) November 2011; 36
Cadenas, Jaramillo, Rivera (bib5) 2010; 35
Gershenson (bib48) October 2012; 18
Fernandez, Maldonado, Gershenson (bib49) 2014
Fraser, Swinney (bib50) February 1986; 33
Shintani, Linton (bib47) May 2004; 120
Yoder, Hering, Navidi, Larson (bib54) June 2013; 17
Jarque, Bera (bib46) 1987; 55
Segura-Heras, Escriva-Escrivá, Alcázar-Ortega (bib9) 2011; 36
Bielecki, Kemper, Acker (bib53) 2010; vol. 2
Banerjee (bib38) 2005
Bivona, Bonanno, Burlon, Gurrera, Leone (bib58) 2011; 52
Chang, Lin (bib65) 2011; 2
Salcedo-Sanz, Ortiz-García, Pérez-Bellido, Portilla-Figueras, Prieto (bib16) April 2011; 38
Zeng, Qiao (bib18) April 2013; 52
Skittides, Früh (bib10) September 2014; 69
Foley, Leahy, Marvuglia, McKeogh (bib2) 2012; 37
Abdel-Aal, Elhadidy, Shaahid (bib28) 2009; 34
Colak, Sagiroglu, Yesilbudak (bib37) October 2012; 46
Small, Walker, Tordesillas (bib25) 2012
Elliott, Schwartz, Scott, Haymes, Heimiller, George (bib43) 2004
Jung, Broadwater (bib56) 2014; 31
Drucker, Burges, Kaufman, Smola, Vapnik (bib32) 1997; 9
Ferreira, Gama, Matias, Botterud, Wang (bib12) 2010
Cadenas, Rivera (bib35) January 2009; 34
Larson, Westrick (bib15) December 2005; 9
Monteiro, Bessa, Miranda, Botterud, Wang, Conzelmann (bib11) 2009
Cancino-Solórzano, Gutiérrez-Trashorras, Xiberta-Bernat (bib41) 2011; 15
Wang, Qin, Zhou, Jiang (bib4) 2015; 76
Guyon, Elisseeff (bib23) 2003; 3
Jaramillo, Borja (bib6) 2004; 28
Olaofe (bib59) 2014; 6
Cadenas, Rivera (bib13) October 2007; 32
Montgomery, Jennings, Kulahci (bib62) 2008
Hu, Wang, Zeng (bib19) 2013; 60
Mohandes, Halawani, Rehman, Hussain (bib14) May 2004; 29
Jafarian, Ranjbar (bib8) 2010; 35
Aleman-Nava, Casiano-Flores, Cárdenas-Chávez, Díaz-Chavez, Scarlat, Mahlknecht, Dallemand, Parra (bib42) 2014; 32
Madsen, Kariniotakis, Nielsen, Nielsen, Pinson (bib64) 2004
Blaskowitz, Herwartz (bib60) 2011; 27
Goh, Chen, Popović, Aihara, Obradovic, Mandic (bib27) 2006; 31
Chen, Yu (bib20) 2014; 113
Lange (bib51) May 2005; 127
Sanders, Manfredo, Boris (bib52) 2008; 30
Santamaría-Bonfil, Frausto-Solís, Vázquez-Rodarte (bib22) December 2013
Huang, Chuang, Wu, Lai (bib34) December 2010; 37
Schölkopf, Smola (bib33) 2002
Cadenas, Rivera (bib36) December 2010; 35
Hyndman, Koehler (bib57) October 2006; 22
Jaramillo, Borja (bib7) 2004; 29
Kennel, Brown, Abarbanel (bib39) March 1992; 45
Willmott, Matsuura (bib55) 2005; 30
Small (bib26) 2005
Marwan, Kurths (bib66) 2002; 302
Weron (bib63) October 2014; 30
Box, Jenkins, Reinsel (bib30) 2008
International Electrotechnical Commission (IEC) (10.1016/j.renene.2015.07.004_bib44) 2005
Banerjee (10.1016/j.renene.2015.07.004_bib38) 2005
Montgomery (10.1016/j.renene.2015.07.004_bib62) 2008
Zeng (10.1016/j.renene.2015.07.004_bib18) 2013; 52
Ferreira (10.1016/j.renene.2015.07.004_bib12) 2010
Salcedo-Sanz (10.1016/j.renene.2015.07.004_bib16) 2011; 38
Goh (10.1016/j.renene.2015.07.004_bib27) 2006; 31
Mohandes (10.1016/j.renene.2015.07.004_bib14) 2004; 29
Jarque (10.1016/j.renene.2015.07.004_bib46) 1987; 55
Guyon (10.1016/j.renene.2015.07.004_bib23) 2003; 3
Madsen (10.1016/j.renene.2015.07.004_bib64) 2004
Small (10.1016/j.renene.2015.07.004_bib26) 2005
Bielecki (10.1016/j.renene.2015.07.004_bib53) 2010; vol. 2
Yoder (10.1016/j.renene.2015.07.004_bib54) 2013; 17
Blaskowitz (10.1016/j.renene.2015.07.004_bib60) 2011; 27
Cadenas (10.1016/j.renene.2015.07.004_bib5) 2010; 35
Borja (10.1016/j.renene.2015.07.004_bib45) 2011
Marwan (10.1016/j.renene.2015.07.004_bib66) 2002; 302
Holland (10.1016/j.renene.2015.07.004_bib40) 1975; vol. 1
Fernandez (10.1016/j.renene.2015.07.004_bib49) 2014
Foley (10.1016/j.renene.2015.07.004_bib2) 2012; 37
Schölkopf (10.1016/j.renene.2015.07.004_bib33) 2002
Jaramillo (10.1016/j.renene.2015.07.004_bib7) 2004; 29
Takens (10.1016/j.renene.2015.07.004_bib24) 1981; 1980
Kavasseri (10.1016/j.renene.2015.07.004_bib1) 2009; 34
Colak (10.1016/j.renene.2015.07.004_bib37) 2012; 46
Abdel-Aal (10.1016/j.renene.2015.07.004_bib28) 2009; 34
Madsen (10.1016/j.renene.2015.07.004_bib29) 2005; 29
Holttinen (10.1016/j.renene.2015.07.004_bib3) 2005; 33
Liu (10.1016/j.renene.2015.07.004_bib21) 2014; 62
Willmott (10.1016/j.renene.2015.07.004_bib55) 2005; 30
Chang (10.1016/j.renene.2015.07.004_bib65) 2011; 2
Santamaría-Bonfil (10.1016/j.renene.2015.07.004_bib22) 2013
Larson (10.1016/j.renene.2015.07.004_bib15) 2005; 9
Lange (10.1016/j.renene.2015.07.004_bib51) 2005; 127
Fraser (10.1016/j.renene.2015.07.004_bib50) 1986; 33
Sanders (10.1016/j.renene.2015.07.004_bib52) 2008; 30
Segura-Heras (10.1016/j.renene.2015.07.004_bib9) 2011; 36
Small (10.1016/j.renene.2015.07.004_bib25) 2012
Shintani (10.1016/j.renene.2015.07.004_bib47) 2004; 120
Weron (10.1016/j.renene.2015.07.004_bib63) 2014; 30
Box (10.1016/j.renene.2015.07.004_bib30) 2008
Jung (10.1016/j.renene.2015.07.004_bib56) 2014; 31
Jaramillo (10.1016/j.renene.2015.07.004_bib6) 2004; 28
Bivona (10.1016/j.renene.2015.07.004_bib58) 2011; 52
Kennel (10.1016/j.renene.2015.07.004_bib39) 1992; 45
Cancino-Solórzano (10.1016/j.renene.2015.07.004_bib41) 2011; 15
Akaike (10.1016/j.renene.2015.07.004_bib31) 1998
Olaofe (10.1016/j.renene.2015.07.004_bib59) 2014; 6
Elliott (10.1016/j.renene.2015.07.004_bib43) 2004
Cadenas (10.1016/j.renene.2015.07.004_bib36) 2010; 35
Paniagua-Tineo (10.1016/j.renene.2015.07.004_bib17) 2011; 36
Drucker (10.1016/j.renene.2015.07.004_bib32) 1997; 9
Cadenas (10.1016/j.renene.2015.07.004_bib13) 2007; 32
Gershenson (10.1016/j.renene.2015.07.004_bib48) 2012; 18
Monteiro (10.1016/j.renene.2015.07.004_bib11) 2009
Hu (10.1016/j.renene.2015.07.004_bib19) 2013; 60
Skittides (10.1016/j.renene.2015.07.004_bib10) 2014; 69
Blaskowitz (10.1016/j.renene.2015.07.004_bib61) 2014; 30
Aleman-Nava (10.1016/j.renene.2015.07.004_bib42) 2014; 32
Jafarian (10.1016/j.renene.2015.07.004_bib8) 2010; 35
Huang (10.1016/j.renene.2015.07.004_bib34) 2010; 37
Hyndman (10.1016/j.renene.2015.07.004_bib57) 2006; 22
Chen (10.1016/j.renene.2015.07.004_bib20) 2014; 113
Wang (10.1016/j.renene.2015.07.004_bib4) 2015; 76
Cadenas (10.1016/j.renene.2015.07.004_bib35) 2009; 34
References_xml – volume: 35
  start-page: 2732
  year: December 2010
  end-page: 2738
  ident: bib36
  article-title: Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
  publication-title: Renew. Energy
– year: 2014
  ident: bib49
  article-title: Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis
– year: 2008
  ident: bib30
  article-title: Time Series Analysis: Forecasting and Control
– volume: 18
  start-page: 781
  year: October 2012
  end-page: 790
  ident: bib48
  article-title: The implications of interactions for science and philosophy
  publication-title: Found. Sci.
– volume: 35
  start-page: 925
  year: 2010
  end-page: 930
  ident: bib5
  article-title: Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method
  publication-title: Renew. Energy
– year: 2005
  ident: bib38
  article-title: Dynamics for Engineers
– year: 2008
  ident: bib62
  article-title: Introduction to Time Series Analysis and Forecasting
– volume: 113
  start-page: 690
  year: 2014
  end-page: 705
  ident: bib20
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl. Energy
– year: 2002
  ident: bib33
  article-title: Learning with Kernels
– volume: 127
  start-page: 177
  year: May 2005
  ident: bib51
  article-title: On the uncertainty of wind power predictions – analysis of the forecast accuracy and statistical distribution of errors
  publication-title: J. Sol. Energy Eng.
– volume: 60
  start-page: 185
  year: 2013
  end-page: 194
  ident: bib19
  article-title: A hybrid forecasting approach applied to wind speed time series
  publication-title: Renew. Energy
– year: 2012
  ident: bib25
  article-title: Verifying chaotic dynamics from experimental data
  publication-title: Int. Symp. Nonlinear Theory its Appl. (NOLTA), Majorca, Spain, Majorca, Spaon
– volume: 31
  start-page: 762
  year: 2014
  end-page: 777
  ident: bib56
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew. Sustain. Energy Rev.
– volume: 34
  start-page: 274
  year: January 2009
  end-page: 278
  ident: bib35
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew. Energy
– start-page: 199
  year: 1998
  end-page: 213
  ident: bib31
  article-title: Information Theory and an Extension of the Maximum Likelihood Principle
  publication-title: Sel. Pap. Hirotugu Akaike
– volume: 1980
  year: 1981
  ident: bib24
  article-title: Detecting strange attractors in turbulence
  publication-title: Dyn. Syst. Turbul. Warwick
– volume: 38
  start-page: 4052
  year: April 2011
  end-page: 4057
  ident: bib16
  article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 1192
  year: 2008
  end-page: 1207
  ident: bib52
  article-title: Accuracy and efficiency in the U.S. Department of Energy's short-term supply forecasts
  publication-title: Energy Econ.
– volume: 37
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib2
  article-title: Current methods and advances in forecasting of wind power generation
  publication-title: Renew. Energy
– volume: 69
  start-page: 365
  year: September 2014
  end-page: 374
  ident: bib10
  article-title: Wind forecasting using Principal Component Analysis. Renew
  publication-title: Energy
– volume: 120
  start-page: 1
  year: May 2004
  end-page: 33
  ident: bib47
  article-title: Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos
  publication-title: J. Econom.
– volume: 52
  start-page: 118
  year: April 2013
  end-page: 127
  ident: bib18
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew. Energy
– volume: 27
  start-page: 1058
  year: 2011
  end-page: 1065
  ident: bib60
  article-title: On economic evaluation of directional forecasts
  publication-title: Int. J. Forecast
– volume: 30
  start-page: 30
  year: 2014
  end-page: 42
  ident: bib61
  article-title: Testing the value of directional forecasts in the presence of serial correlation
  publication-title: Int. J. Forecast
– volume: 15
  start-page: 3552
  year: 2011
  end-page: 3557
  ident: bib41
  article-title: Current state of wind energy in Mexico, achievements and perspectives
  publication-title: Renew. Sustain. Energy Rev.
– volume: 55
  start-page: 163
  year: 1987
  end-page: 172
  ident: bib46
  article-title: A test for normality of observations and regression residuals
  publication-title: Stat. Rev. Int. Stat.
– volume: 28
  start-page: 225
  year: 2004
  end-page: 234
  ident: bib6
  article-title: Bimodal versus Weibull Wind Speed Distributions: an Analysis of Wind Energy Potential in La Venta, Mexico
  publication-title: Wind Eng.
– volume: 29
  start-page: 1613
  year: 2004
  end-page: 1630
  ident: bib7
  article-title: Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case
  publication-title: Renew. Energy
– start-page: 1
  year: December 2013
  end-page: 23
  ident: bib22
  article-title: Volatility forecasting using support vector regression and a hybrid genetic algorithm
  publication-title: Comput. Econ.
– volume: 17
  start-page: 1425
  year: June 2013
  end-page: 1439
  ident: bib54
  article-title: Short-term forecasting of categorical changes in wind power with Markov chain models
  publication-title: Wind Energy
– volume: vol. 1
  year: 1975
  ident: bib40
  publication-title: Adaption in Natural and Artificial Systems
– volume: 34
  start-page: 1686
  year: 2009
  end-page: 1699
  ident: bib28
  article-title: Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks
  publication-title: Renew. Energy
– year: 2005
  ident: bib26
  article-title: Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance
– volume: 32
  start-page: 140
  year: 2014
  end-page: 153
  ident: bib42
  article-title: Renewable energy research progress in Mexico: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 32
  start-page: 2116
  year: October 2007
  end-page: 2128
  ident: bib13
  article-title: Wind speed forecasting in the South Coast of Oaxaca, México
  publication-title: Renew. Energy
– volume: 52
  start-page: 1157
  year: 2011
  end-page: 1165
  ident: bib58
  article-title: Stochastic models for wind speed forecasting
  publication-title: Energy Convers. Manag.
– year: 2009
  ident: bib11
  article-title: Wind Power Forecasting. Technical Report
– volume: 37
  start-page: 8590
  year: December 2010
  end-page: 8598
  ident: bib34
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  ident: bib32
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2004
  ident: bib43
  article-title: Wind Energy Resource Atlas of Oaxaca
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib23
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 62
  start-page: 592
  year: February 2014
  end-page: 597
  ident: bib21
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
– volume: 33
  start-page: 1134
  year: February 1986
  end-page: 1140
  ident: bib50
  article-title: Independent coordinates for strange attractors from mutual information
  publication-title: Phys. Rev. A
– volume: 31
  start-page: 1733
  year: 2006
  end-page: 1750
  ident: bib27
  article-title: Complex-valued forecasting of wind profile
  publication-title: Renew. Energy
– volume: 76
  start-page: 91
  year: 2015
  end-page: 101
  ident: bib4
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
  publication-title: Renew. Energy
– volume: 29
  start-page: 475
  year: 2005
  end-page: 489
  ident: bib29
  article-title: Standardizing the performance evaluation of short-term wind power prediction models
  publication-title: Wind Energy
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: bib55
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– year: 2010
  ident: bib12
  article-title: A Survey on Wind Power Ramp Forecasting. Technical Report
– year: 2004
  ident: bib64
  article-title: A Protocol for standardazing the performance evaluation of short term wind power prediction models
  publication-title: Proc. Glob. Wind. Conf. Exhib., Chicago
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: bib1
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
– volume: 29
  start-page: 939
  year: May 2004
  end-page: 947
  ident: bib14
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
– volume: 45
  start-page: 3403
  year: March 1992
  end-page: 3411
  ident: bib39
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Phys. Rev. A
– volume: 302
  start-page: 299
  year: 2002
  end-page: 307
  ident: bib66
  article-title: Nonlinear analysis of bivariate data with cross recurrence plots
  publication-title: Phys. Lett. A
– volume: vol. 2
  start-page: 867
  year: 2010
  end-page: 876
  ident: bib53
  article-title: A methodology for comprehensive characterization of errors in wind power forecasting
  publication-title: Es2010 Proc. Asme 4th Int. Conf. Energy Sustain
– volume: 30
  start-page: 1030
  year: October 2014
  end-page: 1081
  ident: bib63
  article-title: Electricity price forecasting : A review of the state-of-the-art with a look into the future
  publication-title: Int. J. Forecast
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib45
  article-title: Main results of the action plan for removing barriers to the implementation of wind power in Mexico
  publication-title: Eur. Wind Energy Assoc. Annu. Event. 2011. Brussels
– volume: 22
  start-page: 679
  year: October 2006
  end-page: 688
  ident: bib57
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast
– volume: 36
  start-page: 3054
  year: November 2011
  end-page: 3060
  ident: bib17
  article-title: Prediction of daily maximum temperature using a support vector regression algorithm
  publication-title: Renew. Energy
– volume: 35
  start-page: 2008
  year: 2010
  end-page: 2014
  ident: bib8
  article-title: Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine
  publication-title: Renew. Energy
– volume: 6
  start-page: 1
  year: 2014
  end-page: 24
  ident: bib59
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
  publication-title: Sustain. Energy Technol. Assess.
– volume: 33
  start-page: 2052
  year: 2005
  end-page: 2063
  ident: bib3
  article-title: Optimal electricity market for wind power
  publication-title: Energy Policy
– volume: 36
  start-page: 1008
  year: 2011
  end-page: 1013
  ident: bib9
  article-title: Wind farm electrical power production model for load flow analysis
  publication-title: Renew. Energy
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib65
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 9
  start-page: 55
  year: December 2005
  end-page: 62
  ident: bib15
  article-title: Short-term wind forecasting using off-site observations
  publication-title: Wind Energy
– volume: 46
  start-page: 241
  year: October 2012
  end-page: 247
  ident: bib37
  article-title: Data mining and wind power prediction: A literature review
  publication-title: Renew. Energy
– year: 2005
  ident: bib44
  article-title: IEC 61400-1 Wind Turbine Generator Systems – Part 1: Design Requirements
– volume: 35
  start-page: 925
  issn: 09601481
  issue: 5
  year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib5
  article-title: Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.10.037
– volume: 69
  start-page: 365
  issn: 09601481
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib10
  article-title: Wind forecasting using Principal Component Analysis. Renew
  publication-title: Energy
  doi: 10.1016/j.renene.2014.03.068
– volume: 120
  start-page: 1
  issn: 03044076
  issue: 1
  year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib47
  article-title: Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(03)00205-7
– volume: 30
  start-page: 79
  issn: 0936577X
  year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib55
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 38
  start-page: 4052
  issue: 4
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib16
  article-title: Short term wind speed prediction based on evolutionary support vector regression algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.067
– volume: 60
  start-page: 185
  issn: 0960-1481
  year: 2013
  ident: 10.1016/j.renene.2015.07.004_bib19
  article-title: A hybrid forecasting approach applied to wind speed time series
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.05.012
– volume: 37
  start-page: 8590
  issn: 09574174
  issue: 12
  year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib34
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.001
– year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib38
– volume: 30
  start-page: 1030
  issn: 01692070
  issue: 4
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib63
  article-title: Electricity price forecasting : A review of the state-of-the-art with a look into the future
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2014.08.008
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.renene.2015.07.004_bib23
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: vol. 1
  year: 1975
  ident: 10.1016/j.renene.2015.07.004_bib40
– volume: 76
  start-page: 91
  issn: 09601481
  year: 2015
  ident: 10.1016/j.renene.2015.07.004_bib4
  article-title: Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.11.011
– volume: 29
  start-page: 475
  issue: 6
  year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib29
  article-title: Standardizing the performance evaluation of short-term wind power prediction models
  publication-title: Wind Energy
– volume: 15
  start-page: 3552
  issn: 13640321
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib41
  article-title: Current state of wind energy in Mexico, achievements and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.05.009
– year: 2012
  ident: 10.1016/j.renene.2015.07.004_bib25
  article-title: Verifying chaotic dynamics from experimental data
– year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib44
– volume: 34
  start-page: 274
  issn: 09601481
  issue: 1
  year: 2009
  ident: 10.1016/j.renene.2015.07.004_bib35
  article-title: Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.03.014
– volume: 29
  start-page: 939
  issn: 09601481
  issue: 6
  year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib14
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 127
  start-page: 177
  issn: 01996231
  year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib51
  article-title: On the uncertainty of wind power predictions – analysis of the forecast accuracy and statistical distribution of errors
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.1862266
– volume: 1980
  year: 1981
  ident: 10.1016/j.renene.2015.07.004_bib24
  article-title: Detecting strange attractors in turbulence
  publication-title: Dyn. Syst. Turbul. Warwick
  doi: 10.1007/BFb0091924
– volume: 17
  start-page: 1425
  issn: 10991824
  year: 2013
  ident: 10.1016/j.renene.2015.07.004_bib54
  article-title: Short-term forecasting of categorical changes in wind power with Markov chain models
  publication-title: Wind Energy
  doi: 10.1002/we.1641
– volume: 55
  start-page: 163
  issn: 0036-8075
  year: 1987
  ident: 10.1016/j.renene.2015.07.004_bib46
  article-title: A test for normality of observations and regression residuals
  publication-title: Stat. Rev. Int. Stat.
  doi: 10.2307/1403192
– year: 2008
  ident: 10.1016/j.renene.2015.07.004_bib30
  doi: 10.1002/9781118619193
– volume: 32
  start-page: 140
  issn: 13640321
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib42
  article-title: Renewable energy research progress in Mexico: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.004
– volume: 46
  start-page: 241
  issn: 09601481
  year: 2012
  ident: 10.1016/j.renene.2015.07.004_bib37
  article-title: Data mining and wind power prediction: A literature review
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.02.015
– year: 2008
  ident: 10.1016/j.renene.2015.07.004_bib62
– year: 2009
  ident: 10.1016/j.renene.2015.07.004_bib11
– volume: vol. 2
  start-page: 867
  year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib53
  article-title: A methodology for comprehensive characterization of errors in wind power forecasting
– volume: 30
  start-page: 30
  issn: 01692070
  issue: 1
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib61
  article-title: Testing the value of directional forecasts in the presence of serial correlation
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2013.06.001
– start-page: 1
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib45
  article-title: Main results of the action plan for removing barriers to the implementation of wind power in Mexico
– volume: 29
  start-page: 1613
  issn: 09601481
  year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib7
  article-title: Wind speed analysis in La Ventosa, Mexico: A bimodal probability distribution case
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2004.02.001
– volume: 18
  start-page: 781
  issn: 1233-1821
  issue: 4
  year: 2012
  ident: 10.1016/j.renene.2015.07.004_bib48
  article-title: The implications of interactions for science and philosophy
  publication-title: Found. Sci.
  doi: 10.1007/s10699-012-9305-8
– volume: 31
  start-page: 762
  issn: 13640321
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib56
  article-title: Current status and future advances for wind speed and power forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.054
– volume: 62
  start-page: 592
  issn: 09601481
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib21
  article-title: Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.08.011
– volume: 27
  start-page: 1058
  issue: 4
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib60
  article-title: On economic evaluation of directional forecasts
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2010.07.002
– volume: 32
  start-page: 2116
  issn: 09601481
  issue: 12
  year: 2007
  ident: 10.1016/j.renene.2015.07.004_bib13
  article-title: Wind speed forecasting in the South Coast of Oaxaca, México
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2006.10.005
– start-page: 199
  year: 1998
  ident: 10.1016/j.renene.2015.07.004_bib31
  article-title: Information Theory and an Extension of the Maximum Likelihood Principle
  doi: 10.1007/978-1-4612-1694-0_15
– volume: 6
  start-page: 1
  issn: 22131388
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib59
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2013.12.001
– year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib64
  article-title: A Protocol for standardazing the performance evaluation of short term wind power prediction models
– volume: 35
  start-page: 2732
  issn: 09601481
  issue: 12
  year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib36
  article-title: Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.04.022
– volume: 33
  start-page: 1134
  issn: 1050-2947
  issue: 2
  year: 1986
  ident: 10.1016/j.renene.2015.07.004_bib50
  article-title: Independent coordinates for strange attractors from mutual information
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.33.1134
– year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib12
– volume: 36
  start-page: 3054
  issn: 09601481
  issue: 11
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib17
  article-title: Prediction of daily maximum temperature using a support vector regression algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.03.030
– volume: 9
  start-page: 55
  issn: 10954244
  year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib15
  article-title: Short-term wind forecasting using off-site observations
  publication-title: Wind Energy
  doi: 10.1002/we.179
– year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib43
– year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib49
– volume: 52
  start-page: 118
  issn: 09601481
  year: 2013
  ident: 10.1016/j.renene.2015.07.004_bib18
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.10.009
– volume: 31
  start-page: 1733
  issn: 09601481
  year: 2006
  ident: 10.1016/j.renene.2015.07.004_bib27
  article-title: Complex-valued forecasting of wind profile
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2005.07.006
– volume: 45
  start-page: 3403
  issn: 1050-2947
  issue: 6
  year: 1992
  ident: 10.1016/j.renene.2015.07.004_bib39
  article-title: Determining embedding dimension for phase-space reconstruction using a geometrical construction
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.3403
– volume: 36
  start-page: 1008
  issn: 09601481
  issue: 3
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib9
  article-title: Wind farm electrical power production model for load flow analysis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.09.007
– volume: 28
  start-page: 225
  issn: 0309-524X
  issue: 2
  year: 2004
  ident: 10.1016/j.renene.2015.07.004_bib6
  article-title: Bimodal versus Weibull Wind Speed Distributions: an Analysis of Wind Energy Potential in La Venta, Mexico
  publication-title: Wind Eng.
  doi: 10.1260/0309524041211404
– volume: 52
  start-page: 1157
  issn: 01968904
  issue: 2
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib58
  article-title: Stochastic models for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.09.010
– volume: 34
  start-page: 1388
  issn: 09601481
  issue: 5
  year: 2009
  ident: 10.1016/j.renene.2015.07.004_bib1
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.09.006
– year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib26
  doi: 10.1142/5722
– volume: 34
  start-page: 1686
  issn: 09601481
  issue: 7
  year: 2009
  ident: 10.1016/j.renene.2015.07.004_bib28
  article-title: Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.01.001
– volume: 9
  start-page: 155
  year: 1997
  ident: 10.1016/j.renene.2015.07.004_bib32
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  issn: 0927-7099
  year: 2013
  ident: 10.1016/j.renene.2015.07.004_bib22
  article-title: Volatility forecasting using support vector regression and a hybrid genetic algorithm
  publication-title: Comput. Econ.
– volume: 22
  start-page: 679
  issn: 01692070
  issue: 4
  year: 2006
  ident: 10.1016/j.renene.2015.07.004_bib57
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2006.03.001
– year: 2002
  ident: 10.1016/j.renene.2015.07.004_bib33
– volume: 113
  start-page: 690
  issn: 03062619
  year: 2014
  ident: 10.1016/j.renene.2015.07.004_bib20
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.025
– volume: 30
  start-page: 1192
  issn: 01409883
  year: 2008
  ident: 10.1016/j.renene.2015.07.004_bib52
  article-title: Accuracy and efficiency in the U.S. Department of Energy's short-term supply forecasts
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2007.01.011
– volume: 35
  start-page: 2008
  issn: 09601481
  issue: 9
  year: 2010
  ident: 10.1016/j.renene.2015.07.004_bib8
  article-title: Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.02.001
– volume: 302
  start-page: 299
  issn: 03759601
  year: 2002
  ident: 10.1016/j.renene.2015.07.004_bib66
  article-title: Nonlinear analysis of bivariate data with cross recurrence plots
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01170-2
– volume: 2
  start-page: 1
  issn: 21576904
  year: 2011
  ident: 10.1016/j.renene.2015.07.004_bib65
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 33
  start-page: 2052
  issn: 03014215
  year: 2005
  ident: 10.1016/j.renene.2015.07.004_bib3
  article-title: Optimal electricity market for wind power
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2004.04.001
– volume: 37
  start-page: 1
  issn: 09601481
  issue: 1
  year: 2012
  ident: 10.1016/j.renene.2015.07.004_bib2
  article-title: Current methods and advances in forecasting of wind power generation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.05.033
SSID ssj0015874
Score 2.599255
Snippet In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 790
SubjectTerms algorithms
Genetic algorithms
methodology
Mexico
Non-linear analysis
Phase space reconstruction
regression analysis
Support vector regression
time series analysis
wind farms
wind power
wind speed
Wind speed forecasting
Title Wind speed forecasting for wind farms: A method based on support vector regression
URI https://dx.doi.org/10.1016/j.renene.2015.07.004
https://www.proquest.com/docview/2000516228
Volume 85
WOSCitedRecordID wos000363344800077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCygEOiKcoBWQkbpGjPHb96C0tpYBQhUoRua2c3XHVqjhRNkmLxI_HY683SypUQOKyWnlflufb8Xg88w0hrxONqNWCFcIIlugiZcq4VUphtOEyAVEESX8UR0dyPFafWq0fMRdmdSGslVdXavZfRe3anLAxdfYvxF2_1DW4cyd0d3Rid8c_EvzXM3SFz9yshCGEkOtyEaMlL_GS0fNvZUhID-WjOziTFbhrUC5naI53Vt6V35nDaYiStU0T9thpx0ufcAU-b7D20TgZaYzXxq33N5rtTa0JDubDbr2tA9-hZHtYvwUJGkKI36i-fIhB1RDT0fa7TZdEf9MlUefKrAOTvMOR95hbfIX7IKhbKZADQf6ij2XaUKgiFBONc7OnUriu9oMH4ryLLKAWyU_7qadkDZWNNwi1P2NPsCNO2ftSxbfI1kCkSrbJ1uj9wfhDvQuVysDiHXseUy99fOD1b_3OtNmY5L3lcnKf3KuWHHQUoPKAtMA-JHcbRJSPyDGChnrQ0AZo8JwiaKgHzS4d0QAZ6iFDp5ZWkKEBMnQNmcfky9uDk_13rKq2wfIk4QumeTJRslBc9eSkwJLkE54YCQPTUxOuuBkOOfCeVHliXCMHt_aWoPpSQW4A1PAJaduphaeEcg055CJNQaYJx0UJcKWVEWicagHbZBgHKssrKnqsiHKRxZjD8ywMb4bDm_UwRiLZJqx-ahaoWG64X0QZZJU5GczEzMHmhidfRZFlTtviFpq2MF2WWLTVzWJ8MJDP_vntO-TO-qd5TtqL-RJekNv5anFWzl9WGPwJ59OnNA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+speed+forecasting+for+wind+farms%3A+A+method+based+on+support+vector+regression&rft.jtitle=Renewable+energy&rft.au=Santamar%C3%ADa-Bonfil%2C+G.&rft.au=Reyes-Ballesteros%2C+A.&rft.au=Gershenson%2C+C.&rft.date=2016-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=85&rft.spage=790&rft.epage=809&rft_id=info:doi/10.1016%2Fj.renene.2015.07.004&rft.externalDocID=S0960148115301014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon