A Machine Learning Approach for Predicting Non-Suicidal Self-Injury in Young Adults

Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 22; číslo 13; s. 4790
Hlavní autoři: Marti-Puig, Pere, Capra, Chiara, Vega, Daniel, Llunas, Laia, Solé-Casals, Jordi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 24.06.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, the Leave-One-Subject-Out technique was used to train classification trees with a maximum of five splits. The results show an accuracy of 84.78%, a sensitivity of 64.64% and a specificity of 85.53%. In addition, positive and negative predictive values were also obtained, with results of 14.48% and 98.47%, respectively. These results are in line with those reported in previous work using a multilevel mixed-effect regression analysis. The combination of apps and AI techniques is a powerful way to improve the tools to accompany and support the care and treatment of patients with this type of behaviour. These studies also guide the improvement of apps on the user side, simplifying and collecting more meaningful data, and on the therapist side, progressing in pathology treatments. Traditional therapy involves observing and reconstructing what had happened before episodes once they have occurred. This new generation of tools will make it possible to monitor the pathology more closely and to act preventively.
AbstractList Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, the Leave-One-Subject-Out technique was used to train classification trees with a maximum of five splits. The results show an accuracy of 84.78%, a sensitivity of 64.64% and a specificity of 85.53%. In addition, positive and negative predictive values were also obtained, with results of 14.48% and 98.47%, respectively. These results are in line with those reported in previous work using a multilevel mixed-effect regression analysis. The combination of apps and AI techniques is a powerful way to improve the tools to accompany and support the care and treatment of patients with this type of behaviour. These studies also guide the improvement of apps on the user side, simplifying and collecting more meaningful data, and on the therapist side, progressing in pathology treatments. Traditional therapy involves observing and reconstructing what had happened before episodes once they have occurred. This new generation of tools will make it possible to monitor the pathology more closely and to act preventively.
Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, the Leave-One-Subject-Out technique was used to train classification trees with a maximum of five splits. The results show an accuracy of 84.78%, a sensitivity of 64.64% and a specificity of 85.53%. In addition, positive and negative predictive values were also obtained, with results of 14.48% and 98.47%, respectively. These results are in line with those reported in previous work using a multilevel mixed-effect regression analysis. The combination of apps and AI techniques is a powerful way to improve the tools to accompany and support the care and treatment of patients with this type of behaviour. These studies also guide the improvement of apps on the user side, simplifying and collecting more meaningful data, and on the therapist side, progressing in pathology treatments. Traditional therapy involves observing and reconstructing what had happened before episodes once they have occurred. This new generation of tools will make it possible to monitor the pathology more closely and to act preventively.Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database collected by an app previously designed to record the emotional states and activities of a group of subjects exhibiting self-harm. Specifically, the Leave-One-Subject-Out technique was used to train classification trees with a maximum of five splits. The results show an accuracy of 84.78%, a sensitivity of 64.64% and a specificity of 85.53%. In addition, positive and negative predictive values were also obtained, with results of 14.48% and 98.47%, respectively. These results are in line with those reported in previous work using a multilevel mixed-effect regression analysis. The combination of apps and AI techniques is a powerful way to improve the tools to accompany and support the care and treatment of patients with this type of behaviour. These studies also guide the improvement of apps on the user side, simplifying and collecting more meaningful data, and on the therapist side, progressing in pathology treatments. Traditional therapy involves observing and reconstructing what had happened before episodes once they have occurred. This new generation of tools will make it possible to monitor the pathology more closely and to act preventively.
Author Marti-Puig, Pere
Capra, Chiara
Solé-Casals, Jordi
Vega, Daniel
Llunas, Laia
AuthorAffiliation 2 beHIT, Carrer de Mata 1, 08004 Barcelona, Spain; laia.llunas@behit.cat
1 Data and Signal Processing Group, University of Vic—Central University of Catalonia, 08500 Vic, Catalonia, Spain; pere.marti@uvic.cat (P.M.-P.); chiara.capra@uvic.cat (C.C.)
4 Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Barcelona, Spain
3 Psychiatry and Mental Health Department, Hospital Universitari d’Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, 08700 Igualada, Barcelona, Spain; daniel.vega@uab.cat
AuthorAffiliation_xml – name: 1 Data and Signal Processing Group, University of Vic—Central University of Catalonia, 08500 Vic, Catalonia, Spain; pere.marti@uvic.cat (P.M.-P.); chiara.capra@uvic.cat (C.C.)
– name: 3 Psychiatry and Mental Health Department, Hospital Universitari d’Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, 08700 Igualada, Barcelona, Spain; daniel.vega@uab.cat
– name: 2 beHIT, Carrer de Mata 1, 08004 Barcelona, Spain; laia.llunas@behit.cat
– name: 4 Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Barcelona, Spain
Author_xml – sequence: 1
  givenname: Pere
  orcidid: 0000-0001-6582-4551
  surname: Marti-Puig
  fullname: Marti-Puig, Pere
– sequence: 2
  givenname: Chiara
  surname: Capra
  fullname: Capra, Chiara
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0002-5621-8987
  surname: Vega
  fullname: Vega, Daniel
– sequence: 4
  givenname: Laia
  surname: Llunas
  fullname: Llunas, Laia
– sequence: 5
  givenname: Jordi
  orcidid: 0000-0002-6534-1979
  surname: Solé-Casals
  fullname: Solé-Casals, Jordi
BookMark eNptkU1r3DAQhkVJaD7aQ_-BoZf24EZflqVLYQlpu7BpC5scehKyNN5o0UpbyS7k39fOhtCEnmZ49czDoDlDRzFFQOgdwZ8YU_iiUEoYbxV-hU4Jp7yWlOKjf_oTdFbKFmPKGJOv0QlrJJZUilO0XlTXxt75CNUKTI4-bqrFfp_TFFZ9ytXPDM7bYc6_p1ivR2-9M6FaQ-jrZdyO-b7ysfqVxnnSjWEob9Bxb0KBt4_1HN1-ubq5_FavfnxdXi5WteVcDLUCInsMLSUOCHVCEsNFZ6mkvO95C41shbMYt5K1jELTEcybjjUN7oSjQNk5Wh68Lpmt3me_M_leJ-P1Q5DyRps8eBtAK2kUc5SpvmFc8k5JjknXt9I0ykjVTK7PB9d-7HbgLMQhm_BM-vwl-ju9SX-0okJxIifBh0dBTr9HKIPe-WIhBBMhjUVTIduWCPWAvn-BbtOY4_RVMyWIwljN1McDZXMqJUP_tAzBej67fjr7xF68YK0fzODTvKsP_5n4C40zrIM
CitedBy_id crossref_primary_10_1007_s12144_025_07436_4
crossref_primary_10_1016_j_jad_2023_10_110
crossref_primary_10_1016_j_chbah_2023_100008
crossref_primary_10_1186_s12889_025_23610_6
crossref_primary_10_1038_s41598_023_36172_7
crossref_primary_10_1109_JBHI_2025_3558170
crossref_primary_10_2196_63192
crossref_primary_10_1049_bme2_12110
crossref_primary_10_1016_j_ijmedinf_2023_105164
crossref_primary_10_1016_j_jad_2025_120110
crossref_primary_10_56083_RCV5N8_068
crossref_primary_10_1055_a_1915_2589
crossref_primary_10_1186_s12889_025_24354_z
Cites_doi 10.1111/sltb.12237
10.1177/1073191114565878
10.1055/s-0038-1633857
10.1002/jclp.22037
10.1016/j.brat.2008.10.011
10.3390/ijerph16224581
10.1007/s12652-019-01355-6
10.1016/j.jad.2017.11.073
10.1016/j.neuroimage.2009.10.092
10.1016/j.cpr.2006.08.002
10.1001/jamapsychiatry.2019.2664
10.1016/j.beth.2006.08.003
10.1073/pnas.1716686115
10.2196/10275
10.1038/npp.2013.328
10.1037/per0000104
10.1016/j.nicl.2018.10.011
10.1109/JBHI.2016.2601123
10.1109/TIFS.2021.3076932
10.1016/j.psychres.2018.02.051
10.1007/s12671-016-0492-1
10.1023/A:1012779403943
10.1007/s11126-020-09875-7
10.1038/tp.2015.22
10.1111/sltb.12186
10.1037/per0000205
10.1007/978-3-030-86993-9_50
10.1016/j.psychres.2020.112761
10.1162/tacl_a_00111
10.1016/j.jsat.2019.01.020
10.1016/j.brat.2005.03.005
10.1002/widm.8
10.1371/journal.pone.0185123
10.1037/cou0000382
10.1037/abn0000141
10.1017/S0033291715001804
10.1016/j.beth.2011.01.002
10.1146/annurev.clinpsy.3.022806.091415
10.1002/brb3.1384
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22134790
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_98a93d239f53484b98401bf78a59a895
PMC9269418
10_3390_s22134790
GrantInformation_xml – fundername: Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) of the Catalan Government
  grantid: 2020-DI-068
– fundername: Spanish government grant
  grantid: PSI2016–79980-P
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c446t-9e18f0e721de12d681a46bc2824ff47e5876dc00783732e5b1045b3550b6d2e23
IEDL.DBID BENPR
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824185500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:04:11 EDT 2025
Tue Nov 04 02:02:26 EST 2025
Fri Sep 05 06:02:24 EDT 2025
Tue Oct 07 07:09:03 EDT 2025
Sat Nov 29 07:18:47 EST 2025
Tue Nov 18 20:52:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9e18f0e721de12d681a46bc2824ff47e5876dc00783732e5b1045b3550b6d2e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-6582-4551
0000-0002-5621-8987
0000-0002-6534-1979
OpenAccessLink https://www.proquest.com/docview/2686190098?pq-origsite=%requestingapplication%
PMID 35808286
PQID 2686190098
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_98a93d239f53484b98401bf78a59a895
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9269418
proquest_miscellaneous_2687716918
proquest_journals_2686190098
crossref_primary_10_3390_s22134790
crossref_citationtrail_10_3390_s22134790
PublicationCentury 2000
PublicationDate 20220624
PublicationDateYYYYMMDD 2022-06-24
PublicationDate_xml – month: 6
  year: 2022
  text: 20220624
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Frick (ref_23) 2015; 5
Bremer (ref_27) 2018; 20
Gratz (ref_3) 2015; 22
ref_33
Loh (ref_38) 2011; 1
Goldberg (ref_20) 2020; 67
Schmidt (ref_16) 2021; 92
Esterman (ref_36) 2010; 50
Nicolai (ref_41) 2016; 46
Yuan (ref_40) 2021; 16
Klonsky (ref_8) 2007; 27
Snir (ref_14) 2015; 6
Ball (ref_21) 2014; 39
Reggente (ref_26) 2018; 115
Chapman (ref_1) 2006; 44
Seuchter (ref_29) 2004; 43
Fitzpatrick (ref_43) 2020; 284
ref_39
Shiffman (ref_11) 2008; 4
ref_37
Ewbank (ref_32) 2020; 77
Andrewes (ref_12) 2017; 8
Schultz (ref_24) 2018; 11
(ref_44) 2021; 33
Sintes (ref_5) 2018; 46
Kiekens (ref_6) 2016; 46
Muehlenkamp (ref_18) 2009; 47
Schmitgen (ref_22) 2019; 9
Symons (ref_28) 2019; 99
Tsanas (ref_35) 2022; Volume 4
Beierle (ref_34) 2020; 11
Gratz (ref_2) 2001; 23
Fresco (ref_45) 2007; 38
Bi (ref_19) 2019; 188
Ribeiro (ref_7) 2016; 46
Althoff (ref_31) 2016; 4
Armey (ref_17) 2011; 42
Taylor (ref_9) 2018; 227
Victor (ref_10) 2014; 70
Elices (ref_42) 2016; 7
Turner (ref_15) 2016; 125
ref_4
Tolmeijer (ref_25) 2018; 20
Hoogendoorn (ref_30) 2016; 21
Carballo (ref_13) 2018; 263
References_xml – volume: 46
  start-page: 563
  year: 2016
  ident: ref_6
  article-title: Lifetime and 12-month nonsuicidal self-injury and academic performance in college freshmen
  publication-title: Suicide Life-Threat. Behav.
  doi: 10.1111/sltb.12237
– volume: 22
  start-page: 527
  year: 2015
  ident: ref_3
  article-title: Diagnosis and characterization of DSM-5 nonsuicidal self-injury disorder using the clinician-administered nonsuicidal self-injury disorder index
  publication-title: Assessment
  doi: 10.1177/1073191114565878
– volume: 43
  start-page: 184
  year: 2004
  ident: ref_29
  article-title: Methods for predictor analysis of repeated measurements: Application to psychiatric data
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0038-1633857
– volume: 70
  start-page: 364
  year: 2014
  ident: ref_10
  article-title: Daily emotion in non-suicidal self-injury
  publication-title: J. Clin. Psychol.
  doi: 10.1002/jclp.22037
– volume: 47
  start-page: 83
  year: 2009
  ident: ref_18
  article-title: Emotional states preceding and following acts of non-suicidal self-injury in bulimia nervosa patients
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2008.10.011
– ident: ref_4
  doi: 10.3390/ijerph16224581
– volume: 11
  start-page: 2277
  year: 2020
  ident: ref_34
  article-title: What data are smartphone users willing to share with researchers?
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-019-01355-6
– volume: 227
  start-page: 759
  year: 2018
  ident: ref_9
  article-title: A meta-analysis of the prevalence of different functions of non-suicidal self-injury
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2017.11.073
– volume: 46
  start-page: 146
  year: 2018
  ident: ref_5
  article-title: Review and update on non-suicidal self-injury: Who, how and why?
  publication-title: Actas Esp Psiquiatr
– volume: 50
  start-page: 572
  year: 2010
  ident: ref_36
  article-title: Avoiding non-independence in fMRI data analysis: Leave one subject out
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.092
– volume: 27
  start-page: 226
  year: 2007
  ident: ref_8
  article-title: The functions of deliberate self-injury: A review of the evidence
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/j.cpr.2006.08.002
– ident: ref_39
– volume: 77
  start-page: 35
  year: 2020
  ident: ref_32
  article-title: Quantifying the association between psychotherapy content and clinical outcomes using deep learning
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2019.2664
– volume: 38
  start-page: 234
  year: 2007
  ident: ref_45
  article-title: Initial psychometric properties of the experiences questionnaire: Validation of a self-report measure of decentering
  publication-title: Behav. Ther.
  doi: 10.1016/j.beth.2006.08.003
– volume: 115
  start-page: 2222
  year: 2018
  ident: ref_26
  article-title: Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive–compulsive disorder
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716686115
– volume: 20
  start-page: e10275
  year: 2018
  ident: ref_27
  article-title: Predicting therapy success and costs for personalized treatment recommendations using baseline characteristics: Data-driven analysis
  publication-title: J. Med. Internet Res.
  doi: 10.2196/10275
– volume: 39
  start-page: 1254
  year: 2014
  ident: ref_21
  article-title: Single-subject anxiety treatment outcome prediction using functional neuroimaging
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.328
– volume: 6
  start-page: 267
  year: 2015
  ident: ref_14
  article-title: Explicit and inferred motives for nonsuicidal self-injurious acts and urges in borderline and avoidant personality disorders
  publication-title: Personal. Disord. Theory Res. Treat.
  doi: 10.1037/per0000104
– volume: 20
  start-page: 1053
  year: 2018
  ident: ref_25
  article-title: Using fMRI and machine learning to predict symptom improvement following cognitive behavioural therapy for psychosis
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.10.011
– volume: 21
  start-page: 1449
  year: 2016
  ident: ref_30
  article-title: Predicting social anxiety treatment outcome based on therapeutic email conversations
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2601123
– volume: 16
  start-page: 3154
  year: 2021
  ident: ref_40
  article-title: Gini-Impurity index analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2021.3076932
– volume: 263
  start-page: 212
  year: 2018
  ident: ref_13
  article-title: Use of ecological momentary assessment (EMA) in non-suicidal self-injury (NSSI): A systematic review
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2018.02.051
– volume: 7
  start-page: 584
  year: 2016
  ident: ref_42
  article-title: Impact of mindfulness training on borderline personality disorder: A randomized trial
  publication-title: Mindfulness
  doi: 10.1007/s12671-016-0492-1
– volume: 11
  start-page: 7
  year: 2018
  ident: ref_24
  article-title: Improving therapy outcome prediction in major depression using multimodal functional neuroimaging: A pilot study
  publication-title: Pers. Med. Psychiatry
– volume: 23
  start-page: 253
  year: 2001
  ident: ref_2
  article-title: Measurement of deliberate self-harm: Preliminary data on the Deliberate Self-Harm Inventory
  publication-title: J. Psychopathol. Behav. Assess.
  doi: 10.1023/A:1012779403943
– volume: 92
  start-page: 1035
  year: 2021
  ident: ref_16
  article-title: Predicting non-suicidal self-injury in young adults with and without borderline personality disorder: A multilevel approach combining ecological momentary assessment and self-report measures
  publication-title: Psychiatr. Q.
  doi: 10.1007/s11126-020-09875-7
– volume: 5
  start-page: e530
  year: 2015
  ident: ref_23
  article-title: Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2015.22
– volume: 46
  start-page: 223
  year: 2016
  ident: ref_41
  article-title: Identifying risk for self-harm: Rumination and negative affectivity in the prospective prediction of nonsuicidal self-injury
  publication-title: Suicide Life-Threat. Behav.
  doi: 10.1111/sltb.12186
– volume: 8
  start-page: 357
  year: 2017
  ident: ref_12
  article-title: Ecological momentary assessment of nonsuicidal self-injury in youth with borderline personality disorder
  publication-title: Personal. Disord. Theory Res. Treat.
  doi: 10.1037/per0000205
– ident: ref_37
  doi: 10.1007/978-3-030-86993-9_50
– volume: 33
  start-page: 407
  year: 2021
  ident: ref_44
  article-title: Mindfulness in borderline personality disorder: Decentering mediates the effectiveness
  publication-title: Psicothema
– volume: 284
  start-page: 112761
  year: 2020
  ident: ref_43
  article-title: Investigating the role of the intensity and duration of self-injury thoughts in self-injury with ecological momentary assessment
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2020.112761
– volume: 4
  start-page: 463
  year: 2016
  ident: ref_31
  article-title: Large-scale analysis of counseling conversations: An application of natural language processing to mental health
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00111
– volume: 99
  start-page: 156
  year: 2019
  ident: ref_28
  article-title: Machine learning vs addiction therapists: A pilot study predicting alcohol dependence treatment outcome from patient data in behavior therapy with adjunctive medication
  publication-title: J. Subst. Abus. Treat.
  doi: 10.1016/j.jsat.2019.01.020
– volume: 44
  start-page: 371
  year: 2006
  ident: ref_1
  article-title: Solving the puzzle of deliberate self-harm: The experiential avoidance model
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2005.03.005
– volume: 1
  start-page: 14
  year: 2011
  ident: ref_38
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.8
– ident: ref_33
  doi: 10.1371/journal.pone.0185123
– volume: 67
  start-page: 438
  year: 2020
  ident: ref_20
  article-title: Machine learning and natural language processing in psychotherapy research: Alliance as example use case
  publication-title: J. Couns. Psychol.
  doi: 10.1037/cou0000382
– volume: 125
  start-page: 588
  year: 2016
  ident: ref_15
  article-title: The role of interpersonal conflict and perceived social support in nonsuicidal self-injury in daily life
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/abn0000141
– volume: 46
  start-page: 225
  year: 2016
  ident: ref_7
  article-title: Self-injurious thoughts and behaviors as risk factors for future suicide ideation, attempts, and death: A meta-analysis of longitudinal studies
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291715001804
– volume: 42
  start-page: 579
  year: 2011
  ident: ref_17
  article-title: Changes in ecological momentary assessment reported affect associated with episodes of nonsuicidal self-injury
  publication-title: Behav. Ther.
  doi: 10.1016/j.beth.2011.01.002
– volume: 4
  start-page: 1
  year: 2008
  ident: ref_11
  article-title: Ecological momentary assessment
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev.clinpsy.3.022806.091415
– volume: 9
  start-page: e01384
  year: 2019
  ident: ref_22
  article-title: Individualized treatment response prediction of dialectical behavior therapy for borderline personality disorder using multimodal magnetic resonance imaging
  publication-title: Brain Behav.
  doi: 10.1002/brb3.1384
– volume: 188
  start-page: 2222
  year: 2019
  ident: ref_19
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am. J. Epidemiol.
– volume: Volume 4
  start-page: 278
  year: 2022
  ident: ref_35
  article-title: Preliminary Results on the Use of Classification Trees to Predict Non-suicidal Self-injury with Data Collected through a Mobile App
  publication-title: Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2022
SSID ssj0023338
Score 2.4662778
Snippet Artificial intelligence techniques were explored to assess the ability to anticipate self-harming behaviour in the mental health context using a database...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4790
SubjectTerms Accuracy
Anxiety disorders
app
EMA
Emotions
Machine learning
Magnetic resonance imaging
Mental disorders
Mental health
NSSI
Patients
Psychotherapy
Questionnaires
Self destructive behavior
Social anxiety
Statistical methods
Suicides & suicide attempts
Support vector machines
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMeDiAc9iE9cXSWKBy_BNo82OVZR9OCysAreStokWpGu7MPP7yTtLlsQvHhthpDONJ35k-QXhC4dJF1m0pRwzxnikeNEWyuI5orqGPIfF2W4bCIdDOTrqxquXPXl94Q1eODGcddKauiMMuUE45IXChRJXLhUaqG0VIFeClXPQky1UouB8mo4QgxE_fWU0nBkMupknwDp71SW3X2RK4nmfgdttxUizpqR7aI1W--hrRVu4D4aZfgpbIK0uOWjvuGshYNjqELxcOLXX_yOZjwY12Q0r8rKQKcj--nIY_0BjsRVjcNUx5lHcEwP0Mv93fPtA2lvRyAlSLgZUTaWLrKg4IyNqUlkrHlSlCChuHM8tQL-c6b0JQBLGbWiAOElCigvoiIx1FJ2iNbrcW2PEDYxZDLOSu5MxI2LtBGmoNZQn0GFcD10tfBaXrbocH-DxWcOEsI7OF86uIculqZfDS_jN6Mb7_qlgUdchwcQ-LwNfP5X4Huovwhc3s67aU4TCYrQQ1J76HzZDDPGL4Po2o7nwSYNjCCwSTsB7wyo21JX74G9rcLJX3n8H29wgjapP0wRJYTyPlqfTeb2FG2U37NqOjkLH_QPBcb5-A
  priority: 102
  providerName: Directory of Open Access Journals
Title A Machine Learning Approach for Predicting Non-Suicidal Self-Injury in Young Adults
URI https://www.proquest.com/docview/2686190098
https://www.proquest.com/docview/2687716918
https://pubmed.ncbi.nlm.nih.gov/PMC9269418
https://doaj.org/article/98a93d239f53484b98401bf78a59a895
Volume 22
WOSCitedRecordID wos000824185500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB2xXQ5w4BtRWCqDOHCxNnHs2jmhLuqKPbSKKEjlFCWxvRu0Spam5chvZ-y6YSMhLlxysEeJlRl75tnjNwDvLDrdREtJueMZ4pHltDBG0IKnrIjR_3FR-WITcrlU63WahQ23LqRVHtZEv1DrtnJ75KdsqjDWd_SXH25-UFc1yp2uhhIaR3DsmMr4CI7P5svscw-5EkRgez6hBMH9aceYvzoZDbyQJ-sfRJjD_MhbDuf84f8O9RE8CKEmme1t4zHcMc0TuH-LgPAprGZk4bMpDQlEq5dkFljGCYazJNu4gxyXGk2WbUNXu7qqNb50Za4tvWi-o0ZI3RC_ZpCZ4_LonsHX8_mXj59oKLNAK8SCW5qaWNnIIBTUJmZ6quKCT8sKsRi3lksjcMHUlYslEpkwI0pEcKLEOCUqp5oZljyHUdM25gUQHaNL5EnFrY64tlGhhS6Z0cy5YiHsGN4ffnteBQ5yVwrjOkcs4jSU9xoaw9te9GZPvPE3oTOnu17AcWX7hnZzmYepl6eqQHNkSWpFwhUvU8S0cWmlKkRaqFSM4eSgxjxM4C7_o8MxvOm7ceq585SiMe3Oy0hPNoQycmAxgwENe5r6ypN4p_4KsXr574-_gnvM3beIppTxExhtNzvzGu5WP7d1t5nAkVxL_1STYPkTv6mAz8WvObZlF4vs22_bqhBR
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWyTgwBuxUMAgkLhYTRx7Yx8QWh5VV-2uVtoilVNIYrtNVSVlswviT_EbGXuT0EiIWw9ck1Fe_jwzX-z5BuCVxaAb6Tim3OkM8cBymhojaMoVS0OMf1zkvtlEPJvJ42M134JfbS2M21bZ-kTvqHWVu3_ku2wkMdd38pfvLr5R1zXKra62LTQ2sDgwP38gZavfTj7i-L5mbO_T0Yd92nQVoDlSnxVVJpQ2MMh8tAmZHskw5aMsR-rBreWxEegfdO5CZxRHzIgMCYvIMCwH2Ugz44QO0OVvcwS7HMD2fDKdf-koXoSMb6NfFEUq2K0Z86WaQS_q-eYAvYy2vx_zUoDbu_2_fZo7cKtJpcl4g_27sGXKe3DzksDifViMydTvFjWkEZI9IeNGRZ1guk7mS7dQ5bZ-k1lV0sW6yAuNF12Yc0sn5RkijhQl8T6RjJ1WSf0APl_JWz2EQVmV5hEQHWLI51HOrQ64tkGqhc6Y0cylGkLYIbxphznJG4111-rjPEGu5RCRdIgYwsvO9GIjLPI3o_cOK52B0wL3B6rlSdK4lkTJFKcbi5QVEZc8U8jZw8zGMhUqlUoMYaeFTdI4qDr5g5khvOhOo2tx60Vpaaq1t4m9mBLaxD2E9h6of6YsTr1IufIl0vLxv2_-HK7vH00Pk8PJ7OAJ3GCutiQYUcZ3YLBars1TuJZ_XxX18lkz0wh8vWoE_waTsmUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLUL0wDfqQgsGgcTF2sSxk_iA0JayYlW6irQglVNIYrsEVUnZ7IL4a_w6xt4kNBLi1gPXZJQvP8_Mi8dvAJ4bDLqBiiLKrc4Q9wynmdaCZlyyzMf4x0Xhmk1E83l8eiqTLfjV7YWxZZWdT3SOWtWF_Uc-ZmGMub6VvxybtiwiOZq-vvhGbQcpu9LatdPYQORY__yB9K15NTvCsX7B2PTthzfvaNthgBZIg1ZUaj82nkYWpLTPVBj7GQ_zAmkIN4ZHWqCvUIUNo0EUMC1yJC8ixxDt5aFi2ooeoPvfwZSc4xzbSWYnyaee7gXI_jZaRkEgvXHDmNu26Q0ioGsUMMhuh7WZl4Ld9Nb__Jluw802xSaTzZy4A1u6ugu7l4QX78FiQk5cFakmrcDsGZm06uoE03iSLO0Cli0JJ_O6oot1WZQKL7rQ54bOqq-IRFJWxPlKMrEaJs19-Hglb_UAtqu60ntAlI-pAA8KbpTHlfEyJVTOtGI2BRHCjOBlN-Rp0Wqv2xYg5ylyMIuOtEfHCJ71phcbwZG_GR1a3PQGViPcHaiXZ2nrclIZZzgNWSCNCHjMc4lc3s9NFGdCZrEUI9jvIJS2jqtJ_-BnBE_70-hy7DpSVul67WwiJ7KENtEArYMHGp6pyi9OvFy6rdPxw3_f_AlcR9im72fz40dwg9ktJ15IGd-H7dVyrQ_gWvF9VTbLx-2kI_D5qgH8G5pubfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Approach+for+Predicting+Non-Suicidal+Self-Injury+in+Young+Adults&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Marti-Puig%2C+Pere&rft.au=Capra%2C+Chiara&rft.au=Vega%2C+Daniel&rft.au=Llunas%2C+Laia&rft.date=2022-06-24&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=13&rft_id=info:doi/10.3390%2Fs22134790&rft_id=info%3Apmid%2F35808286&rft.externalDocID=PMC9269418
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon