HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms

Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NA...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sensors (Basel, Switzerland) Ročník 21; číslo 20; s. 6927
Hlavní autori: Wang, Xiaojuan, Wang, Xinlei, Lv, Tianqi, Jin, Lei, He, Mingshu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 19.10.2021
MDPI
Predmet:
ISSN:1424-8220, 1424-8220
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.
AbstractList Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.
Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.
Author Lv, Tianqi
Wang, Xiaojuan
Jin, Lei
Wang, Xinlei
He, Mingshu
AuthorAffiliation School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; wxl2019@bupt.edu.cn (X.W.); lvtianqi@bupt.edu.cn (T.L.); jinlei@bupt.edu.cn (L.J.); hemingshu@bupt.edu.cn (M.H.)
AuthorAffiliation_xml – name: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; wxl2019@bupt.edu.cn (X.W.); lvtianqi@bupt.edu.cn (T.L.); jinlei@bupt.edu.cn (L.J.); hemingshu@bupt.edu.cn (M.H.)
Author_xml – sequence: 1
  givenname: Xiaojuan
  surname: Wang
  fullname: Wang, Xiaojuan
– sequence: 2
  givenname: Xinlei
  surname: Wang
  fullname: Wang, Xinlei
– sequence: 3
  givenname: Tianqi
  orcidid: 0000-0003-4336-961X
  surname: Lv
  fullname: Lv, Tianqi
– sequence: 4
  givenname: Lei
  orcidid: 0000-0003-4855-2464
  surname: Jin
  fullname: Jin, Lei
– sequence: 5
  givenname: Mingshu
  orcidid: 0000-0002-2896-4595
  surname: He
  fullname: He, Mingshu
BookMark eNplkl1vFCEUhompse3qhf-AxBu9WMsAw4cXJmNT3SZNTVp7TRhgdtnMQAVmk_57WbcaW684wPs-nHM4p-AoxOAAeNugj4RIdJZxgxGTmL8AJw3FdCkwRkf_xMfgNOctQpgQIl6BY0KZZA1FJyCsupvr7vYTXM2TDrAzxe98eYA3zsR18MXHAL_o7CysQTeXOOniDbx2c9Ij7JLZ-OJMmZODt07XLbzLPqzhxS6O896t0wPsxnVMvmym_Bq8HPSY3ZvHdQHuvl78OF8tr75_uzzvrpaGUlaW0lFLmOg5t1Jai1nDueFYci5xbwxFwhDD2NBLaQaJXNMQbAc8DNhaRLAhC3B54Nqot-o--anmoaL26vdBTGulUy1kdKqCjNSN4FL2VHCqMW9sy4yWA20Rs5X1-cC6n_vJWeNCqbU_gT69CX6j1nGnREsRR6IC3j8CUvw5u1zU5LNx46iDi3NWuBWMtkxIXqXvnkm3cU6htmqvoq1Abf3EBTg7qEyKOSc3KOOL3ne7vu9H1SC1nwv1dy6q48Mzx5_0_9f-ApHJuD4
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3294564
crossref_primary_10_1016_j_heliyon_2023_e13636
crossref_primary_10_3390_s21237791
crossref_primary_10_1016_j_eswa_2023_120257
crossref_primary_10_54097_bse2rn10
crossref_primary_10_1016_j_knosys_2023_110682
crossref_primary_10_32604_cmes_2023_030391
crossref_primary_10_1109_ACCESS_2024_3408894
crossref_primary_10_3390_electronics12040857
Cites_doi 10.1109/ICAEE47123.2019.9014821
10.3390/s18020679
10.1016/j.inffus.2017.09.014
10.1007/s00542-015-2551-2
10.1109/CVPR42600.2020.01343
10.23919/DATE48585.2020.9116474
10.20944/preprints201706.0033.v1
10.1145/2487575.2487629
10.1109/CVPR42600.2020.01433
10.1038/nature14539
10.1007/978-3-030-58555-6_28
10.1007/978-3-030-01264-9_8
10.1007/978-3-319-26561-2_6
10.3390/s17112556
10.1109/IAC.2017.8280606
10.1007/978-3-030-58517-4_32
10.3390/s16010115
10.1109/MSP.2019.2903715
10.1109/CCECE.2019.8861934
10.1109/INSS.2010.5573462
10.1145/3132698
10.1109/ICIEV.2018.8641012
10.1109/ACCESS.2018.2870841
10.1145/3321707.3321729
10.1007/978-3-030-58555-6_8
10.1109/CVPR.2019.00923
10.1016/j.inffus.2018.06.002
10.1109/CVPR.2019.00293
10.7551/mitpress/7496.001.0001
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21206927
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3c6c9a18799b4874a271d56ca9f4506d
PMC8540708
10_3390_s21206927
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-9e4d368b77d99dd26177c7297792bcc408c3c66fb99cf90e1132df2ff2dd032c3
IEDL.DBID PIMPY
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714723500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:43:51 EDT 2025
Tue Nov 04 01:55:14 EST 2025
Thu Oct 02 11:32:55 EDT 2025
Tue Oct 07 07:14:11 EDT 2025
Sat Nov 29 07:20:21 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9e4d368b77d99dd26177c7297792bcc408c3c66fb99cf90e1132df2ff2dd032c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4336-961X
0000-0002-2896-4595
0000-0003-4855-2464
OpenAccessLink https://www.proquest.com/publiccontent/docview/2584580502?pq-origsite=%requestingapplication%
PMID 34696140
PQID 2584580502
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3c6c9a18799b4874a271d56ca9f4506d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540708
proquest_miscellaneous_2586456897
proquest_journals_2584580502
crossref_citationtrail_10_3390_s21206927
crossref_primary_10_3390_s21206927
PublicationCentury 2000
PublicationDate 20211019
PublicationDateYYYYMMDD 2021-10-19
PublicationDate_xml – month: 10
  year: 2021
  text: 20211019
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xi (ref_4) 2018; 6
ref_13
ref_12
ref_11
ref_33
ref_10
Acharjee (ref_14) 2016; 22
ref_32
ref_31
ref_30
ref_19
ref_18
ref_17
ref_16
ref_15
Xu (ref_1) 2018; 41
Wallach (ref_7) 2018; 61
Francisco (ref_5) 2016; 16
Fioranelli (ref_34) 2019; 36
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_29
ref_28
ref_26
LeCun (ref_2) 2015; 521
ref_9
ref_8
Nweke (ref_3) 2019; 46
Chen (ref_27) 2020; 34
ref_6
References_xml – ident: ref_11
  doi: 10.1109/ICAEE47123.2019.9014821
– ident: ref_33
  doi: 10.3390/s18020679
– ident: ref_30
– volume: 41
  start-page: 243
  year: 2018
  ident: ref_1
  article-title: Geometrical kinematic modeling on human motion using method of multi-sensor fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.09.014
– volume: 22
  start-page: 2715
  year: 2016
  ident: ref_14
  article-title: Activity recognition system using inbuilt sensors of smart mobile phone and minimizing feature vectors
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-015-2551-2
– ident: ref_21
  doi: 10.1109/CVPR42600.2020.01343
– ident: ref_28
  doi: 10.23919/DATE48585.2020.9116474
– ident: ref_32
  doi: 10.20944/preprints201706.0033.v1
– ident: ref_6
  doi: 10.1145/2487575.2487629
– ident: ref_18
  doi: 10.1109/CVPR42600.2020.01433
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_23
  doi: 10.1007/978-3-030-58555-6_28
– ident: ref_10
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref_15
  doi: 10.1007/978-3-319-26561-2_6
– ident: ref_16
  doi: 10.3390/s17112556
– ident: ref_13
  doi: 10.1109/IAC.2017.8280606
– ident: ref_22
  doi: 10.1007/978-3-030-58517-4_32
– volume: 16
  start-page: 115
  year: 2016
  ident: ref_5
  article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– ident: ref_8
– volume: 36
  start-page: 29
  year: 2019
  ident: ref_34
  article-title: Radar signal processing for sensing in assisted living: The challenges associated with real-time implementation of emerging algorithms
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2903715
– ident: ref_9
  doi: 10.1109/CCECE.2019.8861934
– ident: ref_25
– ident: ref_31
  doi: 10.1109/INSS.2010.5573462
– volume: 61
  start-page: 42
  year: 2018
  ident: ref_7
  article-title: Computational social science & computer science + social data
  publication-title: Commun. ACM
  doi: 10.1145/3132698
– ident: ref_12
  doi: 10.1109/ICIEV.2018.8641012
– volume: 6
  start-page: 53381
  year: 2018
  ident: ref_4
  article-title: Deep dilation on multimodality time series for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870841
– ident: ref_26
  doi: 10.1145/3321707.3321729
– volume: 34
  start-page: 12661
  year: 2020
  ident: ref_27
  article-title: SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: ref_17
– ident: ref_24
  doi: 10.1007/978-3-030-58555-6_8
– ident: ref_19
  doi: 10.1109/CVPR.2019.00923
– volume: 46
  start-page: 147
  year: 2019
  ident: ref_3
  article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.06.002
– ident: ref_20
  doi: 10.1109/CVPR.2019.00293
– ident: ref_29
  doi: 10.7551/mitpress/7496.001.0001
SSID ssj0023338
Score 2.406893
Snippet Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6927
SubjectTerms Accuracy
Automation
Back propagation
Classification
Datasets
Deep learning
Discriminant analysis
Genetic algorithms
human activity recognition
Machine learning
multi-objective optimization
multimodal sensor data
neural architecture search
Neural networks
Optimization
Sensors
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQ4kAPFQWqbqHIIA69RLhOYnt6CwjEAa0QtIhblNhOWYkmaDeLxN93xsluNxISF25RMoqc8Xj8Jh69x9ix8crbJC0jzANpRFoOkZFJGSWxRTyKGFUFnoK7Kz0em_t7uF6R-qKesI4euHPcSWyVhYI0saFEcJ0UUv9wqbIFVEkqlKPsKzQsiqm-1Iqx8up4hGIs6k9mmKCFApKOWdl9Akn_AFkO-yJXNpqLLfaxR4g860b2ia35ept9WOEN3GH1ZXYzzm5_8vALnme2k4DgN4tuoKbmp7g9OY4X2bxtAi8rJyKO8Ob_Zwe8azfmoXOAnz_3gVhMX3j2-KeZTtqHv7Nd9vvi_NfZZdQLJ0QWq7s2Ap-4WJlSawfgHJGua4soWmuQpbWJMBbdqqoSwFYgPKnNu0pWlXROxNLGn9l63dT-C-OAk1yVHlORk-hvKGLMkLrSZKlc4Ufs-8Khue1ZxUnc4jHH6oJ8ny99P2JHS9OnjkrjNaNTmpWlAbFfhxsYE3kfE_lbMTFi-4s5zfslOcslQq3UiFTIETtcPsbFRCckRe2bebBRiCgN4Dj0IBYGAxo-qScPgZbbEJehMF_f4wv22Kak5hlqnYF9tt5O5_4b27DP7WQ2PQix_g8bjQXM
  priority: 102
  providerName: Directory of Open Access Journals
Title HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms
URI https://www.proquest.com/docview/2584580502
https://www.proquest.com/docview/2586456897
https://pubmed.ncbi.nlm.nih.gov/PMC8540708
https://doaj.org/article/3c6c9a18799b4874a271d56ca9f4506d
Volume 21
WOSCitedRecordID wos000714723500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgMceCMKS2UQBy5Rs07iBxeUoq4Wia2q8lA5RYnt7K60JEuTrsSF386M42ZbCXHiEkXxKBlpxuMZe_J9hLyRllsdJ0UAcSAJkMshkCwugjjSkI9CjsodTsG3T2I-l6uVWvjfoxvfVrmNiS5Qd2jP2LcNQXhiao075hMG62YiwyRk769-BsghhWetnlDjgAwReCsckOHi4-nie1-ARVCPdehCEZT6kwbCdsgVEsrsrEkOun8v39zvltxZfo7v_1_FH5B7Pg2laec3D8ktWz0id3fACR-T6iRdztPP76jb56ep7ngm6HLbclRXdAproKFwk27a2oG_UkT7cG--OaCgXU8zde0JdHbtvT1f_6Lp5Rlo157_aJ6Qr8ezLx9OAs_OEGgoIdtA2dhEXBZCGKWMQWR3oSFVF0KxQus4lDrSnJeFUrpUoUVKe1OysmTGhBHT0VMyqOrKPiNUgSeVhYV4Z1gMGUweQRgWpUBJbnI7Im-39sm0hy5HBo3LDEoYNGXWm3JEXveiVx1ex9-EpmjkXgAhtt2Den2W-RmbgfJa5UjGrgqo6uKciSOTcJ2rEnTkZkQOt_bO_LxvshvzjsirfhhmLB7D5JWtN06GQ9oqFegh9lxrT6H9keri3GF_SwRMDOXzf3_8BbnDsPcGO2_UIRm06419SW7r6_aiWY_JgVgJd5VjMpzO5ovl2O1FwPX092zsp80f3-8m0g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pWxPrg_fG1aqj0cQXUhxghjExhmqb3XS72dTa1CeEmaFtUqEubE3_lL_RM8OlS2J864NvBE5ggG_OhTl8H8DrUDMt_SB10A8EjtFycELqp47vScxHMUdllqfgcMKn0_DoSMxW4Hf7L4xpq2x9onXUqpDmG_kmxUgZhG7g0o_nPx2jGmVWV1sJjRoWu_ryF5Zs5YfxZ3y_byjd2T74NHIaVQFHYulTOUL7ymNhyrkSQinDSM4lppicC5pK6buh9CRjWSqEzISrjRS7ymiWUaVcj0oPz3sDVn0EuzuA1dl4b_atK_E8rPhq_iLPE-5miYHBZcJI1ixFPSsO0Mto-_2YSwFu5-7_9mjuwZ0mlSZRjf37sKLzB3B7iWDxIeSjaH8afXlP7FoFiWStlUH227apIidbGMcVwY1oURWWwJYYxhJ75qtFFlL3ZRPbYkG2L5oZm8wvSXR2jE-jOvlRPoKv13LD6zDIi1w_BiJwNmSpRp-tqI9ZWOJhKOEZN5ZMJXoIb1sExLKhXzcqIGcxlmEGLHEHliG86kzPa86RvxltGRh1BoYm3O4o5sdx43ViHLwUiRGUFylWpn5C-TsVMJmIDMfI1BA2WkTFje8q4ys4DeFldxi9jllKSnJdLKwNw9Q7FDgO3gNvb0D9I_npieUvDw3poxs--ffFX8Ct0cHeJJ6Mp7tPYY2aXiLTSSQ2YFDNF_oZ3JQX1Wk5f95MQgLfrxvcfwDvAHLU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pW2Pqg3fT1aqj0cQXsjgDDGNiDGt306YN2ayX9A1hZmibVKi7bE3_mr_OM8OlS2J864NvBE5ggG_OhTl8H8DrUAdaen7moB_wHaPl4ITUyxyPScxHMUcNLE_Bt0Mex-HRkZhtwO_2XxjTVtn6ROuoVSnNN_IRxUjph67v0lHetEXMdqcfz386RkHKrLS2cho1RA705S8s35Yf9nfxXb-hdDr58mnPaRQGHIllUOUI7SkWhBnnSgilDDs5l5huci5oJqXnhpLJIMgzIWQuXG1k2VVO85wq5TIqGZ73BmxyhkXPADbHk3g278o9htVfzWXEmHBHSwwSbiCMfM1aBLRCAb3stt-buRbspnf_58d0D-40KTaJ6jlxHzZ08QBurxEvPoRiL5rH0ef3xK5hkEjWGhpk3rZTlQUZY3xXBDeiVVVaYltimEzsma8WX0jdr01s6wWZXDQzOV1ckujsGJ9GdfJj-Qi-XssNP4ZBURZ6G4jAWZJnGn25oh5mZynDEMNzbiwDleohvG3RkMiGlt2og5wlWJ4Z4CQdcIbwqjM9r7lI_mY0NpDqDAx9uN1RLo6TxhslOHgpUiM0LzKsWL2U8nfKD2QqchxjoIaw06IraXzaMrmC1hBedofRG5klprTQ5craBJiShwLHwXtA7g2of6Q4PbG85qEhg3TDJ_---Au4hYhODvfjg6ewRU2LkWkwEjswqBYr_QxuyovqdLl43sxHAt-vG9t_AKGIe24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HARNAS%3A+Human+Activity+Recognition+Based+on+Automatic+Neural+Architecture+Search+Using+Evolutionary+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xiaojuan&rft.au=Wang%2C+Xinlei&rft.au=Lv%2C+Tianqi&rft.au=Jin%2C+Lei&rft.date=2021-10-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=20&rft_id=info:doi/10.3390%2Fs21206927&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon