Two Distributed Arithmetic Based High Throughput Architectures of Non-Pipelined LMS Adaptive Filters
Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using...
Uložené v:
| Vydané v: | IEEE access Ročník 10; s. 76693 - 76706 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <inline-formula> <tex-math notation="LaTeX">256^{\mathrm {th}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure provides <inline-formula> <tex-math notation="LaTeX">9.41 \times </tex-math></inline-formula> higher throughput while Type II structure provides <inline-formula> <tex-math notation="LaTeX">16.68 \times </tex-math></inline-formula> higher throughput as compared to the best existing design. Synthesis results show that <inline-formula> <tex-math notation="LaTeX">32^{\mathrm {nd}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design. |
|---|---|
| AbstractList | Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using twos complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that 256th order filter with 8th order DA base unit using Type I structure provides 9 :41 x higher throughput while Type II structure provides 16 :68 x higher throughput as compared to the best existing design. Synthesis results show that 32nd order filter with 8th order DA base unit using Type I structure achieves 38 :76% less minimum sampling period (MSP), occupies 28 :62% more area, consumes 67 :18% more power, utilizes 49 :06% more slice LUTs and 3 :31% more flip-flops (FFs), whereas Type II structure achieves 51 :25% less MSP, occupies 21 :42% more area, consumes 47 :84% more power, utilizes 29 :10% more slice LUTs and 1 :47% fewer FFs as compared to the best existing design. Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <inline-formula> <tex-math notation="LaTeX">256^{\mathrm {th}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure provides <inline-formula> <tex-math notation="LaTeX">9.41 \times </tex-math></inline-formula> higher throughput while Type II structure provides <inline-formula> <tex-math notation="LaTeX">16.68 \times </tex-math></inline-formula> higher throughput as compared to the best existing design. Synthesis results show that <inline-formula> <tex-math notation="LaTeX">32^{\mathrm {nd}} </tex-math></inline-formula> order filter with <inline-formula> <tex-math notation="LaTeX">8^{\mathrm {th}} </tex-math></inline-formula> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design. Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two’s complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that [Formula Omitted] order filter with [Formula Omitted] order DA base unit using Type I structure provides [Formula Omitted] higher throughput while Type II structure provides [Formula Omitted] higher throughput as compared to the best existing design. Synthesis results show that [Formula Omitted] order filter with [Formula Omitted] order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design. Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This paper presents two high-throughput architectures (Type I and II) of non-pipelined DA based least-mean-square (LMS) adaptive filters (ADFs) using two's complement (TC) and offset-binary coding (OBC) respectively. We formulate the LMS algorithm using the steepest descent approach with possible extension to its power-normalized LMS version and followed by its convergence properties. The coefficient update equation of LMS algorithm is then transformed via TC DA and OBC DA to design and develop non-pipelined architectures of ADFs. The proposed structures employ the LUT pre-decomposition technique to increase the throughput performance. It enables the same mapping scheme for concurrent update of the decomposed LUTs. An efficient fixed-point quantization model for the evaluation of proposed structures from a realistic point-of-view is also presented. It is found that Type II structure provides higher throughput than Type I structure at the expense of slow convergence rate with almost the same steady-state mean square error. Unlike existing non-pipelined LMS ADFs, the proposed structures offer very high throughput performance, especially with large order DA base units. Furthermore, they are capable of performing less number of additions in every filter cycle. Based on the simulation results, it is found that <tex-math notation="LaTeX">$256^{\mathrm {th}}$ </tex-math> order filter with <tex-math notation="LaTeX">$8^{\mathrm {th}}$ </tex-math> order DA base unit using Type I structure provides <tex-math notation="LaTeX">$9.41 \times $ </tex-math> higher throughput while Type II structure provides <tex-math notation="LaTeX">$16.68 \times $ </tex-math> higher throughput as compared to the best existing design. Synthesis results show that <tex-math notation="LaTeX">$32^{\mathrm {nd}}$ </tex-math> order filter with <tex-math notation="LaTeX">$8^{\mathrm {th}}$ </tex-math> order DA base unit using Type I structure achieves 38.76% less minimum sampling period (MSP), occupies 28.62% more area, consumes 67.18% more power, utilizes 49.06% more slice LUTs and 3.31% more flip-flops (FFs), whereas Type II structure achieves 51.25% less MSP, occupies 21.42% more area, consumes 47.84% more power, utilizes 29.10% more slice LUTs and 1.47% fewer FFs as compared to the best existing design. |
| Author | Alhartomi, Mohammed A. Khan, Mohd. Tasleem Shaik, Rafi Ahamed Alzahrani, Saeed Alsulami, Ruwaybih |
| Author_xml | – sequence: 1 givenname: Mohd. Tasleem orcidid: 0000-0001-6106-1534 surname: Khan fullname: Khan, Mohd. Tasleem email: mtkhan@iitism.ac.in organization: Linköping University, Linköping, Sweden – sequence: 2 givenname: Mohammed A. orcidid: 0000-0002-5955-8864 surname: Alhartomi fullname: Alhartomi, Mohammed A. organization: Department of Electrical Engineering, University of Tabuk, Tabuk, Saudi Arabia – sequence: 3 givenname: Saeed orcidid: 0000-0003-3325-857X surname: Alzahrani fullname: Alzahrani, Saeed organization: Department of Electrical Engineering, University of Tabuk, Tabuk, Saudi Arabia – sequence: 4 givenname: Rafi Ahamed orcidid: 0000-0003-1617-2299 surname: Shaik fullname: Shaik, Rafi Ahamed organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India – sequence: 5 givenname: Ruwaybih orcidid: 0000-0003-0031-6497 surname: Alsulami fullname: Alsulami, Ruwaybih organization: Department of Electrical Engineering, Umm Al-Qura University, Mecca, Saudi Arabia |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-187599$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNp9kc1u1DAUhSNUJErpE3QTiXUG_ydehmlLK00BaQa2luPcTDxK42A7rXh7PE2LgAXe2Dr6ztG9Pm-zk9GNkGUXGK0wRvJDvV5fbbcrgghZUSyJwPJVdkqwkAXlVJz88X6TnYdwQOlUSeLladbuHl1-aUP0tpkjtHntbezvIVqTf9QhCTd23-e73rt5309zTIDpbQQTZw8hd13-2Y3FVzvBYMeEb-62ed3qKdoHyK_tEMGHd9nrTg8Bzp_vs-zb9dVufVNsvny6XdebwjAmYiErhiQWRjCsEWta0mGGsJYSCCMAjeGEs6oRJSKl5lq2SItWgEGdLEXVlfQsu11yW6cPavL2XvufymmrngTn90r7tNkAyrRNVXFDKDSMSYll08gG0ZbyziCpq5RVLFnhEaa5-Svt0n6vn9IGOytclVzKxL9f-Mm7HzOEqA5u9mNaV5H01ZgxKo6UXCjjXQgeOmVs1NG6MXptB4WROnaqlk7VsVP13Gny0n-8LzP933WxuCwA_HbIilKOOf0FKUOuug |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_LES_2024_3485509 crossref_primary_10_1007_s11045_024_00895_1 crossref_primary_10_1109_TVLSI_2023_3294571 crossref_primary_10_1109_ACCESS_2023_3304234 crossref_primary_10_1016_j_compeleceng_2024_109564 crossref_primary_10_1007_s41939_024_00636_8 crossref_primary_10_1007_s42044_025_00325_w crossref_primary_10_1016_j_prime_2025_101014 crossref_primary_10_1109_JETCAS_2023_3330428 crossref_primary_10_1007_s10470_025_02477_y crossref_primary_10_1109_TVLSI_2025_3528244 |
| Cites_doi | 10.1109/TIT.1984.1056886 10.1109/82.933794 10.1109/TASSP.1985.1164493 10.1109/78.599942 10.1109/TCSI.2009.2026683 10.1007/978-1-4419-8644-3_2 10.1016/j.compeleceng.2020.106800 10.1109/TASSP.1974.1162619 10.1109/TCSI.2005.851731 10.1109/TCSII.2011.2161168 10.1002/1520-6440(200105)84:5<1::AID-ECJC1>3.0.CO;2-5 10.1109/VLSID.2017.16 10.1109/TVLSI.2018.2818980 10.1109/ISCAS.1990.112086 10.1109/TCSII.2013.2281747 10.1007/978-3-642-23096-7_7 10.1049/iet-cds.2018.0041 10.1109/TCSI.2018.2867291 10.21629/JSEE.2019.02.05 10.1002/cpe.6018 10.1109/TASSP.1986.1164914 10.1109/TCSII.2022.3141687 10.1109/ACCESS.2021.3083282 10.1109/53.29648 10.1109/ACSSC.2011.6189976 10.1007/978-94-010-1223-2_23 10.1109/TASSP.1984.1164334 10.1109/78.774769 10.1109/ICASSP.1995.480498 10.1109/VLSID.2018.77 10.1007/978-3-642-75536-1_49 10.1007/978-1-4615-2678-0 10.1109/VLSISoC.2011.6081621 10.1109/TASSP.1984.1164286 10.1109/ICASSP.2002.5745200 10.1109/TCSII.2013.2251968 10.1002/j.1538-7305.1979.tb03332.x 10.1002/ecja.4400670503 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABXSW ADTPV AOWAS D8T DG8 ZZAVC DOA |
| DOI | 10.1109/ACCESS.2022.3192619 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 76706 |
| ExternalDocumentID | oai_doaj_org_article_cdb885c23eb449919bb9b03d35fc09a8 oai_DiVA_org_liu_187599 10_1109_ACCESS_2022_3192619 9833515 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deanship of Scientific Research at Umm Al-Qura University grantid: 22UQU4350362DSR01 – fundername: Deanship of Scientific Research, University of Tabuk grantid: S-1442-0151 funderid: 10.13039/100009391 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c446t-9840916c641a04bd2f1401a99e242eebc52548b67027a5a9d0a6d6ec0f9768f73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000831065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:37:31 EDT 2025 Tue Nov 04 16:40:35 EST 2025 Sun Jun 29 15:54:39 EDT 2025 Sat Nov 29 06:32:16 EST 2025 Tue Nov 18 21:29:31 EST 2025 Wed Aug 27 02:25:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | look-up table (LUT) finite-impulse response (FIR) least mean square (LMS) distributed arithmetic (DA) Adaptive filter (ADF) |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c446t-9840916c641a04bd2f1401a99e242eebc52548b67027a5a9d0a6d6ec0f9768f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5955-8864 0000-0003-0031-6497 0000-0003-3325-857X 0000-0001-6106-1534 0000-0003-1617-2299 |
| OpenAccessLink | https://doaj.org/article/cdb885c23eb449919bb9b03d35fc09a8 |
| PQID | 2695144369 |
| PQPubID | 4845423 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cdb885c23eb449919bb9b03d35fc09a8 ieee_primary_9833515 crossref_citationtrail_10_1109_ACCESS_2022_3192619 swepub_primary_oai_DiVA_org_liu_187599 crossref_primary_10_1109_ACCESS_2022_3192619 proquest_journals_2695144369 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 Croisier (ref25) 1973 ref17 ref39 ref16 ref38 ref19 ref18 Parhi (ref3) 2007 ref24 ref23 ref26 ref20 ref42 ref41 ref22 ref21 ref43 Sayed (ref2) 2003 ref28 ref27 ref29 ref8 ref7 ref9 Takahashi (ref40) 2002; 85 ref4 ref6 ref5 Haykin (ref1) 1996 |
| References_xml | – ident: ref15 doi: 10.1109/TIT.1984.1056886 – ident: ref42 doi: 10.1109/82.933794 – ident: ref16 doi: 10.1109/TASSP.1985.1164493 – ident: ref14 doi: 10.1109/78.599942 – ident: ref23 doi: 10.1109/TCSI.2009.2026683 – volume-title: VLSI Digital Signal Processing Systems: Design and Implementation year: 2007 ident: ref3 – volume-title: Adaptive Filter Theory year: 1996 ident: ref1 – ident: ref10 doi: 10.1007/978-1-4419-8644-3_2 – ident: ref12 doi: 10.1016/j.compeleceng.2020.106800 – ident: ref24 doi: 10.1109/TASSP.1974.1162619 – ident: ref27 doi: 10.1109/TCSI.2005.851731 – volume: 85 start-page: 1249 issue: 6 year: 2002 ident: ref40 article-title: Analysis of the convergence condition of LMS adaptive digital filter using distributed arithmetic publication-title: IEICE Trans. Fundam. Electron., Commun. Comput. Sci. – ident: ref28 doi: 10.1109/TCSII.2011.2161168 – ident: ref33 doi: 10.1002/1520-6440(200105)84:5<1::AID-ECJC1>3.0.CO;2-5 – ident: ref31 doi: 10.1109/VLSID.2017.16 – ident: ref43 doi: 10.1109/TVLSI.2018.2818980 – ident: ref19 doi: 10.1109/ISCAS.1990.112086 – ident: ref29 doi: 10.1109/TCSII.2013.2281747 – ident: ref21 doi: 10.1007/978-3-642-23096-7_7 – ident: ref37 doi: 10.1049/iet-cds.2018.0041 – volume-title: Digital filter for PCM encoded signals year: 1973 ident: ref25 – ident: ref38 doi: 10.1109/TCSI.2018.2867291 – ident: ref18 doi: 10.21629/JSEE.2019.02.05 – ident: ref22 doi: 10.1002/cpe.6018 – ident: ref6 doi: 10.1109/TASSP.1986.1164914 – ident: ref39 doi: 10.1109/TCSII.2022.3141687 – ident: ref30 doi: 10.1109/ACCESS.2021.3083282 – ident: ref26 doi: 10.1109/53.29648 – ident: ref34 doi: 10.1109/ACSSC.2011.6189976 – ident: ref4 doi: 10.1007/978-94-010-1223-2_23 – ident: ref7 doi: 10.1109/TASSP.1984.1164334 – ident: ref9 doi: 10.1109/78.774769 – ident: ref5 doi: 10.1109/ICASSP.1995.480498 – ident: ref32 doi: 10.1109/VLSID.2018.77 – ident: ref11 doi: 10.1007/978-3-642-75536-1_49 – ident: ref20 doi: 10.1007/978-1-4615-2678-0 – ident: ref35 doi: 10.1109/VLSISoC.2011.6081621 – ident: ref41 doi: 10.1109/TASSP.1984.1164286 – ident: ref13 doi: 10.1109/ICASSP.2002.5745200 – ident: ref36 doi: 10.1109/TCSII.2013.2251968 – ident: ref17 doi: 10.1002/j.1538-7305.1979.tb03332.x – volume-title: Fundamentals of Adaptive Filtering year: 2003 ident: ref2 – ident: ref8 doi: 10.1002/ecja.4400670503 |
| SSID | ssj0000816957 |
| Score | 2.3548048 |
| Snippet | Distributed arithmetic (DA) is an efficient look-up table (LUT) based approach. The throughput of DA based implementation is limited by the LUT size. This... |
| SourceID | doaj swepub proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 76693 |
| SubjectTerms | Adaptive filter (ADF) Adaptive filters Algorithms Arithmetic Binary codes Convergence Decomposition distributed arithmetic (DA) finite-impulse response (FIR) Fixed point arithmetic Hardware least mean square (LMS) look-up table (LUT) Lookup tables Steady-state Table lookup Throughput Very large scale integration |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYo4gAH-qCoC7TyoeqJFOdtH8PSVQ-wQuqCuFl-RUSimxWbhb_PjGOiXQlV6i2KxnacGXv82Z5vCPleOJ0bbkVktDZRBqAjEuCXIseVZbGxLvFZIm4vy-mU392J6y1yOsTCOOf85TP3Ex_9Wb5tzQq3ys4ERghhRPm7siz6WK1hPwUTSIi8DMRCMRNn1XgMfQAImCSATAVChQ3n4zn6Q1KVzfXlOmeo9zOT9__3hR_IflhP0qo3gI9ky80_kb01lsEDYmfPLb1AglzMbeUsCDfd_V-MXqTn4MQsxcsedNZn7FmsOlqtnS4saVvTaTuPrpsFxq6D-OXVH1pZtcCZkk4aPG9ffiY3k1-z8e8oJFeIDCDALhKI7OLCFFmsWKZtUiPUUkKAdhLntMkBOnJdlIBbVa6EZaqwhTOshgUMr8v0kGzP27n7QmimDHdZHqcayoIA5w6nCZ5lTBkb5yOSvP51aQLzOCbAeJAegTAhe1VJVJUMqhqR06HQoife-Lf4OapzEEXWbP8C1CPDIJTGas5zk6ROZ4D0YqG10Cy1aV4bJhQfkQNU6VBJ0OaInLwahwwjfCkTsDYAo2kBTf_oDWaj8YvmtvKNPzQrGQMqFOLo7eqPyS72pN_XOSHb3ePKfSU75qlrlo_fvJW_AMUx-ps priority: 102 providerName: IEEE |
| Title | Two Distributed Arithmetic Based High Throughput Architectures of Non-Pipelined LMS Adaptive Filters |
| URI | https://ieeexplore.ieee.org/document/9833515 https://www.proquest.com/docview/2695144369 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-187599 https://doaj.org/article/cdb885c23eb449919bb9b03d35fc09a8 |
| Volume | 10 |
| WOSCitedRecordID | wos000831065800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOqFAQW0rlA-JEVDtPzzHddsWhXVViqXqz_IqIVHZX3Sy98duZcdJV9gIXLjlE49geTzzzxZlvGPtUBls45SFx1rokR9CRAPqlJCjjhXQ-pLFKxO1VNZ-ruzu4GZX6on_CenrgXnFnzlulCpdmweYYnUuwFqzIfFY0ToCJab6ighGYinuwkiUU1UAzJAWc1dMpzggBYZoiTgUCDnuuKDL2DyVW9qPNMYNo9DqzQ_ZqCBd53Q_zNXsWlm_YyxGJ4BHzi8cVvyD-WypdFTwKt92Pn5ScyM_RR3lO_3LwRV-QZ73teD06PNjwVcPnq2Vy064pNR3Fr66_8dqbNW2EfNbScfrmLfs-u1xMvyZD7YTEIcDrEiDgJktX5tKI3Pq0ISRlAFD5aQjWFYgMlS0rhKWmMOCFKX0ZnGgwPlFNlb1jB8vVMrxnPDdOhbyQmcW2KKBUoF1A5bkwzstiwtInNWo3EItTfYt7HQGGAN3rXpPu9aD7Cfuya7TueTX-Ln5O67MTJVLseANNRQ-mov9lKhN2RKu7ewhQwhmN_-RptfXwAm90iuaDWDMrsevPvQXsdX7R3tax8_t2qyWCPoDj_zHGD-wFzbv_yHPCDrqHbfjInrtfXbt5OI1Gjtfr35enMVXxDzE_AEo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NAwn2wNdAFAb4AfG0MOez9mPWUQ3RVZMo094sf0VEGk21puPf5y7xolZCSLxF0dmOc2eff7bvfgAfC29yK5yMrDE2yhB0RBL9UuSFdjy2zicdS8TVbDyfi-trebkHx0MsjPe-u3zmP9Njd5bvGruhrbITSRFCFFH-gJizQrTWsKNCFBIyH4fUQjGXJ-Vkgr1AEJgkiE0lgYUd99Nl6Q-0KrsrzO2soZ2nmT79v298Bk_CipKVvQk8hz2_fAEHW3kGD8EtfjfsjFLkEruVdyhctz9_UfwiO0U35hhd92CLnrNntWlZuXW-sGZNxebNMrqsVxS9juKzi--sdHpFcyWb1nTivn4JP6ZfFpPzKNArRBYxYBtJwnZxYYss1jwzLqkIbGkpUT-J98bmCB6FKcaIXHWupeO6cIW3vMIljKjG6SvYXzZL_xpYpq3wWR6nBsuigBCeJgqRZVxbF-cjSO7_urIh9zhRYNyoDoNwqXpVKVKVCqoawfFQaNWn3vi3-CmpcxClvNndC1SPCsNQWWeEyG2SepMh1oulMdLw1KV5ZbnUYgSHpNKhkqDNERzdG4cKY3ytErQ2hKNpgU1_6g1mp_Gz-qrsGr-pNypGXCjlm79X_wEenS8uZmr2df7tLTymXvW7PEew395u_Dt4aO_aen37vrP4P_Px_eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Distributed+Arithmetic+Based+High+Throughput+Architectures+of+Non-Pipelined+LMS+Adaptive+Filters&rft.jtitle=IEEE+access&rft.au=Khan%2C+Mohd.+Tasleem&rft.au=Alhartomi%2C+Mohammed+A.&rft.au=Alzahrani%2C+Saeed&rft.au=Shaik%2C+Rafi+Ahamed&rft.date=2022&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=10&rft.spage=76693&rft_id=info:doi/10.1109%2FACCESS.2022.3192619&rft.externalDocID=oai_DiVA_org_liu_187599 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |