Prospective development and validation of a volumetric laser endomicroscopy computer algorithm for detection of Barrett’s neoplasia

Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett’s esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to tr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Gastrointestinal endoscopy Ročník 93; číslo 4; s. 871 - 879
Hlavní autoři: Struyvenberg, Maarten R., de Groof, Albert J., Fonollà, Roger, van der Sommen, Fons, de With, Peter H.N., Schoon, Erik J., Weusten, Bas L.A.M., Leggett, Cadman L., Kahn, Allon, Trindade, Arvind J., Ganguly, Eric K., Konda, Vani J.A., Lightdale, Charles J., Pleskow, Douglas K., Sethi, Amrita, Smith, Michael S., Wallace, Michael B., Wolfsen, Herbert C., Tearney, Gary J., Meijer, Sybren L., Vieth, Michael, Pouw, Roos E., Curvers, Wouter L., Bergman, Jacques J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.04.2021
Témata:
ISSN:0016-5107, 1097-6779, 1097-6779
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett’s esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia. The multicenter, VLE PREDICT study, prospectively enrolled 47 patients with BE. In total, 229 nondysplastic BE and 89 neoplastic (high-grade dysplasia/esophageal adenocarcinoma) targets were laser marked under VLE guidance and subsequently underwent a biopsy for histologic diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 nondysplastic BE and 38 neoplastic targets) and validated on a separate test set from patients 23 to 47 (95 nondysplastic BE and 51 neoplastic targets). The performance of the algorithm was benchmarked against the performance of 10 VLE experts. Using the training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95%, and specificity of 92%. When performance was assessed on the test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%. We developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts. (The Netherlands National Trials Registry (NTR) number: NTR 6728.)
AbstractList Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett's esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia. The multicenter, VLE PREDICT study, prospectively enrolled 47 patients with BE. In total, 229 nondysplastic BE and 89 neoplastic (high-grade dysplasia/esophageal adenocarcinoma) targets were laser marked under VLE guidance and subsequently underwent a biopsy for histologic diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 nondysplastic BE and 38 neoplastic targets) and validated on a separate test set from patients 23 to 47 (95 nondysplastic BE and 51 neoplastic targets). The performance of the algorithm was benchmarked against the performance of 10 VLE experts. Using the training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95%, and specificity of 92%. When performance was assessed on the test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%. We developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts. (The Netherlands National Trials Registry (NTR) number: NTR 6728.).
Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett's esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia.BACKGROUND AND AIMSVolumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett's esophagus (BE) dysplasia. However, real-time interpretation of VLE scans is complex and time-consuming. Computer-aided detection (CAD) may help in the process of VLE image interpretation. Our aim was to train and validate a CAD algorithm for VLE-based detection of BE neoplasia.The multicenter, VLE PREDICT study, prospectively enrolled 47 patients with BE. In total, 229 nondysplastic BE and 89 neoplastic (high-grade dysplasia/esophageal adenocarcinoma) targets were laser marked under VLE guidance and subsequently underwent a biopsy for histologic diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 nondysplastic BE and 38 neoplastic targets) and validated on a separate test set from patients 23 to 47 (95 nondysplastic BE and 51 neoplastic targets). The performance of the algorithm was benchmarked against the performance of 10 VLE experts.METHODSThe multicenter, VLE PREDICT study, prospectively enrolled 47 patients with BE. In total, 229 nondysplastic BE and 89 neoplastic (high-grade dysplasia/esophageal adenocarcinoma) targets were laser marked under VLE guidance and subsequently underwent a biopsy for histologic diagnosis. Deep convolutional neural networks were used to construct a CAD algorithm for differentiation between nondysplastic and neoplastic BE tissue. The CAD algorithm was trained on a set consisting of the first 22 patients (134 nondysplastic BE and 38 neoplastic targets) and validated on a separate test set from patients 23 to 47 (95 nondysplastic BE and 51 neoplastic targets). The performance of the algorithm was benchmarked against the performance of 10 VLE experts.Using the training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95%, and specificity of 92%. When performance was assessed on the test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%.RESULTSUsing the training set to construct the algorithm resulted in an accuracy of 92%, sensitivity of 95%, and specificity of 92%. When performance was assessed on the test set, accuracy, sensitivity, and specificity were 85%, 91%, and 82%, respectively. The algorithm outperformed all 10 VLE experts, who demonstrated an overall accuracy of 77%, sensitivity of 70%, and specificity of 81%.We developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts. (The Netherlands National Trials Registry (NTR) number: NTR 6728.).CONCLUSIONSWe developed, validated, and benchmarked a VLE CAD algorithm for detection of BE neoplasia using prospectively collected and biopsy-correlated VLE targets. The algorithm detected neoplasia with high accuracy and outperformed 10 VLE experts. (The Netherlands National Trials Registry (NTR) number: NTR 6728.).
Author Lightdale, Charles J.
Meijer, Sybren L.
Konda, Vani J.A.
Curvers, Wouter L.
Kahn, Allon
Bergman, Jacques J.
Vieth, Michael
Ganguly, Eric K.
Struyvenberg, Maarten R.
de With, Peter H.N.
Schoon, Erik J.
Trindade, Arvind J.
Sethi, Amrita
Tearney, Gary J.
de Groof, Albert J.
Pleskow, Douglas K.
Leggett, Cadman L.
Fonollà, Roger
Wallace, Michael B.
Pouw, Roos E.
van der Sommen, Fons
Weusten, Bas L.A.M.
Smith, Michael S.
Wolfsen, Herbert C.
Author_xml – sequence: 1
  givenname: Maarten R.
  surname: Struyvenberg
  fullname: Struyvenberg, Maarten R.
  organization: Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
– sequence: 2
  givenname: Albert J.
  surname: de Groof
  fullname: de Groof, Albert J.
  organization: Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
– sequence: 3
  givenname: Roger
  surname: Fonollà
  fullname: Fonollà, Roger
  organization: Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 4
  givenname: Fons
  surname: van der Sommen
  fullname: van der Sommen, Fons
  organization: Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 5
  givenname: Peter H.N.
  surname: de With
  fullname: de With, Peter H.N.
  organization: Department of Electrical Engineering, VCA group, Eindhoven University of Technology, Eindhoven, the Netherlands
– sequence: 6
  givenname: Erik J.
  surname: Schoon
  fullname: Schoon, Erik J.
  organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands
– sequence: 7
  givenname: Bas L.A.M.
  surname: Weusten
  fullname: Weusten, Bas L.A.M.
  organization: Department of Gastroenterology and Hepatology, St. Antonius Hospital, Nieuwegein, the Netherlands
– sequence: 8
  givenname: Cadman L.
  surname: Leggett
  fullname: Leggett, Cadman L.
  organization: Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
– sequence: 9
  givenname: Allon
  surname: Kahn
  fullname: Kahn, Allon
  organization: Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, Arizona, USA
– sequence: 10
  givenname: Arvind J.
  surname: Trindade
  fullname: Trindade, Arvind J.
  organization: Division of Gastroenterology and Hepatology, Zucker School of Medicine at Hofstra/Northwell. Long Island Jewish Medical Center, New Hyde Park, New York, USA
– sequence: 11
  givenname: Eric K.
  surname: Ganguly
  fullname: Ganguly, Eric K.
  organization: Department of Gastroenterology and Hepatology, University of Vermont Medical Center, Burlington, Vermont, USA
– sequence: 12
  givenname: Vani J.A.
  surname: Konda
  fullname: Konda, Vani J.A.
  organization: Department of Gastroenterology and Hepatology, Baylor University Medical Center at Dallas, Dallas, Texas, USA
– sequence: 13
  givenname: Charles J.
  surname: Lightdale
  fullname: Lightdale, Charles J.
  organization: Division of Gastroenterology and Hepatology, New York-Presbyterian Hospital, New York, New York, USA
– sequence: 14
  givenname: Douglas K.
  surname: Pleskow
  fullname: Pleskow, Douglas K.
  organization: Department of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
– sequence: 15
  givenname: Amrita
  surname: Sethi
  fullname: Sethi, Amrita
  organization: Department of Gastroenterology and Hepatology, Columbia University Medical Center, New York, New York, USA
– sequence: 16
  givenname: Michael S.
  surname: Smith
  fullname: Smith, Michael S.
  organization: Division of Gastroenterology and Hepatology, Mount Sinai West & Mount Sinai St. Luke's Hospitals, New York, New York, USA
– sequence: 17
  givenname: Michael B.
  surname: Wallace
  fullname: Wallace, Michael B.
  organization: Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
– sequence: 18
  givenname: Herbert C.
  surname: Wolfsen
  fullname: Wolfsen, Herbert C.
  organization: Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
– sequence: 19
  givenname: Gary J.
  surname: Tearney
  fullname: Tearney, Gary J.
  organization: Department of Pathology, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
– sequence: 20
  givenname: Sybren L.
  surname: Meijer
  fullname: Meijer, Sybren L.
  organization: Department of Pathology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
– sequence: 21
  givenname: Michael
  surname: Vieth
  fullname: Vieth, Michael
  organization: Institute of Pathology, Bayreuth Clinic, Bayreuth, Germany
– sequence: 22
  givenname: Roos E.
  surname: Pouw
  fullname: Pouw, Roos E.
  organization: Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
– sequence: 23
  givenname: Wouter L.
  surname: Curvers
  fullname: Curvers, Wouter L.
  organization: Department of Gastroenterology and Hepatology, Catharina Hospital, Eindhoven, the Netherlands
– sequence: 24
  givenname: Jacques J.
  surname: Bergman
  fullname: Bergman, Jacques J.
  organization: Department of Gastroenterology and Hepatology, Amsterdam UMC, location AMC, Amsterdam, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32735947$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFu1TAYhS1URG8LD8CCPLIk2I4TJ2KCigJSJTqU2XLsP8UXJw62E-luXXiIvl6fpL7cdulQvFiyznf8_-ecoKPJT4DQW0pKSmjzYVteWygZYaQkoiQ1e4E2lHSiaITojtCGZFFRUyKO0UmMW0JIyyr6Ch1XTFR1x8UG_b0MPs6gk10BG1jB-XmEKWE1GbwqZ41K1k_YD1jh1btlhBSsxk5FCBgm40ers4X28w5rP85Lyu_KXftg068RDz5k27T_4ODyWYUAKd3d3EY8gZ-zkVWv0ctBuQhvHu5T9PP8y9XZt-Lix9fvZ58uCs15k4qOMUG55jVReXymhp6Spu1b0KLXFesZ8L4GIgwXtTL51JwTaFVPO9MPjapO0fuD7xz8nwVikqONGpxTeZQlSsZZJ0TLRZWl7x6kSz-CkXOwowo7-RhdFoiDYL9-DDBIbdO_sFJQ1klK5L4kuZW5JLkvSRIhc0mZpE_IR_PnmI8HBnI8q4Ugo7YwaTA25HCl8fZZuntCa2cnq5X7Dbv_sPeMncFc
CitedBy_id crossref_primary_10_3390_cancers14081918
crossref_primary_10_1038_s41598_022_20610_z
crossref_primary_10_3748_wjg_v31_i36_110742
crossref_primary_10_3390_cancers16193285
crossref_primary_10_1016_j_cgh_2022_06_003
crossref_primary_10_1002_jbio_202300014
crossref_primary_10_1177_26345161231151947
crossref_primary_10_1016_j_cgh_2021_02_008
crossref_primary_10_3390_diagnostics12102437
Cites_doi 10.1016/j.gie.2018.01.032
10.1016/j.gie.2015.08.050
10.3390/app9112183
10.1016/j.gie.2017.03.011
10.1159/000445221
10.1055/s-0043-121569
10.1093/dote/doz029
10.1016/j.gie.2013.07.046
10.5858/2005-129-177-DOPRFB
10.1038/ajg.2015.322
10.1016/j.gie.2016.09.012
10.1055/s-0033-1344952
10.1016/j.gie.2016.11.026
10.1055/s-2005-861352
ContentType Journal Article
Copyright 2021 American Society for Gastrointestinal Endoscopy
Copyright © 2021 American Society for Gastrointestinal Endoscopy. All rights reserved.
Copyright_xml – notice: 2021 American Society for Gastrointestinal Endoscopy
– notice: Copyright © 2021 American Society for Gastrointestinal Endoscopy. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.gie.2020.07.052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6779
EndPage 879
ExternalDocumentID 32735947
10_1016_j_gie_2020_07_052
S0016510720346472
Genre Journal Article
GrantInformation_xml – fundername: Covidien
  funderid: https://doi.org/10.13039/501100002736
– fundername: Fujifilm
  funderid: https://doi.org/10.13039/501100002424
– fundername: Mayo Clinic
  funderid: https://doi.org/10.13039/100000871
– fundername: Cook Medical
  funderid: https://doi.org/10.13039/100010479
– fundername: Olympus
  funderid: https://doi.org/10.13039/100009734
– fundername: Boston Scientific
  funderid: https://doi.org/10.13039/100008497
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FD8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M28
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OC.
ON0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
UNMZH
UV1
WH7
WOW
X7M
Z5R
ZGI
ZXP
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c446t-922714c450a3592afb1068b8ec7bc32b2e4b5e07d475adddd5440e8ab19dbf6a3
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000630000300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-5107
1097-6779
IngestDate Sat Sep 27 23:40:06 EDT 2025
Thu Apr 03 06:53:07 EDT 2025
Sat Nov 29 06:59:02 EST 2025
Tue Nov 18 22:38:12 EST 2025
Fri Feb 23 02:45:17 EST 2024
Tue Oct 14 19:35:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords BE
CI
CAD
IQR
NDBE
ROI
VLE
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 American Society for Gastrointestinal Endoscopy. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-922714c450a3592afb1068b8ec7bc32b2e4b5e07d475adddd5440e8ab19dbf6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0016510720346472
PMID 32735947
PQID 2429778473
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2429778473
pubmed_primary_32735947
crossref_citationtrail_10_1016_j_gie_2020_07_052
crossref_primary_10_1016_j_gie_2020_07_052
elsevier_sciencedirect_doi_10_1016_j_gie_2020_07_052
elsevier_clinicalkey_doi_10_1016_j_gie_2020_07_052
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-Apr
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gastrointestinal endoscopy
PublicationTitleAlternate Gastrointest Endosc
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alshelleh, Inamdar, McKinley (bib10) 2018; 88
Deng, Dong, Socher (bib16) 2009
Belghazi, Bergman, Pouw (bib2) 2016; 34
Fonollà, Scheeve, Struyvenberg (bib18) 2019; 9
Swager, Tearney, Leggett (bib7) 2017; 85
(bib13) 2005; 37
Smith, Cash, Konda (bib11) 2019; 32
Gordon, Mayne, Hirst (bib3) 2014; 79
Trindade, Inamdar, Smith (bib19) 2018; 50
Shaheen, Falk, Iyer (bib1) 2016; 111
Tschanz (bib4) 2005; 129
Swager, van der Sommen, Klomp (bib5) 2017; 86
Aiko, Sasako (bib14) 2003; 58
Leggett, Gorospe, Chan (bib8) 2016; 83
Yosinski, Clune, Bengio (bib17) 2014; 4
Trindade, Inamdar, Smith (bib9) 2017; 86
Struyvenberg, van der Sommen, Swager (bib6) 2020; 33
Alvarez Herrero, Curvers, van Vilsteren (bib12) 2013; 45
Simonyan, Zisserman (bib15) 2015
Selvaraju, Cogswell, Das (bib20) 2017
Leggett (10.1016/j.gie.2020.07.052_bib8) 2016; 83
Swager (10.1016/j.gie.2020.07.052_bib7) 2017; 85
(10.1016/j.gie.2020.07.052_bib13) 2005; 37
Aiko (10.1016/j.gie.2020.07.052_bib14) 2003; 58
Smith (10.1016/j.gie.2020.07.052_bib11) 2019; 32
Alshelleh (10.1016/j.gie.2020.07.052_bib10) 2018; 88
Swager (10.1016/j.gie.2020.07.052_bib5) 2017; 86
Simonyan (10.1016/j.gie.2020.07.052_bib15) 2015
Gordon (10.1016/j.gie.2020.07.052_bib3) 2014; 79
Deng (10.1016/j.gie.2020.07.052_bib16) 2009
Trindade (10.1016/j.gie.2020.07.052_bib9) 2017; 86
Trindade (10.1016/j.gie.2020.07.052_bib19) 2018; 50
Shaheen (10.1016/j.gie.2020.07.052_bib1) 2016; 111
Struyvenberg (10.1016/j.gie.2020.07.052_bib6) 2020; 33
Fonollà (10.1016/j.gie.2020.07.052_bib18) 2019; 9
Selvaraju (10.1016/j.gie.2020.07.052_bib20) 2017
Yosinski (10.1016/j.gie.2020.07.052_bib17) 2014; 4
Tschanz (10.1016/j.gie.2020.07.052_bib4) 2005; 129
Alvarez Herrero (10.1016/j.gie.2020.07.052_bib12) 2013; 45
Belghazi (10.1016/j.gie.2020.07.052_bib2) 2016; 34
References_xml – volume: 88
  start-page: 35
  year: 2018
  end-page: 42
  ident: bib10
  article-title: Incremental yield of dysplasia detection in Barrett’s esophagus using volumetric laser endomicroscopy with and without laser marking compared with a standardized random biopsy protocol
  publication-title: Gastrointest Endosc
– volume: 37
  start-page: 570
  year: 2005
  end-page: 578
  ident: bib13
  article-title: Update on the Paris classification of superficial neoplastic lesions in the digestive tract
  publication-title: Endoscopy
– volume: 86
  start-page: 839
  year: 2017
  end-page: 846
  ident: bib5
  article-title: Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy
  publication-title: Gastrointest Endosc
– volume: 83
  start-page: 880
  year: 2016
  end-page: 888.e2
  ident: bib8
  article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus
  publication-title: Gastrointest Endosc
– volume: 58
  start-page: S3
  year: 2003
  end-page: S43
  ident: bib14
  article-title: The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002
  publication-title: Gastrointest Endosc
– year: 2015
  ident: bib15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 34
  start-page: 469
  year: 2016
  end-page: 475
  ident: bib2
  article-title: endoscopic resection and radiofrequency ablation for early esophageal neoplasia
  publication-title: Dig Dis
– volume: 85
  start-page: 918
  year: 2017
  end-page: 926.e7
  ident: bib7
  article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation
  publication-title: Gastrointest Endosc
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib16
  article-title: ImageNet: a large-scale hierarchical image database
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib20
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– volume: 111
  start-page: 30
  year: 2016
  end-page: 50
  ident: bib1
  article-title: ACG clinical guideline: diagnosis and management of Barrett’s esophagus
  publication-title: Am J Gastroenterol
– volume: 79
  start-page: 242
  year: 2014
  end-page: 256.e6
  ident: bib3
  article-title: Cost-effectiveness of endoscopic surveillance of non-dysplastic Barrett’s esophagus
  publication-title: Gastrointest Endosc
– volume: 33
  start-page: doz065
  year: 2020
  ident: bib6
  article-title: Improved Barrett’s neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy
  publication-title: Dis Esophagus
– volume: 86
  start-page: 133
  year: 2017
  end-page: 139
  ident: bib9
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users
  publication-title: Gastrointest Endosc
– volume: 4
  start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib17
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– volume: 45
  start-page: 876
  year: 2013
  end-page: 882
  ident: bib12
  article-title: Validation of the Prague C&M classification of Barrett’s esophagus in clinical practice
  publication-title: Endoscopy
– volume: 50
  start-page: 471
  year: 2018
  end-page: 478
  ident: bib19
  article-title: Learning curve and competence for volumetric laser endomicroscopy in Barrett’s esophagus using cumulative sum analysis
  publication-title: Endoscopy
– volume: 129
  start-page: 177
  year: 2005
  end-page: 180
  ident: bib4
  article-title: Do 40% of patients resected for Barrett esophagus with high-grade dysplasia have unsuspected adenocarcinoma?
  publication-title: Arch Pathol Lab Med
– volume: 32
  start-page: doz029
  year: 2019
  ident: bib11
  article-title: Volumetric laser endomicroscopy and its application to Barrett’s esophagus: results from a 1,000 patient registry
  publication-title: Dis Esophagus
– volume: 9
  start-page: 2183
  year: 2019
  ident: bib18
  article-title: Ensemble of deep convolutional neural networks for classification of early Barrett’s neoplasia using volumetric laser endomicroscopy
  publication-title: Appl Sci
– volume: 88
  start-page: 35
  year: 2018
  ident: 10.1016/j.gie.2020.07.052_bib10
  article-title: Incremental yield of dysplasia detection in Barrett’s esophagus using volumetric laser endomicroscopy with and without laser marking compared with a standardized random biopsy protocol
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.01.032
– volume: 83
  start-page: 880
  year: 2016
  ident: 10.1016/j.gie.2020.07.052_bib8
  article-title: Comparative diagnostic performance of volumetric laser endomicroscopy and confocal laser endomicroscopy in the detection of dysplasia associated with Barrett’s esophagus
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2015.08.050
– volume: 9
  start-page: 2183
  year: 2019
  ident: 10.1016/j.gie.2020.07.052_bib18
  article-title: Ensemble of deep convolutional neural networks for classification of early Barrett’s neoplasia using volumetric laser endomicroscopy
  publication-title: Appl Sci
  doi: 10.3390/app9112183
– year: 2015
  ident: 10.1016/j.gie.2020.07.052_bib15
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv
– volume: 86
  start-page: 839
  year: 2017
  ident: 10.1016/j.gie.2020.07.052_bib5
  article-title: Computer-aided detection of early Barrett’s neoplasia using volumetric laser endomicroscopy
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2017.03.011
– volume: 34
  start-page: 469
  year: 2016
  ident: 10.1016/j.gie.2020.07.052_bib2
  article-title: endoscopic resection and radiofrequency ablation for early esophageal neoplasia
  publication-title: Dig Dis
  doi: 10.1159/000445221
– volume: 50
  start-page: 471
  year: 2018
  ident: 10.1016/j.gie.2020.07.052_bib19
  article-title: Learning curve and competence for volumetric laser endomicroscopy in Barrett’s esophagus using cumulative sum analysis
  publication-title: Endoscopy
  doi: 10.1055/s-0043-121569
– volume: 32
  start-page: doz029
  year: 2019
  ident: 10.1016/j.gie.2020.07.052_bib11
  article-title: Volumetric laser endomicroscopy and its application to Barrett’s esophagus: results from a 1,000 patient registry
  publication-title: Dis Esophagus
  doi: 10.1093/dote/doz029
– start-page: 618
  year: 2017
  ident: 10.1016/j.gie.2020.07.052_bib20
– volume: 79
  start-page: 242
  year: 2014
  ident: 10.1016/j.gie.2020.07.052_bib3
  article-title: Cost-effectiveness of endoscopic surveillance of non-dysplastic Barrett’s esophagus
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2013.07.046
– volume: 58
  start-page: S3
  issue: 6 Suppl
  year: 2003
  ident: 10.1016/j.gie.2020.07.052_bib14
  article-title: The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002
  publication-title: Gastrointest Endosc
– volume: 129
  start-page: 177
  year: 2005
  ident: 10.1016/j.gie.2020.07.052_bib4
  article-title: Do 40% of patients resected for Barrett esophagus with high-grade dysplasia have unsuspected adenocarcinoma?
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/2005-129-177-DOPRFB
– volume: 111
  start-page: 30
  year: 2016
  ident: 10.1016/j.gie.2020.07.052_bib1
  article-title: ACG clinical guideline: diagnosis and management of Barrett’s esophagus
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2015.322
– start-page: 248
  year: 2009
  ident: 10.1016/j.gie.2020.07.052_bib16
– volume: 4
  start-page: 3320
  year: 2014
  ident: 10.1016/j.gie.2020.07.052_bib17
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– volume: 85
  start-page: 918
  year: 2017
  ident: 10.1016/j.gie.2020.07.052_bib7
  article-title: Identification of volumetric laser endomicroscopy features predictive for early neoplasia in Barrett’s esophagus using high-quality histological correlation
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2016.09.012
– volume: 45
  start-page: 876
  year: 2013
  ident: 10.1016/j.gie.2020.07.052_bib12
  article-title: Validation of the Prague C&M classification of Barrett’s esophagus in clinical practice
  publication-title: Endoscopy
  doi: 10.1055/s-0033-1344952
– volume: 33
  start-page: doz065
  year: 2020
  ident: 10.1016/j.gie.2020.07.052_bib6
  article-title: Improved Barrett’s neoplasia detection using computer-assisted multiframe analysis of volumetric laser endomicroscopy
  publication-title: Dis Esophagus
– volume: 86
  start-page: 133
  year: 2017
  ident: 10.1016/j.gie.2020.07.052_bib9
  article-title: Volumetric laser endomicroscopy in Barrett’s esophagus: interobserver agreement for interpretation of Barrett’s esophagus and associated neoplasia among high-frequency users
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2016.11.026
– volume: 37
  start-page: 570
  year: 2005
  ident: 10.1016/j.gie.2020.07.052_bib13
  article-title: Update on the Paris classification of superficial neoplastic lesions in the digestive tract
  publication-title: Endoscopy
  doi: 10.1055/s-2005-861352
SSID ssj0008231
Score 2.4393857
Snippet Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett’s esophagus (BE) dysplasia. However, real-time interpretation of...
Volumetric laser endomicroscopy (VLE) is an advanced imaging modality used to detect Barrett's esophagus (BE) dysplasia. However, real-time interpretation of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 871
Title Prospective development and validation of a volumetric laser endomicroscopy computer algorithm for detection of Barrett’s neoplasia
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0016510720346472
https://dx.doi.org/10.1016/j.gie.2020.07.052
https://www.ncbi.nlm.nih.gov/pubmed/32735947
https://www.proquest.com/docview/2429778473
Volume 93
WOSCitedRecordID wos000630000300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1097-6779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008231
  issn: 0016-5107
  databaseCode: AIEXJ
  dateStart: 20200601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LUJcEG_KozISJ6JUeThxfCyoC1RqVdEi7S2KY2fZaptUu2nV3rjwI_h7SPwPZuLYu0W0PCQu0Wo3jrOZL-PP9jczhLxMuAy5SrUPg1PiMxkHfpbI2FehStJKhUVcmWITfG8vG43E_mDw3cbCnE15XWfn5-Lkv5oavgNjY-jsX5jbXRS-gM9gdDiC2eH4R4bfnzU2fNKGRDkhOfQzUY4kFp7xTZik3wMWrWeerhWGKWOKy-bkohOcY80Hr5iOm9mk_XTcyRKVbnVpr_K6F_v2qgkx92pUpWN05jLzfVvM21mD2SnAqSAFxq66XtwiTzs7vThbKM52C9Sb1t6HTXuG0rhW1pg8kpicq_V23I_DButmdxv_gdGMjxfKY4zSwqwZB83xsXG0Q7tO2S95ROGSUqZbh7OxOJekokhe_aSvobupjTsPBPdTbsrVWH9vKjL2uGZLzjszxWAcDxC_HGLMasfR5niCWVajwOR-jRbjqVM5HuAt4R1FQcwwTf8KWYt4IsAdr2293x7tOMqAe7GGMpi_YLffOyHiTx1dRaCumiB1ROnwDrndz3DolkHmXTLQ9T1yc7fXcNwnX5YASpcASgGgdAFQ2lS0oAuA0g6g9DJAqQUodQClAFDqAIpX6QH67fPXOXXQfEA-DrcP37zz-2IgfslY2voiinjISpYERZyIqKhkGKSZzHTJZRlHMtJMJjrgivEExmylEsYCnRUyFEpWaRE_JKt1U-vHhFZapBWeH8WcyVQKCW5MpYEuBa9gGrdOAvuE87LPlI8FW6a5lUQe5WCUHI2SBzwHo6yTV67JiUkTc93JkTVbbuOfYcTOAWHXNWKuUU-ODen9XbMXFhc5DBy4G1jAoz6d58DNYe4H5DReJ48MYNytxzCpSQTjT_6t06fk1uK1fUZWwX3o5-RGedZO5rMNssJH2Ub_CvwAsLL6VA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospective+development+and+validation+of+a+volumetric+laser+endomicroscopy+computer+algorithm+for+detection+of+Barrett%E2%80%99s+neoplasia&rft.jtitle=Gastrointestinal+endoscopy&rft.au=Struyvenberg%2C+Maarten+R.&rft.au=de+Groof%2C+Albert+J.&rft.au=Fonoll%C3%A0%2C+Roger&rft.au=van+der+Sommen%2C+Fons&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0016-5107&rft.eissn=1097-6779&rft.volume=93&rft.issue=4&rft.spage=871&rft.epage=879&rft_id=info:doi/10.1016%2Fj.gie.2020.07.052&rft.externalDocID=S0016510720346472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-5107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-5107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-5107&client=summon