HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms
Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NA...
Uložené v:
| Vydané v: | Sensors (Basel, Switzerland) Ročník 21; číslo 20; s. 6927 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
19.10.2021
MDPI |
| Predmet: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset. |
|---|---|
| AbstractList | Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset. Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset.Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit the performance of recognition and require lightweight architectures. With the development of deep learning, the neural architecture search (NAS) has emerged in an attempt to minimize human intervention. We propose an approach for using NAS to search for models suitable for HAR tasks, namely, HARNAS. The multi-objective search algorithm NSGA-II is used as the search strategy of HARNAS. To make a trade-off between the performance and computation speed of a model, the F1 score and the number of floating-point operations (FLOPs) are selected, resulting in a bi-objective problem. However, the computation speed of a model not only depends on the complexity, but is also related to the memory access cost (MAC). Therefore, we expand the bi-objective search to a tri-objective strategy. We use the Opportunity dataset as the basis for most experiments and also evaluate the portability of the model on the UniMiB-SHAR dataset. The experimental results show that HARNAS designed without manual adjustments can achieve better performance than the best model tweaked by humans. HARNAS obtained an F1 score of 92.16% and parameters of 0.32 MB on the Opportunity dataset. |
| Author | Lv, Tianqi Wang, Xiaojuan Jin, Lei Wang, Xinlei He, Mingshu |
| AuthorAffiliation | School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; wxl2019@bupt.edu.cn (X.W.); lvtianqi@bupt.edu.cn (T.L.); jinlei@bupt.edu.cn (L.J.); hemingshu@bupt.edu.cn (M.H.) |
| AuthorAffiliation_xml | – name: School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; wxl2019@bupt.edu.cn (X.W.); lvtianqi@bupt.edu.cn (T.L.); jinlei@bupt.edu.cn (L.J.); hemingshu@bupt.edu.cn (M.H.) |
| Author_xml | – sequence: 1 givenname: Xiaojuan surname: Wang fullname: Wang, Xiaojuan – sequence: 2 givenname: Xinlei surname: Wang fullname: Wang, Xinlei – sequence: 3 givenname: Tianqi orcidid: 0000-0003-4336-961X surname: Lv fullname: Lv, Tianqi – sequence: 4 givenname: Lei orcidid: 0000-0003-4855-2464 surname: Jin fullname: Jin, Lei – sequence: 5 givenname: Mingshu orcidid: 0000-0002-2896-4595 surname: He fullname: He, Mingshu |
| BookMark | eNplkl1vFCEUhompse3qhf-AxBu9WMsAw4cXJmNT3SZNTVp7TRhgdtnMQAVmk_57WbcaW684wPs-nHM4p-AoxOAAeNugj4RIdJZxgxGTmL8AJw3FdCkwRkf_xMfgNOctQpgQIl6BY0KZZA1FJyCsupvr7vYTXM2TDrAzxe98eYA3zsR18MXHAL_o7CysQTeXOOniDbx2c9Ij7JLZ-OJMmZODt07XLbzLPqzhxS6O896t0wPsxnVMvmym_Bq8HPSY3ZvHdQHuvl78OF8tr75_uzzvrpaGUlaW0lFLmOg5t1Jai1nDueFYci5xbwxFwhDD2NBLaQaJXNMQbAc8DNhaRLAhC3B54Nqot-o--anmoaL26vdBTGulUy1kdKqCjNSN4FL2VHCqMW9sy4yWA20Rs5X1-cC6n_vJWeNCqbU_gT69CX6j1nGnREsRR6IC3j8CUvw5u1zU5LNx46iDi3NWuBWMtkxIXqXvnkm3cU6htmqvoq1Abf3EBTg7qEyKOSc3KOOL3ne7vu9H1SC1nwv1dy6q48Mzx5_0_9f-ApHJuD4 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3294564 crossref_primary_10_1016_j_heliyon_2023_e13636 crossref_primary_10_3390_s21237791 crossref_primary_10_1016_j_eswa_2023_120257 crossref_primary_10_54097_bse2rn10 crossref_primary_10_1016_j_knosys_2023_110682 crossref_primary_10_32604_cmes_2023_030391 crossref_primary_10_1109_ACCESS_2024_3408894 crossref_primary_10_3390_electronics12040857 |
| Cites_doi | 10.1109/ICAEE47123.2019.9014821 10.3390/s18020679 10.1016/j.inffus.2017.09.014 10.1007/s00542-015-2551-2 10.1109/CVPR42600.2020.01343 10.23919/DATE48585.2020.9116474 10.20944/preprints201706.0033.v1 10.1145/2487575.2487629 10.1109/CVPR42600.2020.01433 10.1038/nature14539 10.1007/978-3-030-58555-6_28 10.1007/978-3-030-01264-9_8 10.1007/978-3-319-26561-2_6 10.3390/s17112556 10.1109/IAC.2017.8280606 10.1007/978-3-030-58517-4_32 10.3390/s16010115 10.1109/MSP.2019.2903715 10.1109/CCECE.2019.8861934 10.1109/INSS.2010.5573462 10.1145/3132698 10.1109/ICIEV.2018.8641012 10.1109/ACCESS.2018.2870841 10.1145/3321707.3321729 10.1007/978-3-030-58555-6_8 10.1109/CVPR.2019.00923 10.1016/j.inffus.2018.06.002 10.1109/CVPR.2019.00293 10.7551/mitpress/7496.001.0001 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s21206927 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_3c6c9a18799b4874a271d56ca9f4506d PMC8540708 10_3390_s21206927 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c446t-9e4d368b77d99dd26177c7297792bcc408c3c66fb99cf90e1132df2ff2dd032c3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714723500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:43:51 EDT 2025 Tue Nov 04 01:55:14 EST 2025 Thu Oct 02 11:32:55 EDT 2025 Tue Oct 07 07:14:11 EDT 2025 Sat Nov 29 07:20:21 EST 2025 Tue Nov 18 21:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-9e4d368b77d99dd26177c7297792bcc408c3c66fb99cf90e1132df2ff2dd032c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4336-961X 0000-0002-2896-4595 0000-0003-4855-2464 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2584580502?pq-origsite=%requestingapplication% |
| PMID | 34696140 |
| PQID | 2584580502 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3c6c9a18799b4874a271d56ca9f4506d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8540708 proquest_miscellaneous_2586456897 proquest_journals_2584580502 crossref_citationtrail_10_3390_s21206927 crossref_primary_10_3390_s21206927 |
| PublicationCentury | 2000 |
| PublicationDate | 20211019 |
| PublicationDateYYYYMMDD | 2021-10-19 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211019 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Xi (ref_4) 2018; 6 ref_13 ref_12 ref_11 ref_33 ref_10 Acharjee (ref_14) 2016; 22 ref_32 ref_31 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 Xu (ref_1) 2018; 41 Wallach (ref_7) 2018; 61 Francisco (ref_5) 2016; 16 Fioranelli (ref_34) 2019; 36 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 ref_29 ref_28 ref_26 LeCun (ref_2) 2015; 521 ref_9 ref_8 Nweke (ref_3) 2019; 46 Chen (ref_27) 2020; 34 ref_6 |
| References_xml | – ident: ref_11 doi: 10.1109/ICAEE47123.2019.9014821 – ident: ref_33 doi: 10.3390/s18020679 – ident: ref_30 – volume: 41 start-page: 243 year: 2018 ident: ref_1 article-title: Geometrical kinematic modeling on human motion using method of multi-sensor fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.09.014 – volume: 22 start-page: 2715 year: 2016 ident: ref_14 article-title: Activity recognition system using inbuilt sensors of smart mobile phone and minimizing feature vectors publication-title: Microsyst. Technol. doi: 10.1007/s00542-015-2551-2 – ident: ref_21 doi: 10.1109/CVPR42600.2020.01343 – ident: ref_28 doi: 10.23919/DATE48585.2020.9116474 – ident: ref_32 doi: 10.20944/preprints201706.0033.v1 – ident: ref_6 doi: 10.1145/2487575.2487629 – ident: ref_18 doi: 10.1109/CVPR42600.2020.01433 – volume: 521 start-page: 436 year: 2015 ident: ref_2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_23 doi: 10.1007/978-3-030-58555-6_28 – ident: ref_10 doi: 10.1007/978-3-030-01264-9_8 – ident: ref_15 doi: 10.1007/978-3-319-26561-2_6 – ident: ref_16 doi: 10.3390/s17112556 – ident: ref_13 doi: 10.1109/IAC.2017.8280606 – ident: ref_22 doi: 10.1007/978-3-030-58517-4_32 – volume: 16 start-page: 115 year: 2016 ident: ref_5 article-title: Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition publication-title: Sensors doi: 10.3390/s16010115 – ident: ref_8 – volume: 36 start-page: 29 year: 2019 ident: ref_34 article-title: Radar signal processing for sensing in assisted living: The challenges associated with real-time implementation of emerging algorithms publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2903715 – ident: ref_9 doi: 10.1109/CCECE.2019.8861934 – ident: ref_25 – ident: ref_31 doi: 10.1109/INSS.2010.5573462 – volume: 61 start-page: 42 year: 2018 ident: ref_7 article-title: Computational social science & computer science + social data publication-title: Commun. ACM doi: 10.1145/3132698 – ident: ref_12 doi: 10.1109/ICIEV.2018.8641012 – volume: 6 start-page: 53381 year: 2018 ident: ref_4 article-title: Deep dilation on multimodality time series for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870841 – ident: ref_26 doi: 10.1145/3321707.3321729 – volume: 34 start-page: 12661 year: 2020 ident: ref_27 article-title: SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection publication-title: Proc. AAAI Conf. Artif. Intell. – ident: ref_17 – ident: ref_24 doi: 10.1007/978-3-030-58555-6_8 – ident: ref_19 doi: 10.1109/CVPR.2019.00923 – volume: 46 start-page: 147 year: 2019 ident: ref_3 article-title: Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.06.002 – ident: ref_20 doi: 10.1109/CVPR.2019.00293 – ident: ref_29 doi: 10.7551/mitpress/7496.001.0001 |
| SSID | ssj0023338 |
| Score | 2.406893 |
| Snippet | Human activity recognition (HAR) based on wearable sensors is a promising research direction. The resources of handheld terminals and wearable devices limit... |
| SourceID | doaj pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6927 |
| SubjectTerms | Accuracy Automation Back propagation Classification Datasets Deep learning Discriminant analysis Genetic algorithms human activity recognition Machine learning multi-objective optimization multimodal sensor data neural architecture search Neural networks Optimization Sensors Wearable computers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQ4kAPFQWqbqHIIA69RLhOYnt6CwjEAa0QtIhblNhOWYkmaDeLxN93xsluNxISF25RMoqc8Xj8Jh69x9ix8crbJC0jzANpRFoOkZFJGSWxRTyKGFUFnoK7Kz0em_t7uF6R-qKesI4euHPcSWyVhYI0saFEcJ0UUv9wqbIFVEkqlKPsKzQsiqm-1Iqx8up4hGIs6k9mmKCFApKOWdl9Akn_AFkO-yJXNpqLLfaxR4g860b2ia35ept9WOEN3GH1ZXYzzm5_8vALnme2k4DgN4tuoKbmp7g9OY4X2bxtAi8rJyKO8Ob_Zwe8azfmoXOAnz_3gVhMX3j2-KeZTtqHv7Nd9vvi_NfZZdQLJ0QWq7s2Ap-4WJlSawfgHJGua4soWmuQpbWJMBbdqqoSwFYgPKnNu0pWlXROxNLGn9l63dT-C-OAk1yVHlORk-hvKGLMkLrSZKlc4Ufs-8Khue1ZxUnc4jHH6oJ8ny99P2JHS9OnjkrjNaNTmpWlAbFfhxsYE3kfE_lbMTFi-4s5zfslOcslQq3UiFTIETtcPsbFRCckRe2bebBRiCgN4Dj0IBYGAxo-qScPgZbbEJehMF_f4wv22Kak5hlqnYF9tt5O5_4b27DP7WQ2PQix_g8bjQXM priority: 102 providerName: Directory of Open Access Journals |
| Title | HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms |
| URI | https://www.proquest.com/docview/2584580502 https://www.proquest.com/docview/2586456897 https://pubmed.ncbi.nlm.nih.gov/PMC8540708 https://doaj.org/article/3c6c9a18799b4874a271d56ca9f4506d |
| Volume | 21 |
| WOSCitedRecordID | wos000714723500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbYlgMceCMKS2UQBy5Rs07iBxeUoq4Wia2q8lA5RYnt7K60JEuTrsSF386M42ZbCXHiEkXxKBlpxuMZe_J9hLyRllsdJ0UAcSAJkMshkCwugjjSkI9CjsodTsG3T2I-l6uVWvjfoxvfVrmNiS5Qd2jP2LcNQXhiao075hMG62YiwyRk769-BsghhWetnlDjgAwReCsckOHi4-nie1-ARVCPdehCEZT6kwbCdsgVEsrsrEkOun8v39zvltxZfo7v_1_FH5B7Pg2laec3D8ktWz0id3fACR-T6iRdztPP76jb56ep7ngm6HLbclRXdAproKFwk27a2oG_UkT7cG--OaCgXU8zde0JdHbtvT1f_6Lp5Rlo157_aJ6Qr8ezLx9OAs_OEGgoIdtA2dhEXBZCGKWMQWR3oSFVF0KxQus4lDrSnJeFUrpUoUVKe1OysmTGhBHT0VMyqOrKPiNUgSeVhYV4Z1gMGUweQRgWpUBJbnI7Im-39sm0hy5HBo3LDEoYNGXWm3JEXveiVx1ex9-EpmjkXgAhtt2Den2W-RmbgfJa5UjGrgqo6uKciSOTcJ2rEnTkZkQOt_bO_LxvshvzjsirfhhmLB7D5JWtN06GQ9oqFegh9lxrT6H9keri3GF_SwRMDOXzf3_8BbnDsPcGO2_UIRm06419SW7r6_aiWY_JgVgJd5VjMpzO5ovl2O1FwPX092zsp80f3-8m0g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pWxPrg_fG1aqj0cQXUhxghjExhmqb3XS72dTa1CeEmaFtUqEubE3_lL_RM8OlS2J864NvBE5ggG_OhTl8H8DrUDMt_SB10A8EjtFycELqp47vScxHMUdllqfgcMKn0_DoSMxW4Hf7L4xpq2x9onXUqpDmG_kmxUgZhG7g0o_nPx2jGmVWV1sJjRoWu_ryF5Zs5YfxZ3y_byjd2T74NHIaVQFHYulTOUL7ymNhyrkSQinDSM4lppicC5pK6buh9CRjWSqEzISrjRS7ymiWUaVcj0oPz3sDVn0EuzuA1dl4b_atK_E8rPhq_iLPE-5miYHBZcJI1ixFPSsO0Mto-_2YSwFu5-7_9mjuwZ0mlSZRjf37sKLzB3B7iWDxIeSjaH8afXlP7FoFiWStlUH227apIidbGMcVwY1oURWWwJYYxhJ75qtFFlL3ZRPbYkG2L5oZm8wvSXR2jE-jOvlRPoKv13LD6zDIi1w_BiJwNmSpRp-tqI9ZWOJhKOEZN5ZMJXoIb1sExLKhXzcqIGcxlmEGLHEHliG86kzPa86RvxltGRh1BoYm3O4o5sdx43ViHLwUiRGUFylWpn5C-TsVMJmIDMfI1BA2WkTFje8q4ys4DeFldxi9jllKSnJdLKwNw9Q7FDgO3gNvb0D9I_npieUvDw3poxs--ffFX8Ct0cHeJJ6Mp7tPYY2aXiLTSSQ2YFDNF_oZ3JQX1Wk5f95MQgLfrxvcfwDvAHLU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb5RAFD6pW2Pqg3fT1aqj0cQXsjgDDGNiDGt306YN2ayX9A1hZmibVKi7bE3_mr_OM8OlS2J864NvBE5ggG_OhTl8H8DrUAdaen7moB_wHaPl4ITUyxyPScxHMUcNLE_Bt0Mex-HRkZhtwO_2XxjTVtn6ROuoVSnNN_IRxUjph67v0lHetEXMdqcfz386RkHKrLS2cho1RA705S8s35Yf9nfxXb-hdDr58mnPaRQGHIllUOUI7SkWhBnnSgilDDs5l5huci5oJqXnhpLJIMgzIWQuXG1k2VVO85wq5TIqGZ73BmxyhkXPADbHk3g278o9htVfzWXEmHBHSwwSbiCMfM1aBLRCAb3stt-buRbspnf_58d0D-40KTaJ6jlxHzZ08QBurxEvPoRiL5rH0ef3xK5hkEjWGhpk3rZTlQUZY3xXBDeiVVVaYltimEzsma8WX0jdr01s6wWZXDQzOV1ckujsGJ9GdfJj-Qi-XssNP4ZBURZ6G4jAWZJnGn25oh5mZynDEMNzbiwDleohvG3RkMiGlt2og5wlWJ4Z4CQdcIbwqjM9r7lI_mY0NpDqDAx9uN1RLo6TxhslOHgpUiM0LzKsWL2U8nfKD2QqchxjoIaw06IraXzaMrmC1hBedofRG5klprTQ5craBJiShwLHwXtA7g2of6Q4PbG85qEhg3TDJ_---Au4hYhODvfjg6ewRU2LkWkwEjswqBYr_QxuyovqdLl43sxHAt-vG9t_AKGIe24 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HARNAS%3A+Human+Activity+Recognition+Based+on+Automatic+Neural+Architecture+Search+Using+Evolutionary+Algorithms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Xiaojuan&rft.au=Wang%2C+Xinlei&rft.au=Lv%2C+Tianqi&rft.au=Jin%2C+Lei&rft.date=2021-10-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=20&rft_id=info:doi/10.3390%2Fs21206927&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |