Two Distributed Arithmetic Based High Throughput Architectures of Non-Pipelined LMS Adaptive Filters

Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 10; s. 76693 - 76706
Hlavní autori: Khan, Mohd. Tasleem, Alhartomi, Mohammed A., Alzahrani, Saeed, Shaik, Rafi Ahamed, Alsulami, Ruwaybih
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <inline-formula> <tex-math notation="LaTeX">256^{\mathrm {th}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure provides <inline-formula> <tex-math notation="LaTeX">9.41 \times </tex-math></inline-formula> higher throughput while Type II structure provides <inline-formula> <tex-math notation="LaTeX">16.68 \times </tex-math></inline-formula> higher throughput as compared to the best existing design. Synthesis results show that <inline-formula> <tex-math notation="LaTeX">32^{\mathrm {nd}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design.
AbstractList Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using twos complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that 256th order filter with 8th order DA base unit using Type I structure provides 9 :41 x higher throughput while Type II structure provides 16 :68 x higher throughput as compared to the best existing design. Synthesis results show that 32nd order filter with 8th order DA base unit using Type I structure achieves 38 :76% less minimum sampling period (MSP), occupies 28 :62% more area, consumes 67 :18% more power, utilizes 49 :06% more slice LUTs and 3 :31% more flip-flops (FFs), whereas Type II structure achieves 51 :25% less MSP, occupies 21 :42% more area, consumes 47 :84% more power, utilizes 29 :10% more slice LUTs and 1 :47% fewer FFs as compared to the best existing design.
Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <inline-formula> <tex-math notation="LaTeX">256^{\mathrm {th}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure provides <inline-formula> <tex-math notation="LaTeX">9.41 \times </tex-math></inline-formula> higher throughput while Type II structure provides <inline-formula> <tex-math notation="LaTeX">16.68 \times </tex-math></inline-formula> higher throughput as compared to the best existing design. Synthesis results show that <inline-formula> <tex-math notation="LaTeX">32^{\mathrm {nd}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design.
Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two’s complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that [Formula Omitted] order filter with [Formula Omitted] order DA base unit using Type I structure provides [Formula Omitted] higher throughput while Type II structure provides [Formula Omitted] higher throughput as compared to the best existing design. Synthesis results show that [Formula Omitted] order filter with [Formula Omitted] order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design.
Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <tex-math notation="LaTeX">$256^{\mathrm {th}}$ </tex-math> order filter with <tex-math notation="LaTeX">$8^{\mathrm {th}}$ </tex-math> order DA base unit using Type I structure provides <tex-math notation="LaTeX">$9.41 \times $ </tex-math> higher throughput while Type II structure provides <tex-math notation="LaTeX">$16.68 \times $ </tex-math> higher throughput as compared to the best existing design. Synthesis results show that <tex-math notation="LaTeX">$32^{\mathrm {nd}}$ </tex-math> order filter with <tex-math notation="LaTeX">$8^{\mathrm {th}}$ </tex-math> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design.
Author Alhartomi, Mohammed A.
Khan, Mohd. Tasleem
Shaik, Rafi Ahamed
Alzahrani, Saeed
Alsulami, Ruwaybih
Author_xml – sequence: 1
  givenname: Mohd. Tasleem
  orcidid: 0000-0001-6106-1534
  surname: Khan
  fullname: Khan, Mohd. Tasleem
  email: mtkhan@iitism.ac.in
  organization: Linköping University, Linköping, Sweden
– sequence: 2
  givenname: Mohammed A.
  orcidid: 0000-0002-5955-8864
  surname: Alhartomi
  fullname: Alhartomi, Mohammed A.
  organization: Department of Electrical Engineering, University of Tabuk, Tabuk, Saudi Arabia
– sequence: 3
  givenname: Saeed
  orcidid: 0000-0003-3325-857X
  surname: Alzahrani
  fullname: Alzahrani, Saeed
  organization: Department of Electrical Engineering, University of Tabuk, Tabuk, Saudi Arabia
– sequence: 4
  givenname: Rafi Ahamed
  orcidid: 0000-0003-1617-2299
  surname: Shaik
  fullname: Shaik, Rafi Ahamed
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
– sequence: 5
  givenname: Ruwaybih
  orcidid: 0000-0003-0031-6497
  surname: Alsulami
  fullname: Alsulami, Ruwaybih
  organization: Department of Electrical Engineering, Umm Al-Qura University, Mecca, Saudi Arabia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-187599$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kc1u1DAUhSNUJErpE3QTiXUG_ydehmlLK00BaQa2luPcTDxK42A7rXh7PE2LgAXe2Dr6ztG9Pm-zk9GNkGUXGK0wRvJDvV5fbbcrgghZUSyJwPJVdkqwkAXlVJz88X6TnYdwQOlUSeLladbuHl1-aUP0tpkjtHntbezvIVqTf9QhCTd23-e73rt5309zTIDpbQQTZw8hd13-2Y3FVzvBYMeEb-62ed3qKdoHyK_tEMGHd9nrTg8Bzp_vs-zb9dVufVNsvny6XdebwjAmYiErhiQWRjCsEWta0mGGsJYSCCMAjeGEs6oRJSKl5lq2SItWgEGdLEXVlfQsu11yW6cPavL2XvufymmrngTn90r7tNkAyrRNVXFDKDSMSYll08gG0ZbyziCpq5RVLFnhEaa5-Svt0n6vn9IGOytclVzKxL9f-Mm7HzOEqA5u9mNaV5H01ZgxKo6UXCjjXQgeOmVs1NG6MXptB4WROnaqlk7VsVP13Gny0n-8LzP933WxuCwA_HbIilKOOf0FKUOuug
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_LES_2024_3485509
crossref_primary_10_1007_s11045_024_00895_1
crossref_primary_10_1109_TVLSI_2023_3294571
crossref_primary_10_1109_ACCESS_2023_3304234
crossref_primary_10_1016_j_compeleceng_2024_109564
crossref_primary_10_1007_s41939_024_00636_8
crossref_primary_10_1007_s42044_025_00325_w
crossref_primary_10_1016_j_prime_2025_101014
crossref_primary_10_1109_JETCAS_2023_3330428
crossref_primary_10_1007_s10470_025_02477_y
crossref_primary_10_1109_TVLSI_2025_3528244
Cites_doi 10.1109/TIT.1984.1056886
10.1109/82.933794
10.1109/TASSP.1985.1164493
10.1109/78.599942
10.1109/TCSI.2009.2026683
10.1007/978-1-4419-8644-3_2
10.1016/j.compeleceng.2020.106800
10.1109/TASSP.1974.1162619
10.1109/TCSI.2005.851731
10.1109/TCSII.2011.2161168
10.1002/1520-6440(200105)84:5<1::AID-ECJC1>3.0.CO;2-5
10.1109/VLSID.2017.16
10.1109/TVLSI.2018.2818980
10.1109/ISCAS.1990.112086
10.1109/TCSII.2013.2281747
10.1007/978-3-642-23096-7_7
10.1049/iet-cds.2018.0041
10.1109/TCSI.2018.2867291
10.21629/JSEE.2019.02.05
10.1002/cpe.6018
10.1109/TASSP.1986.1164914
10.1109/TCSII.2022.3141687
10.1109/ACCESS.2021.3083282
10.1109/53.29648
10.1109/ACSSC.2011.6189976
10.1007/978-94-010-1223-2_23
10.1109/TASSP.1984.1164334
10.1109/78.774769
10.1109/ICASSP.1995.480498
10.1109/VLSID.2018.77
10.1007/978-3-642-75536-1_49
10.1007/978-1-4615-2678-0
10.1109/VLSISoC.2011.6081621
10.1109/TASSP.1984.1164286
10.1109/ICASSP.2002.5745200
10.1109/TCSII.2013.2251968
10.1002/j.1538-7305.1979.tb03332.x
10.1002/ecja.4400670503
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.1109/ACCESS.2022.3192619
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 76706
ExternalDocumentID oai_doaj_org_article_cdb885c23eb449919bb9b03d35fc09a8
oai_DiVA_org_liu_187599
10_1109_ACCESS_2022_3192619
9833515
Genre orig-research
GrantInformation_xml – fundername: Deanship of Scientific Research at Umm Al-Qura University
  grantid: 22UQU4350362DSR01
– fundername: Deanship of Scientific Research, University of Tabuk
  grantid: S-1442-0151
  funderid: 10.13039/100009391
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c446t-9840916c641a04bd2f1401a99e242eebc52548b67027a5a9d0a6d6ec0f9768f73
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:37:31 EDT 2025
Tue Nov 04 16:40:35 EST 2025
Sun Jun 29 15:54:39 EDT 2025
Sat Nov 29 06:32:16 EST 2025
Tue Nov 18 21:29:31 EST 2025
Wed Aug 27 02:25:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords look-up table (LUT)
finite-impulse response (FIR)
least mean square (LMS)
distributed arithmetic (DA)
Adaptive filter (ADF)
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9840916c641a04bd2f1401a99e242eebc52548b67027a5a9d0a6d6ec0f9768f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5955-8864
0000-0003-0031-6497
0000-0003-3325-857X
0000-0001-6106-1534
0000-0003-1617-2299
OpenAccessLink https://doaj.org/article/cdb885c23eb449919bb9b03d35fc09a8
PQID 2695144369
PQPubID 4845423
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_cdb885c23eb449919bb9b03d35fc09a8
ieee_primary_9833515
crossref_citationtrail_10_1109_ACCESS_2022_3192619
swepub_primary_oai_DiVA_org_liu_187599
crossref_primary_10_1109_ACCESS_2022_3192619
proquest_journals_2695144369
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Croisier (ref25) 1973
ref17
ref39
ref16
ref38
ref19
ref18
Parhi (ref3) 2007
ref24
ref23
ref26
ref20
ref42
ref41
ref22
ref21
ref43
Sayed (ref2) 2003
ref28
ref27
ref29
ref8
ref7
ref9
Takahashi (ref40) 2002; 85
ref4
ref6
ref5
Haykin (ref1) 1996
References_xml – ident: ref15
  doi: 10.1109/TIT.1984.1056886
– ident: ref42
  doi: 10.1109/82.933794
– ident: ref16
  doi: 10.1109/TASSP.1985.1164493
– ident: ref14
  doi: 10.1109/78.599942
– ident: ref23
  doi: 10.1109/TCSI.2009.2026683
– volume-title: VLSI Digital Signal Processing Systems: Design and Implementation
  year: 2007
  ident: ref3
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref1
– ident: ref10
  doi: 10.1007/978-1-4419-8644-3_2
– ident: ref12
  doi: 10.1016/j.compeleceng.2020.106800
– ident: ref24
  doi: 10.1109/TASSP.1974.1162619
– ident: ref27
  doi: 10.1109/TCSI.2005.851731
– volume: 85
  start-page: 1249
  issue: 6
  year: 2002
  ident: ref40
  article-title: Analysis of the convergence condition of LMS adaptive digital filter using distributed arithmetic
  publication-title: IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
– ident: ref28
  doi: 10.1109/TCSII.2011.2161168
– ident: ref33
  doi: 10.1002/1520-6440(200105)84:5<1::AID-ECJC1>3.0.CO;2-5
– ident: ref31
  doi: 10.1109/VLSID.2017.16
– ident: ref43
  doi: 10.1109/TVLSI.2018.2818980
– ident: ref19
  doi: 10.1109/ISCAS.1990.112086
– ident: ref29
  doi: 10.1109/TCSII.2013.2281747
– ident: ref21
  doi: 10.1007/978-3-642-23096-7_7
– ident: ref37
  doi: 10.1049/iet-cds.2018.0041
– volume-title: Digital filter for PCM encoded signals
  year: 1973
  ident: ref25
– ident: ref38
  doi: 10.1109/TCSI.2018.2867291
– ident: ref18
  doi: 10.21629/JSEE.2019.02.05
– ident: ref22
  doi: 10.1002/cpe.6018
– ident: ref6
  doi: 10.1109/TASSP.1986.1164914
– ident: ref39
  doi: 10.1109/TCSII.2022.3141687
– ident: ref30
  doi: 10.1109/ACCESS.2021.3083282
– ident: ref26
  doi: 10.1109/53.29648
– ident: ref34
  doi: 10.1109/ACSSC.2011.6189976
– ident: ref4
  doi: 10.1007/978-94-010-1223-2_23
– ident: ref7
  doi: 10.1109/TASSP.1984.1164334
– ident: ref9
  doi: 10.1109/78.774769
– ident: ref5
  doi: 10.1109/ICASSP.1995.480498
– ident: ref32
  doi: 10.1109/VLSID.2018.77
– ident: ref11
  doi: 10.1007/978-3-642-75536-1_49
– ident: ref20
  doi: 10.1007/978-1-4615-2678-0
– ident: ref35
  doi: 10.1109/VLSISoC.2011.6081621
– ident: ref41
  doi: 10.1109/TASSP.1984.1164286
– ident: ref13
  doi: 10.1109/ICASSP.2002.5745200
– ident: ref36
  doi: 10.1109/TCSII.2013.2251968
– ident: ref17
  doi: 10.1002/j.1538-7305.1979.tb03332.x
– volume-title: Fundamentals of Adaptive Filtering
  year: 2003
  ident: ref2
– ident: ref8
  doi: 10.1002/ecja.4400670503
SSID ssj0000816957
Score 2.3548048
Snippet Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 76693
SubjectTerms Adaptive filter (ADF)
Adaptive filters
Algorithms
Arithmetic
Binary codes
Convergence
Decomposition
distributed arithmetic (DA)
finite-impulse response (FIR)
Fixed point arithmetic
Hardware
least mean square (LMS)
look-up table (LUT)
Lookup tables
Steady-state
Table lookup
Throughput
Very large scale integration
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4gAH-qCoC7TyoeqJFOdtH8PSVQ-wQuqCuFl-RUSimxWbhb_PjGOiXQlV6i2KxnacGXv82Z5vCPleOJ0bbkVktDZRBqAjEuCXIseVZbGxLvFZIm4vy-mU392J6y1yOsTCOOf85TP3Ex_9Wb5tzQq3ys4ERghhRPm7siz6WK1hPwUTSIi8DMRCMRNn1XgMfQAImCSATAVChQ3n4zn6Q1KVzfXlOmeo9zOT9__3hR_IflhP0qo3gI9ky80_kb01lsEDYmfPLb1AglzMbeUsCDfd_V-MXqTn4MQsxcsedNZn7FmsOlqtnS4saVvTaTuPrpsFxq6D-OXVH1pZtcCZkk4aPG9ffiY3k1-z8e8oJFeIDCDALhKI7OLCFFmsWKZtUiPUUkKAdhLntMkBOnJdlIBbVa6EZaqwhTOshgUMr8v0kGzP27n7QmimDHdZHqcayoIA5w6nCZ5lTBkb5yOSvP51aQLzOCbAeJAegTAhe1VJVJUMqhqR06HQoife-Lf4OapzEEXWbP8C1CPDIJTGas5zk6ROZ4D0YqG10Cy1aV4bJhQfkQNU6VBJ0OaInLwahwwjfCkTsDYAo2kBTf_oDWaj8YvmtvKNPzQrGQMqFOLo7eqPyS72pN_XOSHb3ePKfSU75qlrlo_fvJW_AMUx-ps
  priority: 102
  providerName: IEEE
Title Two Distributed Arithmetic Based High Throughput Architectures of Non-Pipelined LMS Adaptive Filters
URI https://ieeexplore.ieee.org/document/9833515
https://www.proquest.com/docview/2695144369
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-187599
https://doaj.org/article/cdb885c23eb449919bb9b03d35fc09a8
Volume 10
WOSCitedRecordID wos000831065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqFAQW0rlA-JEVDtPzzHddsWhXVViqXqz_IqIVHZX3Sy98duZcdJV9gIXLjlE49geTzzzxZlvGPtUBls45SFx1rokR9CRAPqlJCjjhXQ-pLFKxO1VNZ-ruzu4GZX6on_CenrgXnFnzlulCpdmweYYnUuwFqzIfFY0ToCJab6ighGYinuwkiUU1UAzJAWc1dMpzggBYZoiTgUCDnuuKDL2DyVW9qPNMYNo9DqzQ_ZqCBd53Q_zNXsWlm_YyxGJ4BHzi8cVvyD-WypdFTwKt92Pn5ScyM_RR3lO_3LwRV-QZ73teD06PNjwVcPnq2Vy064pNR3Fr66_8dqbNW2EfNbScfrmLfs-u1xMvyZD7YTEIcDrEiDgJktX5tKI3Pq0ISRlAFD5aQjWFYgMlS0rhKWmMOCFKX0ZnGgwPlFNlb1jB8vVMrxnPDdOhbyQmcW2KKBUoF1A5bkwzstiwtInNWo3EItTfYt7HQGGAN3rXpPu9aD7Cfuya7TueTX-Ln5O67MTJVLseANNRQ-mov9lKhN2RKu7ewhQwhmN_-RptfXwAm90iuaDWDMrsevPvQXsdX7R3tax8_t2qyWCPoDj_zHGD-wFzbv_yHPCDrqHbfjInrtfXbt5OI1Gjtfr35enMVXxDzE_AEo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NAwn2wNdAFAb4AfG0MOez9mPWUQ3RVZMo094sf0VEGk21puPf5y7xolZCSLxF0dmOc2eff7bvfgAfC29yK5yMrDE2yhB0RBL9UuSFdjy2zicdS8TVbDyfi-trebkHx0MsjPe-u3zmP9Njd5bvGruhrbITSRFCFFH-gJizQrTWsKNCFBIyH4fUQjGXJ-Vkgr1AEJgkiE0lgYUd99Nl6Q-0KrsrzO2soZ2nmT79v298Bk_CipKVvQk8hz2_fAEHW3kGD8EtfjfsjFLkEruVdyhctz9_UfwiO0U35hhd92CLnrNntWlZuXW-sGZNxebNMrqsVxS9juKzi--sdHpFcyWb1nTivn4JP6ZfFpPzKNArRBYxYBtJwnZxYYss1jwzLqkIbGkpUT-J98bmCB6FKcaIXHWupeO6cIW3vMIljKjG6SvYXzZL_xpYpq3wWR6nBsuigBCeJgqRZVxbF-cjSO7_urIh9zhRYNyoDoNwqXpVKVKVCqoawfFQaNWn3vi3-CmpcxClvNndC1SPCsNQWWeEyG2SepMh1oulMdLw1KV5ZbnUYgSHpNKhkqDNERzdG4cKY3ytErQ2hKNpgU1_6g1mp_Gz-qrsGr-pNypGXCjlm79X_wEenS8uZmr2df7tLTymXvW7PEew395u_Dt4aO_aen37vrP4P_Px_eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Distributed+Arithmetic+Based+High+Throughput+Architectures+of+Non-Pipelined+LMS+Adaptive+Filters&rft.jtitle=IEEE+access&rft.au=Khan%2C+Mohd.+Tasleem&rft.au=Alhartomi%2C+Mohammed+A.&rft.au=Alzahrani%2C+Saeed&rft.au=Shaik%2C+Rafi+Ahamed&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=76693&rft_id=info:doi/10.1109%2FACCESS.2022.3192619&rft.externalDocID=oai_DiVA_org_liu_187599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon